Supplementary information

Staphylococcus aureus lipoproteins promote abscess formation in mice, shielding bacteria from immune killing

Majd Mohammad^{1*}, Manli Na¹, Zhicheng Hu^{1,2}, Minh-Thu Nguyen^{3,a}, Pradeep Kumar Kopparapu¹, Anders Jarneborn^{1,4}, Anna Karlsson¹, Abukar Ali¹, Rille Pullerits^{1,5}, Friedrich Götz³, Tao Jin^{1,4}

¹ Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden

² Department of Microbiology and Immunology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China

³ Department of Microbial Genetics, Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), University of Tübingen, Tübingen, Germany

⁴ Department of Rheumatology, Sahlgrenska University Hospital, Gothenburg, Sweden

⁵ Department of Clinical Immunology and Transfusion Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden

^a Current affiliation: Section of Medical and Geographical Infectiology, Institute of Medical Microbilogy, University Hospital of Münster, Münster, Germany

* Corresponding author:

M.M.: <u>majd.mohammad@rheuma.gu.se</u>; Department of Rheumatology and Inflammation Research, University of Gothenburg, Guldhedsgatan 10A, S-413 46 Gothenburg, Sweden. Tel: +46-31-3426475.

Supplementary Fig. 1: Migration of immune cells to the local skin following subcutaneous injection with *S. aureus* Lpp in TLR2 deficient mice as confirmed by flow cytometry analysis.

Representative FACS dot plots of cells isolated from auricular skin tissue following subcutaneous injection of phosphate-buffered saline (PBS) (upper panel) or purified *Staphylococcus aureus* lipoprotein, denoted as Lpl1 (1 µg) (lower panel) in the mouse ear in TLR2 deficient (TLR2^{-/-}) mice.

Supplementary Fig. 2: The reduced bacterial dose setting induces severe skin lesions in SA113 parental strain with a tendency of higher bacterial burden in local skin compared to its Δlgt mutant strain.

(A) The skin lesion size (mm²) in NMRI mice followed up to 3 days after subcutaneous (s.c.) skin injection with 50 µl of *Staphylococcus aureus* SA113 parental strain or SA113 Δ *lgt* mutant strain (7.5x10⁶ CFU/site; n = 10/group). (B) Bacterial counts in the supernatant of skin biopsy homogenates on day 3 after s.c. skin infection with SA113 parental strain or SA113 Δ *lgt* mutant strain (7.5x10⁶ CFU/site; n = 10/group) in NMRI mice. The data were pooled from 2 independent experiments. Statistical evaluations were performed using the Mann–Whitney U test, with data expressed as the mean ± standard error of the mean (A), or presented as scatterplot with line indicating median value (B). ***P* < 0.01; ****P* < 0.001.

Supplementary Fig. 3: The levels of chemokines in skin tissues from mice infected with *Staphylococcus aureus* Newman or Newman Δlgt mutant strain.

The levels of (**A**) macrophage inflammatory protein-2 (MIP-2), (**B**) keratinocyte chemoattractant (KC) and (**C**) monocyte chemoattractant protein 1 (MCP-1) in the supernatant of skin biopsy homogenates of C57BL/6 wild-type (WT) mice and TLR2 deficient (TLR2^{-/-}) mice on day 3 (n = 5/group) and day 10 (n = 7-8/group) after subcutaneous (s.c.) skin injection with 20 μ l of *Staphylococcus aureus* Newman parental strain or Newman Δlgt mutant strain (1.5 – 2.0 x 10⁶ colony-forming units/site). The data were pooled from 2 independent experiments. Statistical evaluations were performed using the Mann–Whitney U test, with data presented as scatterplot with line indicating median value. **P* < 0.05; ***P* < 0.01.

Supplementary Fig. 4: Similar lesion severity and bacterial burden at the early disease course following coinjection of live *S. aureus* with either Lpp or control substance.

(A) The skin lesion size (mm²) and (B) bacterial counts in the supernatant of skin biopsy homogenates of NMRI mice (n = 6/group) 1 day after subcutaneous skin coinjection with 20 μ l of *Staphylococcus aureus* (*S. aureus*) SA113 Δ *lgt* mutant strain (2.4x10⁶ colony-forming units [CFU/site]) with either phosphate-buffered saline (PBS) or purified *S. aureus* lipoprotein, denoted as Lpl1(+sp) (5 μ g/site). Statistical evaluations were performed using the Mann– Whitney U test, with data presented as scatterplot with line indicating median value. ns = not significant.

Supplementary Fig. 5: Leukocyte depletion induces severe weight loss in mice.

The weight changes up to 3 days after subcutaneous (s.c.) skin injection with 20 μ l of *Staphylococcus aureus* Newman parental strain or Newman Δlgt mutant strain (2x10⁶ colony-forming units (CFU)/site) in NMRI mice depleted of leukocytes using cyclophosphamide or treated with phosphate-buffered saline (PBS) as control (n = 8-10/group). The data were pooled from 2 independent experiments. Statistical evaluations were performed using the Mann-Whitney U test, with data expressed as the mean \pm standard error of the mean. ***P* < 0.01; *****P* < 0.0001.

Supplementary Fig. 6: *Staphylococcus aureus* lipoproteins do not induce tissue factor expression in mouse peritoneal macrophages.

The levels of tissue factor (TF) in the supernatants collected from C57BL/6 wildtype (WT) and TLR2 deficient (TLR2^{-/-}) (n = 4/group) mouse peritoneal macrophage cell cultures (5x10⁵ cells/mL) after stimulation for 24 hours with purified *Staphylococcus aureus* lipoprotein, denoted as Lpl1(+sp) (0.02 or 0.2 μ g/mL), Pam3CSK4 (20 ng/mL), or culture medium. Statistical evaluations were performed using the Mann–Whitney U test, with data expressed as the mean \pm standard error of the mean.

Supplementary Fig. 7: Efficacy of leukocyte depletion in mice by cyclophosphamide treatment.

NMRI mice were treated with either PBS as a control substance, or with cyclophosphamide in order to deplete leukocytes, four days and one day prior to the skin infection with *Staphylococcus aureus*. The mice were sacrificed on day 3 postinfection and the level of peripheral mouse blood leukocytes were thereafter assessed in a cell counter (n = 4-8/group). The data were pooled from 2 independent experiments. Statistical evaluations were performed using the Mann–Whitney U test, with data presented as scatterplot with line indicating median value (B). **P < 0.01.

Supplementary Table 1: Incidence of bacterial counts from various organs on day 3 postinfection in fibrinogen-depleted mice (using Ancrod) or in PBS-treated controls (n = 4/group) after subcutaneous infection with *Staphylococcus aureus*.

	Blood	Kidneys	Liver	Spleen	Lungs
Ancrod	0/4	0/4	0/4	0/4	0/4
PBS	0/4	1/4	1/4	1/4	1/4