Supplemental information belonging to the manuscript:

β-Hexosaminidases along the secretory pathway of *Nicotiana benthamiana* have distinct specificities towards engineered helminth N-glycans on recombinant glycoproteins

Nicolò Alvisi¹, Kim van Noort¹, Sarlita Dwiani¹, Nathan Geschiere¹, Octavina Sukarta¹, Koen Varossieau¹, Dieu-Linh Nguyen², Richard Strasser³, Cornelis H. Hokke², Arjen Schots¹ and Ruud H. P. Wilbers^{1*}

* corresponding author

- 1 Laboratory of Nematology, Plant Sciences Group, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
- 2 Department of Parasitology, Leiden University Medical Center, Albinusdreef 2333 ZA, Leiden, The Netherlands
- 3 Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria

*Corresponding author: Ruud H.P. Wilbers, P.O. Box 8123, 6700 ES Wageningen, The Netherlands, phone: +31(0)317485261, fax: +31(0)317484254, e-mail: <u>ruud.wilbers@wur.nl</u>

Table S1. Primer overview

This table gives an overview of all the primers used in this study to perform 3' RACE for HEXO2 orthologs and amplification of full-length HEXO open reading frames. Restriction sites used for subcloning are underlined. Capital letters refer to gene specific sequences.

Primer name	Sequence (5' – 3')	Characteristics (underlined)
HEXO1A-fw	cc <u>tcatgag</u> cATGTCCTCAAATTCCCAATGTC	BspHI site for subcloning into pHYG
HEXO1A-rv	ggtgtacaTTATTGTTCATAGCATGATCCTGG	BsrGI site for subcloning into pHYG
HEXO2A-fw	cc <u>tcatgag</u> cATGGCTTACTTCATTTCATTTCTCTCC	BspHI site for subcloning into pHYG
HEXO2A-rv	ggggtaccTCAGCTGGTAAATGGATGAACTGTG	KpnI site for subcloning into pHYG
HEXO2B-fw	cc <u>tcatgag</u> cATGGCTTACTTCAACTTCAAAG	BspHI site for subcloning into pHYG
HEXO2B-rv	ggggtaccTCAGCTGGTAAATGGATGAAC	KpnI site for subcloning into pHYG
HEXO3A-fw	cc <u>tcatgag</u> cATGGGGAAGTTAGGATTCCG	BspHI site for subcloning into pHYG
HEXO3B-fw	cc <u>ccATGG</u> GGAAGTTAGGAGTGCA	Ncol site for subcloning into pHYG
HEXO3-rv	ggggtaccTTATTGCTGATAGCAAGAACCTG	KpnI site for subcloning into pHYG
Oligo(dT)-AP	ggccacgcgtcgactagtacTTTTTTTTTTTTTTTTTTT	Adaptor sequence for 3' RACE
Adaptor primer	ggccacgcgtcgactagtac	Reverse primer for 3' RACE of HEXO2
HEXO2-RACE-fw	TCCTTCGGAGCCGGAGCTC	Forward primer for 3' RACE of HEXO2

Table S2. Overview of β-Hexosaminidases

This table gives an overview of HEXO sequences from *Arabidopsis thaliana* and *Nicotiana benthamiana* reported in literature and from this study. For each HEXO variant we provide the accession number, homology between the two plant species, information on whether the gene encodes a functional protein, size of the encoded protein, presence of a signal peptide for secretion (SP) and/or transmembrane domain (TMD), the cellular localisation, and literature citations. Sequence homology between Arabidopsis and Nicotiana orthologs was determined on amino acid level by using Clustal Omega alignments. The signal peptide was predicted by the SignalP server (v5) and the transmembrane domain was predicted by the TMHMM server v2.0. Y: yes; N: no.

	Accession	Protein coding /	Homology with Arabidopsis	Protein Length	SP (aa)	TMD (aa)	Localisation	Citation
		Active	(%)	(aa)				
A. thaliana								
HEXO1	At3g55260	Y / Y	-	541	1-20		vacuole	8, 14
HEXO2	At1g05590	Y / Y	-	580	1-28	7-29	plasma membrane, apoplast	8, 14
HEXO3	At1g65590	Υ/Υ	-	535	1-24	7-26	plasma membrane, apoplast	8, 14
N. benthamiana								
HEXO1A	Niben101Scf03794g01004.1	Y / Y	71.51	541	1-24	-	vacuole	15, this manuscript
HEXO1B	Niben101Scf10015g07014.1	N	-	-	-	-	-	this manuscript
HEXO2A	Niben101Scf09360g01009	Y / N	59.54	548	-	21-43	plasma membrane, apoplast	this manuscript
HEXO2B	Niben101Scf15928g00003.1 Niben101Scf01151g00003.1	Y / Y	63.53	602	-	28-50	-	this manuscript
НЕХОЗА	Niben101Scf02017g00001	Y / Y	68.30	530	1-24	-	apoplast	15, this manuscript
HEXO3B	Niben101Scf02405g02003	Y / N	69.13	530	1-24	-	-	this manuscript

AtHEXO1 HEXO1A 101-03794 Ctg15557/101-10015	MSTNLLRLILLFITLSITSSL-STPSPADSPPYLWPLPAEFSFGNETLSV MSSNSQCLLKTLFFLLFIFPLVNARSIKSTLHKTTELDESLTYLWPLPSQFTFGNDTLTV MSSNSQCLLKTLFFLLFIFPLVNARSIKSTLHKTTELDESLTYLWPLPSQFTFGNDTLTV **:* * *:::: : * .*:* .* :* *****::*:*:*	49 60 60 60
AtHEXO1 HEXO1A 101-03794 Ctg15557/101-10015	DPTVTLIVAGNGGGSLIIRAAFDRYMGIIFKHASGRGSLLSRIRFLKMVEYDITSLKIVV DPNLSIVFTGNGGGSVIVKEAFERYKKIIFKHGSKSGDFFDVTQLTVIV DPNLSIVFTGNGGGSVIVKEAFERYKKIIFKHGSKSGDFFDVTQLTVIV DPNLSIVFTGNGGESVIVKQAFERYKKIIFKHGSKSGEFFDVTQLTVIV **.::::::**** *::: *::* *:** *:*** *:: :::::	109 109 109 109
AtHEXO1 HEXO1A 101-03794 Ctg15557/101-10015	HSDSEELQLGVDESYTLMVSKKNEQSIVGAATIEANTVYGALRGLETFSQLCAFDYITKS HSDNDELQLGVDESYSLLVTKSNEHSIIGEVSIEANSIYGALRGLETMSQLCIFDYGVKT HSDNDELQLGVDESYSLLVTKSNEHSIIGEVSIEANSIYGALRGLETMSQLCIFDYGVKT <mark>HSDNDELQLGVDESYSLLVTKSNKHSIIGEVSIE</mark> ANSIYGALRGLETMSQLCIFDYGVKT ***.:*********************************	169 169 169 169
AtHEXO1 HEXO1A 101-03794 Ctg15557/101-10015	VQIYKAPWYIQDKPRFGYRGLLIDTSRHYLPIDVIKQIIESMSFAKLNVLHWHIVDEQSF VQIHKAPWFIQDKPRFAYRGLLLDTSRHYLPIEIIKQIIESMSYAKLNVLHWHIIDEESF VQIHKAPWFIQDKPRFAYRGLLLDTSRHYLPIEIIKQIIESMSYAKLNVLHWHIIDEESF VQIRKAPWFIQDKPRFAYRGLLLDTSRHYLPIEIIKQIIESMSYAKLNVLHWHIIDEESF *** ****:********	229 229 229 229
AtHEXO1 HEXO1A 101-03794 Ctg15557/101-10015	PLETPTYPNLWKGAYSRWERYTVEDASEIVRFAKMRGINVMAEVDVPGHAESWGTGYPDL PLEVPSYPNLWKGSYTKWERYTVEDAYEIVDFAKLRGINVMAEVDVPGHAESWGAGYPDL PLEVPSYPNLWKGSYTKWERYTVEDAYEIVDFAKLRGINVMAEVDVPGHAESWGAGYPDL PLEVPSYPNLWKGSYTKWERYTVEDAYEIVDFAKMRGINVMAEVDVPGHAESWGAGYPDL ***.*:*******:*::********	289 289 289 289
AtHEXO1 HEXO1A 101-03794 Ctg15557/101-10015	WPSLSCREPLDVTKNFTFDVISGILADMRKIFPFELFHLGGDEVNTDCWKNTTHVKEWLQ WPSPSCKEPLDVSKNYTFDVIAGILADMRKIFPFKLFHLGGDEVNTTCWTTTPHLKQWLQ WPSPSCKEPLDVSKNYTFDVIAGILADMRKIFPFKLFHLGGDECCSYPHSVCRLQ *** **:****:**************************	349 349 349 344
AtHEXO1 HEXO1A 101-03794 Ctg15557/101-10015	GRNFTTKDAYKYFVLRAQQIAISKNWTPVNWEETFSSFGKDLDPRTVIQNWLVSDICQ DHNMTSKDAYEYFVLRAQEIAISHNWTPVNWEETFNTFPSKLNPQTVVHNWLRGGVCQ DHNMTSKDAYEYFVLRAQEIAISHNWTPVNWEETFNTFPSKLNPQTVVHNWLRGGVCQ DHNMTSKDAYEYFVLRAQEIAISHNWTPVNWLRGGVCQEAVAKGFRCIYSNQGLRGGVCQ .:*:*:****:***************************	407 407 407 404
AtHEXO1 HEXO1A 101-03794 Ctg15557/101-10015	KAVAKGFRCIFSNQGYWYLDHLDVPWEEVYNTEPLNGIEDPSLQKLVIGGEVCMWGETAD AAVAKGFRCIYSNQGFWYLDHLDVPWDKVYYTEPLEGIKSISEQKLLLGGEACMWGETAD AAVAKGFRCIYSNQGFWYLDHLDVPWDKVYYTEPLEGIKSISEQKLLLGGEACMWGETAD AAVAKGFRCIYSNQGFWYLDHLDVPWDKVYYTEPLEGIKSISEQKLLLGGEACMWGETAD *********:****	467 467 467 464
AtHEXO1 HEXO1A 101-03794 Ctg15557/101-10015	TSVVLQTIWPRAAAAAERMWSTREAVSKGNITLTALPRLHYFRCLLNNRGVPAAPVDNFY ASDVQQTIWPRAAAVAERLWSDKEATSSTNTTSSALQRLEYFRCLLTRRGVPAAPVTNFY ASDVQQTIWPRAAAVAERLWSDKEATSSTNTTSSALQRLEYFRCLLTRRGVPAAPVTNFY ASDVQQTIWPRAAAVAERLWSDKEATSSTNTTSAALQRLEYFRCLLTRRGVPTAPVTNFY :* * *********************************	527 527 527 524
AtHEXO1 HEXO1A 101-03794 Ctg15557/101-10015	ARRPPLGPGSCYAQ541ARRPPLGPGSCYEQ541ARRPPLGPGSCYEQ541ARRPPLGPGSCYEQ538***********************************	

Figure S1. Amino acid sequence alignment (Clustal Omega) of *A. thaliana* HEXO1, predicted open reading frames (ORFs) of HEXO1 orthologs from the Sol Genomics Network draft genome for *N. benthamiana* (v1.0.1) and retrieved HEXO1 ORFs from Shin and co-workers(Shin et al., 2017). For one predicted ORF the sequences of Niben101Ctg15557g00001.1 (highlighted in orange) and Niben101Scf10015g07014.1 were combined.

A+HEY02		MI, TI, SKF_HVII, TOIT, FFITTI, SDI, FSIAI, DINIWD	35
ACHEXO2	NAX ETGELO		55
101-09360	MAYFISFLS	5KQHHKMRGEKTFFSFLPLLLISLL-FFIFISHTTATNYPINIWP	53
NDHEXOZA	MAYFISFLS	SKQHHKMRGEKTFFSFLPLLLISLL-FF1F1SHTTATNYP1N1WP	53
101-15928/01151	MAYFNFKVILFLS:	SKQHHKMRGEKTFFSFLPLFLVSLL-FFIFISQTTATNYPINVWP	57
NbHEXO2B	MSMAYFNFKVILFLS	SKQHHKMRGEKTFFSFLPLFLVSLL-FFILISQTTATNYPINVWP	59
		: . ::*: :* *: ::* : ***:**	
AtHEXO2	KPRFLSWPQHKAIAL	SPNFTILAPEHQYLSASVTRYHNLIRSENYSPLISYPVKLMKRYT	95
101-09360	KPTTFNWPNPKSIFL	SPNFTISHPPHRYLTPAVYRYLHLILSEHHRPIITPAFNLTSSTP	113
NDHEXO2A	KPTTENWPNPKSTEL	SPNFTTSHPPHRYLTPAVYRYLHLTLSEHHRPTTTPAFNLTSSTP	113
101 15929/01151	KDULENMONDKETEL		117
101=15920701151	KFIII NWENEKSISL		110
NDHEXU2B	** :.**: *:* *:	****** * *:**: :* ** :** **:: *:*: .:*:	119
AtHEXO2	LRNLVVTVTDFSLPL	HHGVDESYKLSIPI-GSFSAHLLAHSAWGAMRGLETFSQMIWGTS	154
101-09360	LRSLIISISDVTSPLA	AHGVNESYALSTPSDGSPSAYITAETVWGAMRGLETFSOLVYGKP	173
NDHEXO2A	LEST TSTSDVTSPL	AHGVNESVALSTPSDGSPSAVTTAETVWGAMRGLETFSOLVYGKP	173
101 15929/01151			177
101=15920701151			170
NDHEX02B	LHSLIVSISDVTSPLA	AHGINESYALSTPSDGSPSAYITAETVWGAMRGLETFSQLVYGNP	1/9
	:.::::*.: **	**::*** ** * ** **:: *.:.************	
A THENOD			214
ALITEAUZ	FDECERVGITIODSE	LEGRIGVILLUTSKNIIGVUUIMKTIKAMSANKLNVEHWHITUSQS	214
101-09360	TRVAAGVYIHDLP	IFAHRGVMLDTSRNFYGVDDLLRLIKAMSMNKLNVFHWHITDSHS	231
Nbhexo2a	TRVAAGVYIHDLP	IFAHRGVMLDTSRNFYGVDDLLRLIKAMSMNKLNVFHWHITDSHS	231
101-15928/01151	TRVAAGVYIRDLP	IFAHRGVMLDTSRNFYGVDDLLRLIKAMSMNKLNVFHWHITDSHS	235
NDHEXO2B	TRVAAGVYTRDLP	IFAHRGVMLDTSRNFYGVDDLLRLTKAMSMNKLNVFHWHTTDSHS	237
Nonemore	• *•**•* *	•* **** •*****************************	237
A+HEXO2	FPLVLPSEPSLAAKG	SLGPDMVYTPEDVSKIVOYGFEHGVRVLPEIDTPGHTGSWGEAYP	274
101 09360	FDI VIDGEDEI ACKC		201
101-09500	FFLVIFSEFELAGKG		291
NDHEXOZA	FPLVIPSEPELAGKGA	AYGNEMMYSPADVQKIVEFGLEHGVRVLPEIDMPAHTGSWAEAYP	291
101-15928/01151	FPLVIPSEPELAGKG	AYGNEMMYSPADVQKIVEFGLEHGVRVLPEIDMP	284
NbHEXO2B	FPLVIPSEPELAGKG	AYGNEMMYSPADVQKIVGFGLEHGVRVLPEIDMPAHTGSWAEAYP	297
	****:****	* ***** ** *** ************************	
Athexo2	EIVTCANMFWWPAGK	SWEERLASEPGTGQLNPLSPKTYEVVKNVIQDIVNQFPESFFHGG	334
101-09360	EIITCANMFWWPAAS	SPALAAEPGTGQLNPLSPKTYEVAKNVIRDTIAMFPDLLFHGG	349
NbHEXO2A	EIITCANMFWWPAAS	SPALAAEPGTGQLNPLSPKTYEVAKNVIRDTIAMFPDLLFHGG	349
101-15928/01151	MEWWPAAS	SPALAAEPGTGOLNPLSPKTYEVAKNVTHDTTAMEPDLLEHGG	335
NEWEYO2B	FITTCAMEWWDAAS		355
NDHEROZD	******	* **•*********************************	355
A+HEXO2	GDEVIPGCWKTDPAI	NSFLSSGGTLSOLLEKYINSTLPYIVSONRTVVYWEDVLLDAOIK	394
101 09360	ADETNGACWNTDDGT		409
NEUEVO22	ADDINGACHNEDDOL		400
NDHEXUZA	ADEINSACWNTDPSI	2KFVTSNGTLSQLLEMFVNNTLPEILSLNRTVVYWEDVILSANVK	409
101-15928/01151	ADEINSACWNTDPSI	QKFVASNGTLSQLLEIFINNTLPEIISLNRTVVYWEDVILSANVK	395
NbHEXO2B	ADEINSACWNTDPSI	QKFVASNGTLSQLLEIFINNTLPEIISLNRTVVYWEDVILSANVK	415
	·**: ·**:***	• • • • • • • • • • • • • • • • • • • •	
AtHEXO2	ADPSVLPKEHTILQT	wNNGPENTKRIVAAGYRVIVSSSEFYYLDCGHGGFLGNDSIYDQK	454
101-09360	VNPSLLSPQNVIMQT	VNNGPNNTKRLVTSGYRVIVSSADYYYLDCGHGSFVGNDSRYEQP	469
NbHEXO2A	VNPSLLSPONVIMOT	NNGPNNTKRLVTSGYRVIVSSADYYYLDCGHGSFVGNDSRYEOP	469
101-15928/01151	VNPSLLSPENVIMOT	WNNGPNNTKRLVTSGYRVVVSSADYYYLDCGHGSFVGNDSRYDOP	455
NDHEXO2B			475
NDIILINOED	.:**:* ::.*:*	*****	175
AtHEXO2	ESGGGSWCAPFI	XTWOSIYNYDIADGLLNEEERKLVLGGEVALWSEOADSTVLDSRI	510
101 00260	DCTDOCNCCEWCCDE		520
101-09500	PGTDQGNGGSWCGFF		525
NDHEAUZA	PGIDQGNGGSwCGPFI		523
101-15928/01151	PGTDQGNGGSWCGPFI	XTWETIYNYDITYGLTD-EEAQLVIGGEVAL	500
Nbhexo2b	PGTDQGNGGSWCGPFI	KTWETIYNYDITYGLTD-EEAQLVIGGEVALWSEQADSTVMDSRI	534
	: ***********	***::*****: ** : ** :**:*****	
A TIENOS			
AtHEXO2	WPRASALAESLWSGN	RDER-GVKRCGEAVDRLNLWRYRMVKRGIGAEPIQPLWCLKNPGM	569
101-03300	WIQESGQERQQWQKH	~QÃQTUIUĂR	548
NbHEXO2A	WIQESGQEHQQWQKH	CGQGIAMKQE	548
101-15928/01151			500
NbHEXO2B	WPRGSAMAETLWSGN	RDET-GMKRYAEATDRLNEWRYRMVARGIGAEPIQPLWCVKNPGM	593
AtHEXO2	CNTVHGALQDQ	580	
101-09360		548	
NbHEXO2A		548	
101-15928/01151		500	
NbHEXO2B	CNTVHPFTS	602	

Figure S2. Amino acid sequence alignment (Clustal Omega) of *A. thaliana* HEXO2, predicted open reading frames (ORFs) of HEXO2 orthologs from the Sol Genomics Network draft genome for *N. benthamiana* (v1.0.1) and retrieved HEXO2 ORFs in this study. For one predicted ORF we combined the sequences of Niben101Scf15928g00003.1 and Niben101Scf01151g00003.1.

Athexo3	MRGSGAKIAGVLPLFMLFIAGTISAFEDIERLRIWPLPAQSGDFKLVTEG	50	
101-02405	WNILVISADANIKNLRIWPMPLSVSYGHRNLOLSNDFVLKTEG	43	
NbHEXO3B	MGKLGVOSTLFAVTVOTLVTSADANTKNLRTWPMPLSVSYGHRNLOLSNDFVLKTEG	57	
101 02017		57	
101-02017		57	
NDHEXU3A	MGKLGFK5ILFAAIVQILVVSADANIKNLKIWPMPLSVSYGHKTLLLSNDFVLKTEG	57	
	· · · · · · · · · · · · · · · · · · ·		
Athexo3	SKYGDASGILKEGFDRMLGVVRLSHVISGDRNSSGTGGSALLQGLHVIISSSTDELEYGA	110	
101-02405	SKYPDASGILKEGFSRLLDVVKAAHVVDANFSYAGPSPVLKGIQVVVLSPSDELQYGV	101	
Nbhexo3b	SKYPDASGILKEGFSRLLDVVKAAHVVDANFSYAGPSPVLKGIQVVVLSPSDELQYGV	115	
101-02017	SKYPDTSGILKEGFSRLLDVVKVAHVVDANFSYAGPSPVLKGIQVVVLSPNDELQYGV	115	
Nbhexo3A	SKYPDTSGILKEGFSRLLDVVKVAHVVDANFSYAGPSPVLKGIQVVVLSPNDELQYGV	115	
	*** *:*********************************		
AtHEXO3	DESYKLVVPSPEKPSYAOLEAKSVYGALHGLOTFSOLCHFNLKKKVIEILMTPWNIIDOP	170	
101-02405	DESYNLTTPAHGNPAYAHI.TAKTVYGALHGI.OTFSOVCHENFTTRTTEVHOVPWSTVDRP	161	
NDHEXO3B		175	
101 02017		175	
101-02017		175	
NDHEXUSA		175	
	*****:*.:*: :*:** * **:*:**************		
Athexo3	RFSYRGLLIDTSRHYLPLPVIKNVIDSMTYAKLNVLHWHIVDTQSFPLEIPSYPKLWNGA	230	
101-02405	RFSYRGLLIDTSRHYLPFPVILKVIDSMAYAKLNVLHWHIVDTQSFPLEIPSFPRLWNGA	221	
NbHEXO3B	RFSYRGLLIDTSRHYLPFPVILKVIDSMAYAKLNVLHWHIVDTQSFPLEIPSFPRLWNGA	235	
101-02017	RFSYRGLLIDTSRHYLPLPVILKVIDSMAYAKLNVLHWHIVDTQSFPLEIPSFPKLWNGA	235	
Nbhexo3A	RFSYRGLLIDTSRHYLPLPVILKVIDSMAYAKLNVLHWHIVDTOSFPLEIPSFPKLWNGA	235	

A+HEXO3		286	
101 02405		200	
101-02405		201	
NDHEXO3B	YSSSERYTVVDAAEIVRYAGRRGINVLAELDVPGHAQSWGTGYPSLWPSKDCQQPL	291	
101-02017	YSSSERYTVTDAAEIVRQSCRYAGRRGINVLAELDVPGHAQSWGNGYPSLWPSKDCQQPL	295	
Nbhexo3A	YSSSERYTVTDAAEIVRYAGRRGINVLAELDVPGHAQSWGNGYPSLWPSKDCQQPL	291	
	****:***. ******* .** ****:************		
AtHEXO3	DVSSDFTFKVIDGILSDFSKIFKFKFVHLGGDEVNTTCWSAT	328	
101-02405	DISNDFTFKLIDGILSDFSKIFKYRFVHLGGDEVDTIVIPGDKNTGRCVCHYMNSSKLOF	341	
NDHEXO3B	DISNDFTFKI.IDGII.SDFSKIFKYRFVHLGGDEVDTSCWTLT	333	
101-02017	DISNDFTFKVIDGILSDFSKIFKYRFVHLGGDEVDTSKLTCSDNCPDLVVSIFLCDTLLF	355	
NDHEYO37		333	
NDIIEKOJA	*** *****	552	
	······································		
		204	
ATHEXO3	PRIAQWLKKHRMSEKEAYQYFVLRAQKIALSHGYEIINWEETFINFGSKLNRKTVV	384	
101-02405	RSSHFHLGGMLKQNKLNGTTAYEYFVLRAQKIALSHGYEIINWEETFNNFGNKLIPNTIV	401	
Nbhexo3b	PRIRKWLKQNKLNGTTAYEYFVLRAQKIALSHGYEIINWEETFNNFGNKLIPNTIV	389	
101-02017	PW-TKTLVDGLRQNKLNRTTAYEYFVLRAQKIALSHGYEIINWEETFNNFGNKLSRNSIV	414	
Nbhexo3A	TPRIRKWLRQNKLNRTTAYEYFVLRAQKIALSHGYEIINWEETFNNFGNKLSRNSIV	389	
	: *::::: . **:*************************		
AtHEXO3	HNWLNTGLVENVTASGLRCI	404	
101-02405	HNWCVLLLGGGVAOOVTAAGLBCT	425	
NDHEXO3B		409	
101 02017		405	
101-02017		4/4	
NDHEXU3A	HNWLGGGVAQQVTAAGLRC1	409	
	*** *. *:.::***		
AtHEXO3	VSNQEFWYLDHIDAPWQGFYANEPFQNITDKKQQSLVLGGEVCMWGEHIDASDIEQTIWP	464	
101-02405	VSNQDKWYLDHIDTTWQDFYSNEPLTNIRNPKQQRLVIGGEVCMWGEHIDGSNIETTIWP	485	
Nbhexo3b	VSNQDKWYLDHIDTTWQDFYSNEPLTNIRNPKQQRLVIGGEVCMWGEHIDGSNIETTIWP	469	
101-02017	VSNQDKWYLDHIDTTWQDFYSNEPLTNITNPKQQRLVIGGEVCMWGEHIDGSNIETTIWP	534	
Nbhexo3A	VSNQDKWYLDHIDTTWQDFYSNEPLTNITNPKQQRLVIGGEVCMWGEHIDGSNIETTIWP	469	01/12/17 13:02
	****: ******: **.**: ** : *** **:********		
A+45V02		E D 4	
101 02/05		524	Page 1 of 2
101-02405	RAMAMABADWIA I DNDANNY DUVIT KLANIY KULDNUKGVAS V PLTGGGKAAPEDPADVTK	545	
NDHEXO3B	KAAAAAEKLWTAYDNLAKNPSQVTRRLAHFRCLLNQRGVASVPLTGGGRAAPEDPGSCYQ	529	
101-02017	KAAAAAEKLWTAYDNLAKNPSQVTRRLAHFRCLLNRRGVASGPLTGGGRAAPEDPGSCYQ	594	
NbHEXO3A	${\tt RAAAAAERLWTAYDNLAKNPSQVTRRLAHFRCLLNRRGVASGPLTGGGRAAPEDPGSCYQ$	529	
	********* * :*****.:** ****************		

Figure S3. Amino acid sequence alignment (Clustal Omega) of *A. thaliana* HEXO3, predicted open reading frames (ORFs) of HEXO3 orthologs from the Sol Genomics Network draft genome for *N. benthamiana* (v1.0.1) and retrieved HEXO3 ORFs from Shin and co-workers(Shin et al., 2017) and this study.

Figure S4. HEXO2B substrate specificity. Kappa-5 was co-expressed with p19 and combinations of HEXO2B and/or CeGalNAcT in wild-type plants. Kappa-5 was purified from the apoplast fluid (at 6 dpi) and the N-glycan composition of kappa-5 was analyzed MALDI-TOF-MS. MS profiles are given for N-glycans of wild-type kappa-5 (a), kappa-5 with HEXO2B (b), kappa-5 with CeGalNAcT (c) and kappa-5 with CeGalNAcT and HEXO2B (d). To distinguish terminal GlcNAc and GalNAc residues we treated the N-glycans with glucosaminidase for which the substrate specificity is indicated in the dashed box. When a MS peak represents multiple N-glycan structures of identical mass, the possible positions of these sugar residues on the N-glycan are indicated between brackets.

Figure S5. HEXO1A substrate specificity. Kappa-5 was co-expressed with p19, CeGalNAcT and with/without HEXO1A in wild-type plants. Kappa-5 was purified from the apoplast fluid (at 6 dpi) and the N-glycan composition of kappa-5 was analyzed MALDI-TOF-MS. MS profiles are given for N-glycans of kappa-5 with CeGalNAcT (a) and kappa-5 with CeGalNAcT and HEXO1A (b). To distinguish terminal GlcNAc and GalNAc residues we treated the N-glycans with glucosaminidase for which the substrate specificity is indicated in the dashed box. When a MS peak represents multiple N-glycan structures of identical mass, the possible positions of these sugar residues on the N-glycan are indicated between brackets.

CLUSTAL O(1.2.4) multiple sequence alignment

HEXO2A HEXO2B hairpin	ATGGCTTACTTCATTTCATTTCATTCCTCCCCAAAACAACACCAC ATGAGCATGGCTTACTTCAACTTCAAAGTCATTTTATTTCTCTCCTCCTCAAAACAACACCAC 	42 60 0
HEXO2A HEXO2B hairpin	ANAATGAGAGAGAAAACATTTTTCCCCTTCTTCCACTACTCCTTATCTCCTTGTTA AAAATGAGAGAGAGAAAACATTTTTCCCCTTCTTCCTCCACTATTCCTCGTCTCCTTGTTA	102 120 0
HEXO2A HEXO2B hairpin	TTCTTCATCTTCATTTCTCACACAACAGCTACAAATTACCCCAATCAAT	162 180 0
HEXO2A HEXO2B hairpin	CCCACAACATCAATTGGCCCAACCCAAAATCCATCTTCTTCTCCCCCAAACTTCACCATC CCCACAACATTCAATTGGCCCAACCCAA	222 240 29
HEXO2A HEXO2B hairpin	TCCCACCCACCCACCGTTATCTCACTCCCGCGGTTACCGTTATCTCACCTCATCCTC TCCCACCCACCCACCGTTACTCACTCCCCGCGGTTACCGTATTCTCACCTCATCCTC TCCCACCCACCACCACGTTACTCACTCCCCGCGTTACCGTATTCTCACCTCATCCTC TCCCACCCACCACCACGTTACTCACTCCCCGCGTTACCGTATTCTCACCTCATCCTC	282 300 89
HEXO2A HEXO2B hairpin	TCCGAGCACCACCGCCGGATCATCACCCCGGCTTTTAACCTGACGTCATCCACGCCGTTA TCCGAGCACCACCGACCGATCATCACTCCGGCGATTAACCTGACGTCATACAAGCCGGTTA TCCGAGCACCACCGACCGATCATCACTCCGGCGATTAACCTGACGTCATACAAGCCGTTA	342 360 149
HEXO2A HEXO2B hairpin	CGTAGCCTCATCATCTCTATCTCCGACGTCACTTCACCCCTTGCTCACGGAGTCAACGAA CATAGCCTCATATCTCCATCTCCGATGTCACCTCACC	402 420 209
HEXO2A HEXO2B hairpin	TCCTATGCTCTCCACTCCTTCCGACGGCTCTCCCTCCGCCGCTATATCACCGCGGAAACT TCCTATGCTCTCCACTCCTTCCGACGGGTCCCCGTCCGCCTATATCACCGCCGAAACA TCCTATGCTCT	462 480 220
HEXO2A HEXO2B hairpin	GTATGGGGAGCAATGCGAGGTCTCGAGACTTTCTCGCAACTCGTGTACGGAAAACCTACC GTATGGGGGGCCATGCGAGGTCTCGAGACTTTCTCGCAACTCCGTGTACGGAAACCCTACC	522 540 220
HEXO2A HEXO2B hairpin	AGAGTCGCCCCCGCCGTGTACATACACGATCTGCCGATTTTCGCGCACCGAGGTGTGATG AGAGTCGCCCCCGGCGTGTACATACGCGATCTGCCGATTTTCGCGCACCGAGGTGTGATG	582 600 220
HEXO2A HEXO2B hairpin	CTGGACACTTCGAGAAACTTTTACGGCGTGATGATTTGTTGAGGCTTATTAAAGCTATG CTGGACACTTCGAGAAACTTCTACGGCGTCGATGATTTATTGAGGCTTATTAAAGCTATG 	642 660 220
HEXO2A HEXO2B hairpin	AGTÀTGAACAAGTTGAATGTTTTCCACTGGCACATAACTGATTCACATTCGTTTCCGCTT AGTÀTGGACAAGTTGAATGTTTTCCACTGGCACATAACTGATTCACATTCGTTTCCGCTT 	702 720 220
HEXO2A HEXO2B hairpin	GTGATTCCTTCGGAGCCGGAGCTCGCCGGAAAAGGAGCATACGGCAATGAGATGATGTAC GTGATTCCTTCGGAGCCGGAGCTCGCCGGAAAAGGAGCATACGGCAATGAGATGATGTAC	762 780 220
HEXO2A HEXO2B hairpin	TCGCCGGCGGACGTGCAGAAGATCGTGGAATTTGGACTGGAACACGGAGTTAGAGTTTTA TCGCCGGCAGACGTGCAGAAGATCGTGGAATTTGGACTGGAACATGGAGTTAGAGTTTTA	822 840 220
HEXO2A HEXO2B hairpin	CCTGAAATTGACATGCCTGCACATACAGGATCATGGGCTGAAGCTTACCCTGAGATTATC CCTGAAATTGACATGCCTGCACATACAGGATCATGGGCTGAAGCTTACCCTGAGATTATC 	882 900 220
HEXO2A HEXO2B hairpin	ACTIGTGCAAATATGTTCTGGTGGCCTGCTGCAAGTAGTCCAGCTCTGCAGCTGAACCA ACTIGTGCAAATATGTTCTGGTGGCCTGCTGCAAGTAGTCCAGCTCTTGCAGCTGAACCA 	942 960 220
HEXO2A HEXO2B hairpin	GGFACTGGTCAACTGAACCCCTTGAGTCCCAAGACTATGAAGTAGCCAAGAATGTCATC GGTACTGGCCAGCTGAACCCCCTGAGTCCCAAGACTATGAAGTAGCCAAGAATGTCATC 	1002 1020 220
HEXO2A HEXO2B hairpin	CGCGATACTATCGCCATGTTTCCAGATTTGCTCTTTCATGGGGGAGCAGATGAGATCAAT CACGATACTATCGCCATGTTTCCAGATTTGCTCTTTCACGGGGGAGCAGATGAGATCAAT	1062 1080 220
HEXO2A HEXO2B hairpin	TCAGCCTGTTGGAATACTGATCCATCAATAGTTTGTCACTAGCAATGGAACTCTC TCAGCATGTTGGAATACTGATCCATCAATCCAAAAGTTTGTCGCTAGCAATGGAACTCTC 	1122 1140 220
HEXO2A HEXO2B hairpin	AGTCAGCTACTCGAAATGTTTGTCAATAATACTTTACCTGAAATCCTCTCACTCA	1182 1200 220
HEXO2A HEXO2B hairpin	ACGGTGGTCTACTOGGAGGATGTT ATATTGAGTGCTAATGTGAAAGTGAATCCATCTCTG ACGGTGGTCTATTGGGAGGATGTT ATATTGAGTGCTAATGTGAAAGTGAATCCGTCTCTG 	1242 1260 220
HEXO2A HEXO2B hairpin	CTTTCTCCACAGANTGTTATTATGCAAACTTGGAATAATGGACCAAACAATACTAAGCGG CTTTCTCCAGAGAATGTTATTATGCAAACTTGGAATAACGGGCCAAATAATACTAAGCGG 	1302 1320 220
HEXO2A HEXO2B hairpin	CTEGECACTCGCCTACCGEGECAETGGECAETGCACGACTACTACTACTACTGGATGGE CTEGECACTCEGGECACCGEGECGETGGEGECAETGCACGAETACTACTACTGGATGGE 	1362 1380 220
HEXO2A HEXO2B hairpin	GGTCATGGGAGCTTCGTTGGRAATGACAGCCGCTATGACCAACCACCAGGTACTGACCAA GGCCATGGTAGCTTCGTTGGAAATGACAGCCGCCTATGACCAGCCGCCAGGTACTGACCAA	1422 1440 220
HEXO2A HEXO2B hairpin	GGCAATGGTGGATCCTGGTGCGGACCTTTCAAGACCTGGGAAACCATATACAACTATGAT GGCAATGGTGGATCCTGGTGGGGGGGGCCTTTCAAGACCTGGGAAACCATATAAACTACGAT	1482 1500 220
HEXO2A HEXO2B hairpin	ATAACCTATGGCCTGACTGATGAGGAGGCTAAATTGGTAATTGGAGGGGAAGTAGCATTA ATAACCTATGGCCTGACTGATGAGGAGGGCTCAATTGGTAATTGGAGGGGAAGTAGCATTA 	1542 1560 220
HEXO2A HEXO2B hairpin	TG-TCCGAACAAGCTGATTCAACTGTATGGATTCAAGAATCTGGCCAAGAGCATCAGCA TGGTCTGAACAAGCTGATTCAACTGTTATGGATTCAAGAATCTGGCCAAGAGGATCAGCA	1601 1620 220
HEXO2A HEXO2B hairpin	ATGGCAGAAACATTGTGGTCAGGGAATGGCGATGAAACAGGAATGA ATGGCAGAAACATTGTGGTCAGGGAATCGTGATGAAACAGGAATGAAGAGATATGCAGAG 	1647 1680 220
HEXO2A HEXO2B hairpin	GCTACTGATCGACTGAATGAATGGAGGTACAGAATGGTTGCCAGGGGAATAGGTGCTGAA	1647 1740 220
HEXO2A HEXO2B hairpin	CCGATTCAGCCTCTGTGGTGTGTGTCAAAAACCCAGGCATCTGTAACACAGTTCATCCATTT	1647 1800 220
HEXO2A HEXO2B hairpin	1647 ACCAGCTGA 1809 220	

Figure S6. Nucleotide sequence alignment (Clustal Omega) of HEXO2A, HEXO2B and the target region of the $\Delta 2$ hairpin construct.

CLUSTAL O(1.2.4) multiple sequence alignment

HEXO3B HEXO3A hairpin	ATGGGGAAGTTAGGAGTGCAGAGCATATTATTTGCAGTTATCGTTCAGATTCTAGTAATA ATGGGGAAGTTAGGATTCCGGAGCATATTATTTGCAGCTATCGTTCAGATTCTAGTAGTA	60 60 0
HEXO3B HEXO3A hairpin	TCAGCAGATGCTAATATTAAGAATTTGAGAATATGGCCGATGCCACTATCGGTTAGCTAT TCAGCAGATGCTAATATTAAGAATTTGAAGATATGGCCCGATGCCACTATCAGTTAGCTAT	120 120 0
HEXO3B HEXO3A hairpin	GGACATAGGAATCTTCAACTTAGTAATGATTTTGTGCTCAAGACTGAAGGCAGGC	180 180 0
HEXO3B HEXO3A hairpin	CCTGATGCCTCTGGAATTCTCAAGGAAGGTTTTTCAAGGCTACTGATGTCGTTAAGGCA CCTGATACCTCTGGAATTCTTAAGAAGGTTTTTCTAGGTTACTTGATGTCGTTAAGGTA	240 240 0
HEXO3B HEXO3A hairpin	GCTCATGTTGTTGATGCCAACTTCTCTTATGCCGGCCCCCTCCCAGTGCTTAAGGGAATT GCTCATGTCGTTGACGCCAACTTCTCATATGCCGGGCCCCCTCTCCAGTGCTAAAGGGAATT	300 300 0
HEXO3B HEXO3A hairpin	CARGTGGTTGTCCTTTCTCCARGTGATGAGGCTACARTATGGTGTTGATGAGGCCTACAAC CARGTGGTTGTCCTTTCTCCAARTGATGAGCTACAATATGGTGTTGATGAGGTCCTACAAC	360 360 0
HEXO3B HEXO3A hairpin	TTGACCATACCAGCACATGGAAACCCACCTATGCACATTTAACGGCAAAAACAGTTTAT TTGACCATACCAGCACATGGAAACCCAGCCTATGCATATTTGACGGCAAAAACAGTTCAT 	420 420 15
HEXO3B HEXO3A hairpin	GGGGCTTTGCATGGTTTGCAGACATTTAGTCAAGTATGCCATTTTAACTTTACAACCAGA GGGGGCTTGCATGGTTTGCAGACATTTAGTCAAGTATGCCATTTTAACTTTACAACCAGA GGGGGCTTCCATGGTTTGCAGACATTTAGTCAAGTATGCCATTTTAACTTTACAACCAGA	480 480 75
HEXO3B HEXO3A hairpin	ACAATTGAAGTTCATCAAGTTCGCGGGGCATACTTGATCGACCAAGATTCTCTTATCGA ACAATTGAAGTTCATCAAGTTCCATGGACCATAGTTGATCGACCAAGATTCTCTTATCGA ACAATTGAAGTTCATCAAGTTCCATGGACCATAGTTGATCGACCAAGATTCTCTTATCGA	540 540 135
HEXO3B HEXO3A hairpin	GGCCTTTTAATTGATACTTCCCGTCACTATCTGCCATTTCCTGTGATATTGAAGGTTATT GGCCTTTTAATTGATACTTCCCGTCACTATCTGCCCGTGCCTGTGATATTGAAGGTTATC GGCCTTTAATTGATACTTCCCGTCACTATCTGCCGTGCCTGTGATATTGAAGGTTATC	600 600 195
HEXO3B HEXO3A hairpin	GATTCGATGGCTTATGCAAAACTGAATGTGCTGCACGGCACATGGATACACAATCA GATTCAATGGCTTATGCAAAACTGAATGTGCTGCACGGCACATGGATACACAATCA GATTCAATGGCTTATGCAAAACTGA	660 660 220
HEXO3B HEXO3A hairpin	TTCCCACTTGAGATACCTTCATTTCCGAGACTGTGGAATGGTGCTTACTCAAGTTCAGAG TTCCCACTTGAGATACCTTCATTTCCAAAACTGTGGAATGGTGCTTACTCAAGTTCAGAG 	720 720 220
HEXO3B HEXO3A hairpin	CGGTACACTGTAGTTGATGCTGCTGAGATTGTAAGATATGCAGGAAGACGTGGAATCAAT CGGTACACTGTAACTGATGCTGCTGAGATTGTAAGATATGCAGGAAGACGTGGAATCAAT 	780 780 220
HEXO3B HEXO3A hairpin	GTATTAGCTGAATTAGACGTTCCAGGACATGCTCAATCTTGGGGTACTGGTTATCCTTCT GTATTAGCTGAATTAGACGTTCCGGGACATGCTCAATCTTGGGGTAATGGTTATCCTTCT 	840 840 220
HEXO3B HEXO3A hairpin	TTATGGCCGTCAAAAGATTGTCAACAGCCACTGACATAAGCAATGATTTCACTTTCAAA TTATGGCCGTCAAAAGATTGTCAACAGCCACTTGACATAAGCAATGATTTCACTTTCAAA 	900 900 220
HEXO3B HEXO3A hairpin	CTCATAGACGGAATTCTCTCAGATTTTAGCAAGATATTCAAATACAGATTTGTTCATCTA GTAATAGACGGAATTCTTTCAGATTTTAGCAAGATATTCAAGTACAGATTTGTTCATCTA 	960 960 220
HEXO3B HEXO3A hairpin	GGAGGTGATGAAGTGGATACAAGTTGCTGGACGTTAACTCCTCGTATAAGAAAGTGGTTG GGAGGTGATGAAGTGGATACAAGTTGCTGGACGTTAACTCCTCGTATAAGAAAGTGGTTG 	1020 1020 220
HEXO3B HEXO3A hairpin	AAGCAAAACAAGTTGAATGGAACCACTGCTTATGAGTACTTCGTCTTGAGAGCACAGAAG AGGCAAAACAAGTTGAATAGAACCACTGCTTATGAGTACTTCGTCTTGCGAGCACAGAAG 	1080 1080 220
HEXO3B HEXO3A hairpin	ATAGCTTTATCTCATGGATATGAAATTATAAACTGGGAAGAGGACGTTCAATAACTTTGGA ATAGCTTTATCTCATGGATATGAAATTATAAACTGGGAAGAGACGTTCAATAACTTTGGA	1140 1140 220
HEXO3B HEXO3A hairpin	ARTANGTTGATCCCAAACACTATAGTTCACAACTGGCTCGGGGGGGG	1200 1200 220
HEXO3B HEXO3A hairpin	GTAACTGCAGCTGGATTGCGGTGCATTGTTAGCAACCAGGACAAGTGGTATTTGGACCAT GTAACTGCAGCTGGATTGCGGTGCATTGTTAGCAACCAGGACAAGTGGTATTTGGACCAT	1260 1260 220
HEXO3B HEXO3A hairpin	ATAGATACCACATGGCAGGATTTCTATTCAAATGAGCCACTAACTA	1320 1320 220
HEXO3B HEXO3A hairpin	AAGCAACAACGGCTGGTTATTGGGGGTGAGGTATGTATGT	1380 1380 220
HEXO3B HEXO3A hairpin	TCAAACATCGAAACAACCATATGGCCCCGTGCAGCAGCAGCAGCAGAGAGGCTATGGACT TCAAACATTGAAACGACCATATGGCCGCGTGCAGCAGCAGCAGCAGCAGGCTGTGGACT	1440 1440 220
HEXO3B HEXO3A hairpin	GCTTATGACAACCTTGCCAAGAATCCAAGTCAAGTTACTCGCAGGCTGGCT	1500 1500 220
HEXO3B HEXO3A hairpin	TGCCTATTGAATCAAAGAGGAGTGGCTTCTGTTCCATTAACTGGAGGCGGGGGAGCTGCA TGCCTATTGAATCGAAGAGGAGTGGCTTCTGGTCCTTTAACCGGAGGCGGGGAGCTGCA	1560 1560 220
HEXO3B HEXO3A hairpin	CCAGAAGATCCAGGTTCTTGCTATCAGCAATAG 1593 CCAGAAGATCCAGGTTCTTGCTATCAGCAATAG 1593 	

Figure S7. Nucleotide sequence alignment (Clustal Omega) of HEXO3A, HEXO3B and the target region of the Δ 3 hairpin construct.