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Figure S1. Correlation plot between RBD Ig P/N and neutralization assay. Spearman correlation coefficient was 17 
obtained (rs), p < 0·0001.  18 
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Table S1. ELISA Validation Data. CI, confidence interval; PCR, polymerase chain reaction; CP, convalescent 33 
plasma; TB, tuberculosis. 34 

 35 

 36 

 37 

 38 

 39 

 40 

 41 

Table S1. ELISA Validation Data 

 
% Sensitivity (95% CI) % Specificity (95% CI) 

RBD total Ig ELISA 

(≥ 9 days post symptom onset) 
89·7% (130/145) (84·7, 94·6) 99·3% (272/274) (98·3, 100·0) 

 

PCR+ controls (n = 145) N = 32 (Crotty Lab, La Jolla) 

 N = 113 (UNC CP donor cohort) 

 

Negative controls (n = 274) N = 122 (UNC pre-2019 healthy adults) 

 N = 48 (UNC pre-COVID-19 arboviral samples, TB endemic region) 

 N = 44 (UNC, clinical pre-organ transplant) 

 N = 28 (UNC, clinical HIV+) 

 N = 16 (healthy adults, Crotty Lab, La Jolla) 

 N = 16 (UNC, respiratory illness samples, COVID-19 negative) 
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Table S2. Study Individual Numbers by Clinical Factors. 71 

 72 

Table S2. Study Individual Numbers by Clinical Factors. 

 4/19-6/13 6/14-8/08 8/09-10/03 

 N (%) N (%) N (%) 

Hospital  

Chatham Hospital 604 17·4 909 25·8 298 11·3 

UNC Hospitals 1490 43·0 1491 42·3 1291 49·0 

Johnston Hospital 627 18·1 639 18·1 473 18·0 

Rex Hospital 742 21·4 489 13·9 571 21·7 

In/Outpatient 

Inpatient 1057 30·5 961 27·2 839 31·9 

Outpatient 2394 69·1 2562 72·6 1792 68·1 

Unknown 12 0·3 5 0·1 2 0·1 

Visit type 

Traumatic 104 3·0 103 2·9 62 2·4 

Not traumatic 2961 85·5 3066 86·9 2180 82·8 

Unknown 398 11·5 359 10·2 391 14·8 

Condition 

Respiratory 173 5·0 167 4·7 75 2·8 

COVID-19 31 0·9 35 1·0 30 1·1 

Other 2861 82·6 2967 84·1 2137 81·2 

Unknown 398 11·5 359 10·2 391 14·8 

Payor 

Public 1825 52·7 2050 58·1 1509 57·3 

Private 1249 36·1 1172 33·2 920 34·9 

Self-Pay 326 9·4 254 7·2 181 6·9 

Other/Unknown 63 1·8 52 1·4 23 0·8 
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 74 

Table S3. Rates of COVID-19 Visit Codes for Inpatients and Outpatients. 75 

 76 
 77 

  78 

Table S3. Rates of COVID-19 Visit Codes for Inpatients and Outpatients. 

 Inpatient Outpatient 

COVID-19 Visit Code 80/2828 (2·8%) 16/5646 (0·3%) 
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 79 

Table S4. Subset of individuals with recorded Abbott IgG. RBD Ig ELISA results for 150 patients who received a 80 
UNC hospital lab-based Abbott nucleocapsid IgG ELISA within one month prior to study enrollment. 81 

 82 

  83 

Table S4.  Subset of individuals with recorded Abbott IgG 

 
Abbott Nucleocapsid ELISA 

negative 

Abbott Nucleocapsid ELISA 

positive 

RBD Ig ELISA negative 132 3 

RBD Ig ELISA positive 5 10 
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S5. Insurance category by race/ethnicity 

 Private Public Self-Pay Other/Unknown 

 N (%) N (%) N (%) N (%) 

NL White 2173 36·17 3439 57·24 347 5·78 49 0·82 

NL Black 641 28·48 1402 62·28 177 7·86 31 1·38 

NL Other 323 53·92 223 37·23 42 7·01 11 1·84 

Latinx 204 26·63 320 41·78 195 25·46 47 6·14 

TOTAL 3341 34·72 5384 55·94 761 7·91 138 1·43 

 84 

Table S5. Count and percentage in each insurance category by race/ethnicity. 85 

  86 



7 
 

Table S6. Raw sample positivity by hospital 

 4/19-6/13 6/14-8/08 8/09-10/03 

Johnston Hospital 7·81 18·00 14·80 

Chatham Hospital 7·45 8·69 12·08 

UNC Hospitals 4·03 9·93 10·38 

Rex Hospital 4·04 5·93 7·71 

 87 

Table S6. Raw antibody test positivity (percent) by hospital.   88 
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Supplementary Methods: Bayesian seroprevalence models with unknown sensitivity and specificity 89 

1 Determining Test Results  90 

1.1 Quantitative test outcome  91 

To account for plate-to-plate variability (i.e., batch effects), similar to Zhang and colleagues,1 we used P/N ratios, 92 
rather than using the raw optical density (OD) values, defined as  93 

P/N=
𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑂𝐷 𝑠𝑎𝑚𝑝𝑙𝑒 

𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑂𝐷 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑐𝑜𝑛𝑡𝑟𝑜𝑙
 94 

where the negative control values were those from the same plate as the sample. Accounting for batch effects in the 95 
P/N ratio removes the need for defining plate specific cutoffs, and rather we can define one cutoff on how many 96 
times larger the sample’s OD value is relative to the corresponding negative control’s OD value.  97 

1.2 Cutoff Selection  98 

The CDC recommends selecting a threshold such that the test has 99·5% specificity.2 We followed this 99 
recommendation here specifying the cutoff to be the standard estimate of the 0·995 quantile (based on the quantile 100 
function in R) of the negative lab samples. Using the 274 negative controls, the cutoff was 2·57 with empirical 101 
sensitivity of 89·7% and empirical specificity of 99·3%. Therefore, a sample is considered positive if its average OD 102 
value is 2·57 or more times larger than the average OD of the corresponding plate negative controls.  103 

2. Temporal Logistic Model  104 

We fit a Bayesian autoregressive logistic model to estimate weekly prevalence while accounting for uncertainty in 105 
test sensitivity and specificity. Let nt give the number of samples in week t, and yt give the number of samples that 106 
tested positive in week t, for t ∈ {1,...,T = 24}. Then  107 

yt ∼ binomial(nt,pt) t = 1,...,T 108 

were pt gives the probability of a positive test in week t. To account for the error rate of the test, we define 109 

pt =πtsens+(1−πt)(1−spec) 110 

where πt is the probability an individual has COVID-19 antibodies in week t, sens gives the sensitivity of the test, 111 
and spec gives the specificity of the test.  112 

Assuming seroprevalence varies smoothly, we define an AR(1) process for the πt as follows. First, let βt = 113 
logit(πt). Then we model βt as  114 

βt ∼normal(α+φβt−1,σβ
2)    t=2,...,T  115 

β1 ∼ normal(α, 0·5). 116 

As we expect autocorrelation and we are on the logit scale, we expect σ
β

2 to be relatively small, so a relatively 117 

vague prior is assumed  118 

σ
β
2 ∼normal+(0,0·5), 119 

where normal+ indicates the folded normal distribution. We found changing the prior variance of σ
β

2 had minimal 120 

effect on the estimates and associated uncertainty of {πt}. Similarly, we put vague priors on α, φ, sens, and spec:  121 

α ∼ logistic(0, 1); 122 

φ ∼ normal(0, 1);  123 
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sens ∼ uniform(0, 1);  124 

spec ∼ uniform(0, 1). 125 

Finally, to estimate sensitivity and specificity, we assume 126 

yspec ∼ binomial(nspec, spec), 127 

ysens ∼ binomial(nsens, sens) 128 

where yspec is the number of negative controls that tested negative out of nspec negative controls. Similarly, ysens is the 129 
number of positive controls that tested positive out of nsens positive controls.  130 

3. Logistic Regression Model  131 

We fit a Bayesian logistic regression model with main effects for sex, race/ethnicity, age, in/out-patient status, and 132 
payor. Interactions were considered, but not found to significantly improve the fit. This model allows us to 133 
simultaneously model the hospital data and the lab validation data.  134 

To ensure each category in our main effects had a sufficient sample size, some categories were collapsed. All 135 
outpatient, emergency, or unknown patients were listed as “outpatient.” Additionally, the “other” and “unknown” 136 
categories for payor were collapsed. Finally, the one patient with sex listed as “X” was removed from the dataset for 137 
this analysis.  138 

We define the likelihood  139 

yi ∼ Bernoulli(qi) i = 1,...n 140 

where yi is an indicator for whether individual i tests positive for COVID-19 antibodies and qi is the probability of a 141 
positive test for individual i. The number of patients is given by n. To account for the error rate of the test, similar to 142 
the temporal model, we define  143 

qi =πisens+(1−πi)(1−spec) 144 

where πi is the probability individual i has COVID-19 antibodies, sens gives the sensitivity of the test, and spec 145 
gives the specificity of the test. Finally, the probability a patient has COVID-19 antibodies is assumed to equal  146 

πi = logit−1 (β0𝑡𝑖 + x′
i
𝛂𝒕𝒊

) 147 

for the vector of p predictors xi, coefficients αt, and intercept β0𝑡, where ti gives the time period patient i was 148 
sampled during, t ∈ {1, . . . , T = 3}. This allows the intercept and coefficients to vary across time periods, but the 149 
sensitivity and specificity estimates to be pooled across time. For this analysis, the vector x contains indicators for 150 
Male, NL Black, NL Other, Latinx, age 18-49, age 50-64, age 65-99, outpatient, public payor, self-pay, and 151 
unknown payor. This leaves inpatient, private paying, NL White, females aged 5-17 as the baseline category. Let xi 152 
be the ith row of the n×p matrix X. We calculated the effect of the covariates over the entire study period as 153 

�̅� = ∑ 𝛂𝒕/𝑇𝑇
𝑡=1 , 154 

and present 𝑒𝑥𝑝(�̅�) as the average estimated odds ratio. 155 

As before, to estimate sensitivity and specificity, we assume 156 

yspec ∼ binomial(nspec, spec) 157 

ysens ∼ binomial(nsens, sens) 158 

where yspec is the number of negative controls that tested negative out of nspec negative controls and ysens is the 159 
number of positive controls that tested positive out of nsens positive controls.  160 
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We chose non-informative priors:  161 

αt ∼ normal(0p, 2Ip)  162 

sens ∼ uniform(0, 1) 163 
spec ∼ uniform(0, 1) 164 

β0𝑡 + 𝒙𝒕
′̅𝛂𝒕 ∼ logistic(0,1) 𝑡 = 1, … , 𝑇 165 

 166 

where 𝒙�̅� is the p-dimensional vector of the average of each column of X across the rows corresponding with time 167 
period t (i.e. the proportion of observations in each group during that time period). In this way, following Gelman 168 
and Carpenter (2020)3, the prior on β0 models the probability of the average patient being seropositive as uniform on 169 
the interval (0,1). Note, because the αt coefficients are on the logit scale, a variance of 2 is relatively vague. For 170 
example, this places about 68% probability that an element of αt is between -√2 and √2, evaluating to a 171 
subpopulation having 0·24 to 4·11 times the seroprevalence of another.   172 

An artifact of the model accounting for uncertainty in test sensitivity and specificity is that when there is low 173 
observed positivity, small changes in the estimated specificity can result in large changes in the overall 174 
seroprevalence, compared to when there is larger overall positivity. Therefore, there is more uncertainty in these 175 
cases (as we observed in earliest time period of our data compared to the latter two). This is because when there are 176 
very few positive tests, small declines in the estimated specificity suggest the observed positives should be classified 177 
as false positives and the seroprevalence is very low. Without copious amounts of lab validation data, some 178 
uncertainty in specificity is expected and this uncertainty will propagate to the seroprevalence and coefficient 179 
estimates.  180 

4. MCMC Algorithm  181 

The models were fit using a Markov chain Monte Carlo algorithm implemented in Stan.4 For each model, we ran 182 
four chains 5000 iterations each with the first 2500 iterations used as burn-in. The �̂� value5 was 1 for each 183 
parameter, suggesting convergence. The effective sample size was over 2300 for each parameter in the logistic 184 
regression model, and over 1000 for each parameter in the temporal model.  185 

5. Quantifying Uncertainty 186 

For results from the Bayesian models, we reported posterior means and equal-tail 95% credible intervals (i.e., the 187 
2.5% and 97.5% quantiles of the posterior draws). In Table S1, we calculated standard 95% confidence intervals: 188 

�̂� ± 𝑍𝛼/2
√

�̂�(1 − �̂�)

𝑛
 189 

where �̂� denotes the observed proportion, 𝑛 is the sample size, and 𝑍𝛼/2 is the 𝛼/2 quantile of the standard normal 190 

distribution.  191 

6. Demographic data categorization 192 

To categorize individual clinical encounters associated with the blood draws we sampled, we obtained ICD-10 codes 193 
from any inpatient or outpatient visit at the same location within fourteen days of when we received and sampled the 194 
blood draw. We prioritized inpatient visits over outpatient visits unless no inpatient visit was available. If there was 195 
no visit within the past fourteen days of the blood draw, we instead used the visit closest to the most recent specimen 196 
collection date within a thirty-day period. Individuals with no visit at the same location within thirty days of their 197 
blood draw were excluded from analysis. To capture any upper respiratory infection, respiratory disease due to 198 
external agents, interstitial lung disease, imaging abnormalities of the lung, cough, fever, and dyspnea, we used the 199 
International Classification of Diseases, 10th revision (ICD-10) codes J00-J006, J009-J018, J20-J22, J40-J47, J60-200 
J70, J80-J84, J96-J99, R91, R05, R06.0, and R50.  COVID-19 diagnosis was defined as presence of the U07·1 code 201 
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in the visit nearest the sampled blood draw.  Likewise, acute or trauma cases were defined as any of the following 202 
ICD-10 codes: O00, O01, O02, O03, O04, O07, O08, O015·1, all S codes, all T codes (except T36-T39, T41, T46, 203 
T50, T80-T88), all V codes, all W codes, all X codes, all Y codes (except Y62-Y84 and Y-90-99).  204 

Insurance status was determined from the most recent clinical encounter prior to the sampled blood draw. “Private 205 
Insurance” was classified as any of the following listed for a patient’s visit: Blue Cross/Blue Shield, Private health 206 
insurance, or State Government insurance. “Public Insurance” was classified as any of these following: Medicaid 207 
applicant, Medicaid, Medicare, Department of Veteran’s Affairs, Tricare, and Corrections State insurance. “Self-pay” 208 
includes anyone paying out of pocket. “Unknown/Other” consists of individuals for whom the health insurance payor 209 
was left blank or otherwise unidentifiable, as well as listed insurance that read “Legal Liability / Liability Insurance”, 210 
“Other specified but not otherwise classifiable (includes Hospice - Unspecified plan)”, and “Other”. 211 

Race and ethnicity identity was ascertained from that listed in the EMR for each patient. The categories listed under 212 
Epic’s EMR that we received included “American Indian or Alaska Native”, “Asian”, “Black or African American”, 213 
“Native Hawaiian or other Pacific Islander”, “Other Race”, “Patient Refused”, “Unknown” or “White or Caucasian”. 214 
For ethnicity, we received information on whether patients self-identified as “Hispanic or Latino”, or were listed as 215 
“Patient Refused” or “Unknown”. In our report, we collapse race and ethnicity from separate variables into a single 216 
variable in order to investigate the impact of systemic racism on SARS-COV-2 seroprevalence by both race and 217 
ethnicity at the same time, though the constructs of race and ethnicity are inherently surrogate measures of racism and 218 
other forms of marginalization.6  219 

We therefore binned individuals into the following groups: “Black or African American” that indicated “Non-Hispanic 220 
or Latino,” “Patient Refused,” or “Unknown” were binned as “Non-Latinx Black”, similarly for “White or Caucasian” 221 
as “Non-Latinx White”, similarly for all other groups as “Non-Latinx Other”. Anyone that indicated “Hispanic or 222 
Latino” were binned as “Latinx”, and therefore could self-identify as any of the above race categories. We do not 223 
further separate out other intersections of race and ethnicity because the number of individuals becomes too small to 224 
make conclusive claims on odds of seropositivity. We here opt to use Latinx in place of “Hispanic” though it is not 225 
the only way to refer to this grouping of individuals that often share cultural characteristics, language, religion, and 226 
ancestral geography and history.7 We also compare racial, ethnic, and age demographics in the study population to the 227 
demographics of the 6-county area where most of the study population resided using data collected from US Census 228 
Data.8 229 
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