Table 1 Study characteristics.

First Author	Country	Study design	(n)	Rate of Postoperative hypocalcemia (%)	NOS score	Risk factor	
Liu 2020 (8)	USA cross-sectional analysis 30-day follow-up after surgery:19.1		****	Age, women, vitamin D deficiency, concurrent lateral neck dissection, concurrent central neck dissection, intraoperative parathyroid,			
		anaiysis		1-year follow-up after surgery: 4.4%		recurrent laryngeal nerve injury, magnesium disorders	
Lale 2019		Retrospective case control	818	Permanent hypocalcaemia (>one year):26.7%	* * * * *	Female, specimen weight, substernal	
(9)	Turkev			Transient hypocalcaemia(calcium level is lower than 8 mg/dl at 24 and 72 h after thyroidectomy): 1.7%	*	localization, cervical lymph node dissection (CLND)	

Carvalho 2019 (10)	Brazil	Retrospective cohort study	1347	Hypocalcaemia: 21%	****	Neck dissection, malignancy, gender, age, preoperative total Ca, preoperative PTH; preoperative vitamin D, central compartment dissection (CCD)
Wang W 2019(11)	China	Retrospective cohort study	242	Hypocalcaemia 60%	****	Gender, extent of surgery, hypoparathyroidism, LND, hypomagnesemia, pre-Ca
Claudius 2018(12)	Germany	Retrospective case study	702	Postoperative biochemical hypocalcaemia (48 h): 22.8% Persistent biochemical hypocalcaemia (> 6 months): 6.8%	****	Symptomatic hypocalcaemia, female, parathyroid reimplantation, surgery time (≥189 min), thyreostatic drug therapy
Docimo 2017(13)	Italian	Retrospective case control	328	Symptomatic hypocalcaemia: 7.9% Transient hypocalcaemia: 14.6% Permanent hypocalcaemia: 0.6%	****	malignant pathology, CCND
Luo 2017(14)	China	Retrospective case control	304	Biochemical hypocalcemia: 26.9%	****	Sex(male/female), Po hypomagnesemia: Po hypocalcemia, Po

				Symptomatic hypocalcemia: not reported		hypomagnesemia, Po iPTH<1.6 pmol/L, relative decline of iPTH>70%	
Wang X2017(15)	China	Retrospective case control	237	Biochemical hypocalcemia: 52.3%	****	Bilateral CCND, MRND, PTG autotransplantation, hypoparathyroidism,	
				Symptomatic hypocalcemia: 33.8%	*	hypomagnesaemia	
Cho		Retrospective	1030	Transient hypocalcemia: 28.2%;	****	Age, gender (female), CND, MRND, extent of CND (bilateral), operation time,	
2016(16)	Korea	cohort study		Permanent hypocalcemia: 2.6%	*	implant of parathyroid gland, parathyroid gland in pathology	
Jason 2016(17)	USA	Retrospective cohort study	620,744	Hypocalcaemia 6%	****	Magnesium disorder, phosphate disorder, female, age, medicaid payor status, thyroid cancer, total thyroidectomy, neck dissection, recurrent laryngeal nerveinjury, high-volume surgeon	

Garrahy 2015(18)	Ireland	Retrospective cohort study	201	Biochemical hypocalcaemia (22.9%); Symptomatic hypocalcaemia: (12.4%)	****	Cancer diagnosis, central neck dissection, hypomagnesemia, inadvertent parathyroid resection
Bove(19) 2016	Italian	Retrospective cohort study	142	Temporary hypocalcemia: 33% ***** Permanent hypocalcemia: 2.8% substernal goiter (SG)		substernal goiter (SG)
LeeG2015(Rerospective case study	134	Laboratory pocalcemia: (39 %)		Age, sex (women), BMI, preoperative calcium, preoperative PTH, vitamin D (<20 ng/mL), vitamin D (<10
		,		Symptomatic pocalcemia: (19 %)		ng/mL), selective neck dissection, incidental parathyroidectomy
Talal 2014(21)		Retrospective cohort study.	213	Laboratorial Hypocalcemia: 19.7% Clinical Hypocalcemia: 17.8%		Postoperative serum PTH, preoperative serum 25(OH)D<25 nmol/L

David 1				Temporary hypocalcemia: 23.9%		Sex, age, preoperative diagnosis benign, biclamp hemostasis, thyroid gland weight, substernal extension,
Pavol 2014(22)	Ireland	Prospective cohort study	788	Symptomatic hypocalcemia: 14.0	***	tracheal deviation, operation time, multinodular goiter, Graves disease, Hashimoto thyroiditis, thyroid cancer, incidental parathyroidectomy
Servicio 2013(23)		prospective cohort study	113	Hypocalcaemia 38.90%	****	Vitamina D preoperatoria < 15 ng/mL, PTH postoperatoria < 13 pg/mL

Randall201 2 (24)	USA	Retrospective case section	118,375	Hypocalcaemia 5.50%	****	Age, female gender, ethnicity, Hispanic, Asian or Pacific islander, native American, total thyroidectomy, thyroidectomy with unilateral neck dissection, thyroidectomy with bilateral neck dissection, complete substernal thyroidectomy, partial substernal thyroidectomy, substernal thyroidectomy, isthmectomy, partial thyroidectomy, length of stay (per day), nonteaching hospital, malignant neoplasm of thyroid gland
Sevim 2009(25)	Turkey	Retrospective cohort study	417	Permanent hypocalcemia: 7.7%	****	Incidental parathyroidectomy, extrathyroidal soft tissue invasion
Erbil 2009(26)	Turkey	Prospective cohort study	200	Symptomatic hypocalcemia: 73% Asymptomatic hypocalcemia: 27%	****	Age (older than 50 years); preoperative serum 25-OHD level less than15 ng/mL

Bhandari 2017(27)	China	Retrospective case study	278	Hypocalcaemia 27.30%	**** ***	Age (years), lateral lymph node dissection, lobectomy plus isthmusectomy versus lobectomy, near-total thyroidectomy versus lobectomy, total thyroidectomy versus lobectomy, injected versus non-injected, gender (female), preoperative PTH levels
Aqtashi 2017(28)	Switzerla nd	Retrospective cohort study	34	Hypocalcaemia 33%	****	Operation interval, PTH pre-OP2 , Calcium pre-OP2
Lin2016(2 9)		Retrospective case study	3186	Hypocalcaemia 30.90%	**** **	Age, gender(female), multituberous goiter, Graves disease, malignant tumors, total thyroidectomy, reoperation, central cervical lymph node (CCLN), thyroid malignancy

Tongol	Philippin	Retrospective	242	Symptomatic hypocalcemia: 10.74%	Age, gender, thyroid disease (toxic, nontoxic or malignant), thyroid gland weight in grams, presence concomitant complication of thyroidectomy
2013 (30)	es	case study		Asymptomatic hypocalcemia: 1.24%	Hoarseness and/or hematoma, type of surgery (total thyroidectomy), neck dissection, duration of surgery in hours, inadvertent, parathyroidectomy

Table 2 Results of quality assessment

Case control study evaluation results								
Include study	select	Comparabilit y	Exposure					

1)) Is the case	2)	3)	4)	1)	1)	2) Same	3) Non-	Resul
de	efinition	Representativen	Selection	Definition	Comparabilit	Ascertainm	method of	Response	t
ac	dequate?	ess of the	of	of	y of cases	ent of	ascertainm	rate	
a)) yes, with	cases	Controls	Controls	and controls	exposure	ent for	a) same	
ir	ndependent	a) consecutive	a)	a) no	on the basis	a) secure	cases and	rate for	
Vā	alidation 🛨	or obviously	community	history of	of the	record (eg	controls	both	
b)) yes, eg	representative	controls	disease	design or	surgical	a) yes ★	groups 🛨	
re	ecord linkage	series of cases	*	(endpoint)	analysis	records)	b) no	b) non	
01	r based on	*	b)	*	a) study	*		responden	
Se	elf reports	b) potential	hospital	b) no	controls for	b)		ts	
c)) no	for selection	controls	descriptio		structured		described	
de	escription	biases or not	c) no	n of	(Select	interview		c) rate	
		stated	descriptio	source	the most	where		different	
			n		important	blind to		and no	
					factor.) 🛨	case/contr		designati	
					b) study	ol status		on	
					controls for	*			
					any	c)			
					additional	interview			
					factor ★	not			
					(This	blinded to			
					criteria	case/contr			
					could be	ol status			
					modified to	d) written			

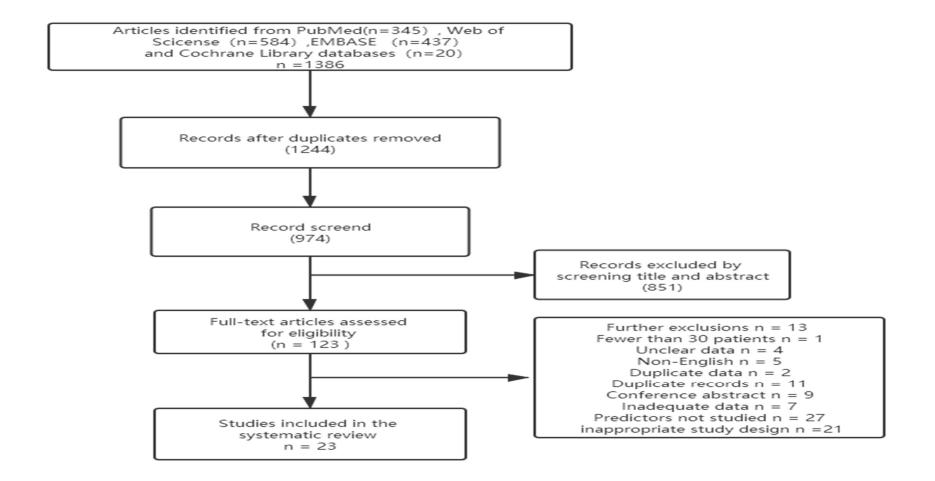
Liu 2020	a	b	a	a	a	a a	a	** **
						n		
						descriptio		
						only e) no		
						record		
						medical		
					specific	report or		
					indicate	self		

									** *
Lale 2019	a	b	a	a	b	a	a	b	** **
Claudius 2018	a	a	С	a	a	е	a		** **
Docimo 2017	С	b	a	a	a	a	a	2	** ** **
Luo 2017	С	a	a	a	a	e	b		** **
Wang X 2017	a	a	С	a	b	a	b	b	** ** *

Lee G 2015	a	a	С	a	a	a	a	b	** ** **
Randall2012	a	a	a	a	a	a	a	a	** ** **
Bhandari 2017	a	a	a	a	a	a	a	a	** ** **
Lin2016	a	a	С	a	a	a	a	a	** ** **
Tongol 2013	a	a	a	a	a	a	a	h	** ** **

Cohort study evaluation results

Include study	Selection	Comparabilit y	Outcome
------------------	-----------	-------------------	---------

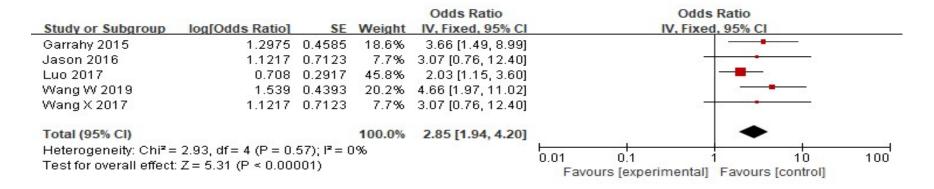

1)	2) Selection of	. 3)	4)	1)	1)	2) Was	3)	Resu1
Representativen	the non exposed	Ascertainm	Demonstrat	Comparabilit	Assessment	follow-up	Adequacy	t
ess of the	cohort	ent of	ion that	y of cohorts	of outcome	long	of follow	
exposed cohort	a) drawn from	exposure	outcome of	on the basis	a)	enough for	up of	
a) truly	the same	a) secure	interest	of the	independen	outcomes	cohorts	
representative	community as	record (eg	was not	design or	t blind	to occur	a)	
of the average	the exposed	surgical	present at	analysis	assessment	a) yes	complete	
	cohort ★	records)	start of	a) study	*	(select an	follow up	
(describe) in	b) drawn from a	★	study	controls for	b) record	adequate	- all	
the community	different	b)	a) yes ★		linkage ★	follow up	subjects	
*	source	structured	b) no	_ (select	c) self	period for	accounted	
b) somewhat	c) no	interview		the most	report	outcome of	for ★	
representative	description of	*		important	d) no	interest)	b)	
of the average	the derivation	c) written		factor) ★	descriptio	*	subjects	
	of the non	self		b) study	n	b) no	lost to	
in the	exposed cohort	report		controls for			follow up	
community ★		d) no		any			unlikely	
c) selected		descriptio		additional			to	
group of users		n		factor ★			introduce	
eg nurses,				(This			bias -	
volunteers				criteria			small	
d) no) no			could be			number	
description of				modified to			lost - >	
				indicate			%	

the derivation	specific	(select
of the cohort	control for	an
	a second	adequate
	important	%) follow
	factor.)	up, or
		descripti
		on
		provided
		of those
		lost) ★
		c) follow
		up rate <
		%
		(select
		an
		adequate
		%) and no
		descripti
		on of
		those
		lost
		d) no
		statement

Carvalho 2018	a	a	a	a	b	d	a	d	** **
Wang W 2019 等	a	a	a	a	a	a	b	d	** ** **
Jason 2016	b	a	b	a	a	b	a	a	** ** **
Garrahy 2015	a	a	b	a	a	d	a	a	** ** **
Bove 2016	b	a	b	a	a	d	a	d	** ** **
Talal 2014	a	a	a	a	b	d	b	a	** ** **

Pavol 2014	a	a	b	a	a	d	b	a	** ** **
Servicio 2013	b	a	a	a	a	a	b	d	** ** **
Sevim 2009	a	a	a	a	a	b	a	d	** ** **
Erbil 2009	a	a	b	a	a	d	a	d	** ** **
Aqtashi 2017	a	a	a	a	a	d	a	d	** ** **
Cho 2016	a	a	a	a	a	b	b	d	** ** **

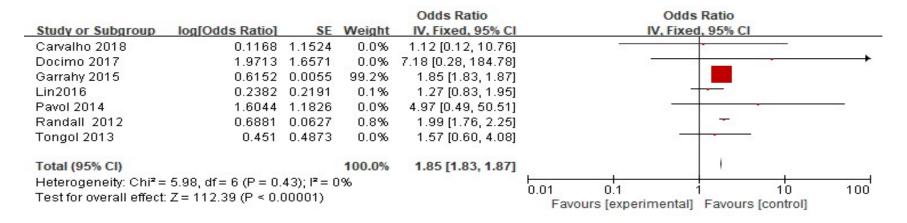
Figure 1

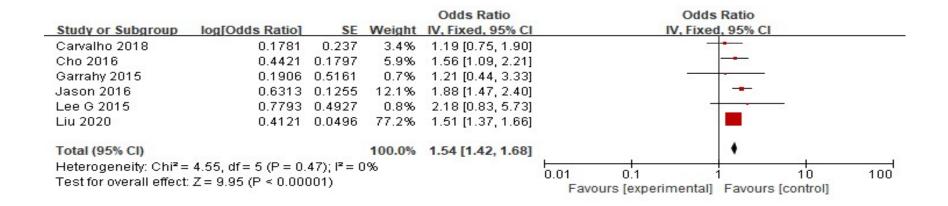

Female Figure 2

				Odds Ratio	Odds	Ratio	
Study or Subgroup	log[Odds Ratio]	SE	Weight	IV, Fixed, 95% CI	IV, Fixed	, 95% CI	
Cho 2016	0.8264	0.2529	1.2%	2.29 [1.39, 3.75]			
Claudius 2018	0.4886	0.0924	8.9%	1.63 [1.36, 1.95]		5. * *	
Jason 2016	0.4886	0.0924	8.9%	1.63 [1.36, 1.95]		5. ************************************	
Lale 2019	1.0225	0.3251	0.7%	2.78 [1.47, 5.26]			
Lee G 2015	0.5423	0.5206	0.3%	1.72 [0.62, 4.77]	Sec. 1		
Lin2016	0.151	0.2025	1.9%	1.16 [0.78, 1.73]	-	•	
Liu 2020	0.3293	0.0381	52.4%	1.39 [1.29, 1.50]			
Luo 2017	0.7655	0.33	0.7%	2.15 [1.13, 4.11]			
Pavol 2014	0.7925	0.2409	1.3%	2.21 [1.38, 3.54]		S. T. Co.	
Randall 2012	0.4824	0.0566	23.7%	1.62 [1.45, 1.81]		•	
Tongol 2013	0	1.0956	0.1%	1.00 [0.12, 8.56]	82 T	34	
Total (95% CI)			100.0%	1.51 [1.43, 1.59]		•	
Heterogeneity: Chi ² =	19.35, df = 10 (P =	0.04); 12	= 48%		1 1	40	400
Test for overall effect:	Z=14.91 (P < 0.0)	0001)			0.01 0.1 1 Favours [experimental]	10 Favours [control]	100

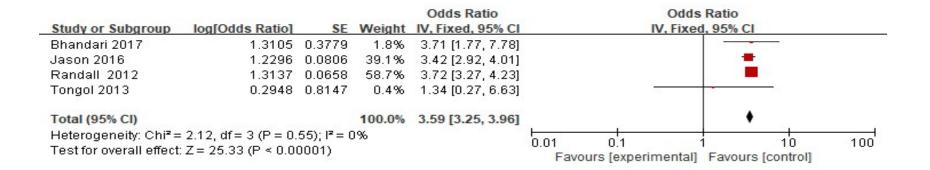
Preoperative vitamin D Figure 3

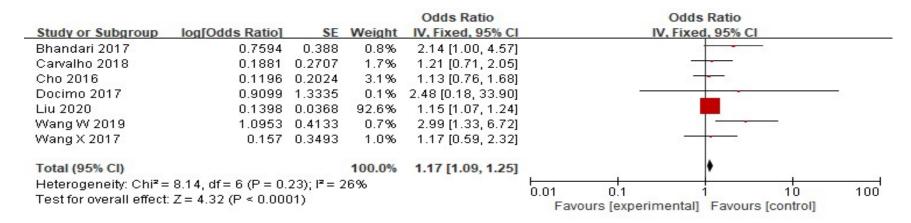
				Odds Ratio	Odds Ratio	
Study or Subgroup	log[Odds Ratio]	SE	Weight	IV, Random, 95% CI	CI IV, Random, 95% CI	
Lee G 2015	-0.1625	0.3846	26.2%	0.85 [0.40, 1.81]	1]	
Liu 2020	0.6729	0.0607	36.9%	1.96 [1.74, 2.21]	1]	
Servicio 2013	1.4469	0.6005	18.3%	4.25 [1.31, 13.79]	9]	
Talal 2014	1.9879	0.5893	18.6%	7.30 [2.30, 23.17]	7]	
Total (95% CI)			100.0%	2.32 [1.15, 4.70]	0]	
Heterogeneity: Tau ² =	0.35; Chi² = 11.36	df = 3 (F)	P = 0.010); I ² = 74%	0.01 0.1 1 10 10	100
Test for overall effect:	Z = 2.34 (P = 0.02)				Favours [experimental] Favours [control]	00

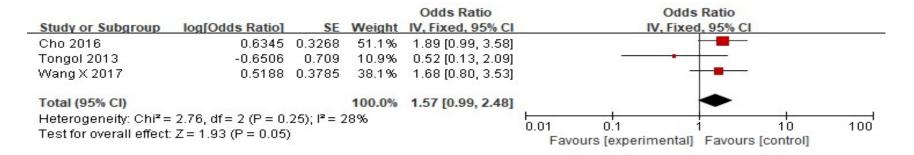

Hypomagnesemia Figure 4


Hypoparathyroidism Figure 5

Study or Subgroup	log[Odds Ratio]	SE	Weight	Odds Ratio IV, Fixed, 95% CI		11	Odds Ratio		
Wang W 2019	1.4422	0.3312	51.2%	4.23 [2.21, 8.10]					
Wang X 2017	2.0109	0.3395	48.8%	7.47 [3.84, 14.53]				- T	
Total (95% CI)			100.0%	5.58 [3.51, 8.88]				•	
Heterogeneity: Chi ^z = Test for overall effect:			80%		0.01 Favo	0.1 ours [experi	1 mental] Fav	10 ours [control]	100


Thyriod malignancy Figure 6


Central neck dissection(CND) Figure 7


Total thyroidectomy Figure 8

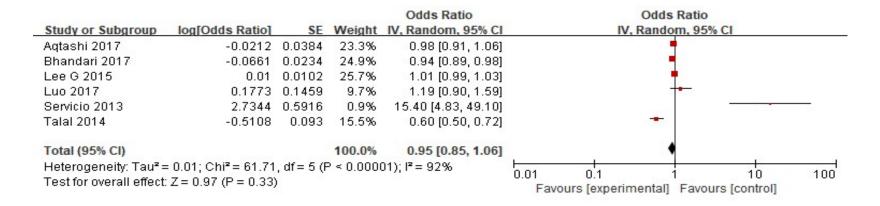
Central compartment neck dissection Figure 9

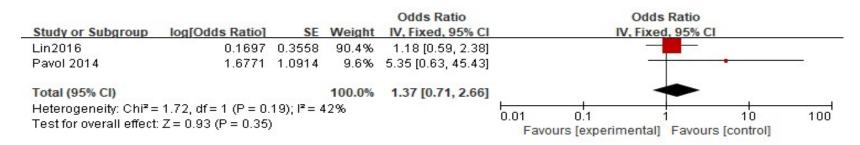
Modified radical neck dissection(MRND) Figure 10

Incidental parathyroidectomy Figure 11

Multinodular goitre Figure 12

				Odds Ratio			Odds Ratio		
Study or Subgroup	log[Odds Ratio]	SE	Weight	IV, Fixed, 95% CI		IV	, Fixed, 95% C		
Bove 2016	0.5693	0.2276	97.0%	1.77 [1.13, 2.76]					
Pavol 2014	-0.7593	1.298	3.0%	0.47 [0.04, 5.96]	-		*	38	
Total (95% CI)			100.0%	1.70 [1.09, 2.64]			•		
Heterogeneity: Chi² = Test for overall effect		00 50	2%		0.01 Favo	0.1 ours [experim	1 ental] Favou	10 rs [control]	100


Thyroiditis Figure 13


Preoperative calcium level Figure 14

				Odds Ratio		(Odds Ratio		
Study or Subgroup	log[Odds Ratio]	SE	Weight	IV, Random, 95% CI		IV, R	andom, 959	% CI	
Aqtashi 2017	0	1.2568	6.5%	1.00 [0.09, 11.74]		-	+		
Carvalho2018	0.4108	0.1685	27.5%	1.51 [1.08, 2.10]			-		
Lee G 2015	-0.1508	0.4443	20.4%	0.86 [0.36, 2.05]			•		
Luo 2017	0.7984	0.4008	21.6%	2.22 [1.01, 4.87]				- 85	
wang W 2019	-0.9943	0.3139	24.0%	0.37 [0.20, 0.68]		-			
Total (95% CI)			100.0%	1.02 [0.50, 2.07]			•		
Heterogeneity: Tau2 =	= 0.45; Chi ² = 18.77	df = 4 (F)	P = 0.0009	9); I² = 79%	+	0.1	-	10	200
Test for overall effect	Z = 0.04 (P = 0.97)	ı			0.005 Favou	0.1 rs [experime	ntal] Favoi	10 urs [control]	200

Preoperative PTH Figure 15

Graves diseases Figure 16

Surgery time Figure 17

Study or Subgroup	log[Odds Ratio]	SE	Weight	Odds Ratio IV, Fixed, 95% CI			dds Ratio ixed, 95% CI		
Cho 2016	-0.003	0.0023	100.0%	1.00 [0.99, 1.00]		177			
Claudius 2018	0.1266	0.3687	0.0%	1.13 [0.55, 2.34]			 -		
Tongol 2013	0.1067	0.1237	0.0%	1.11 [0.87, 1.42]			+		
Total (95% CI)			100.0%	1.00 [0.99, 1.00]			1		
Heterogeneity: Chi² = Test for overall effect:)%		0.01 Favour:	0.1 s [experimen	tal] Favours	10 [control]	100

Age Figure 18

Study or Subgroup	log[Odds Ratio]	SE	Weight	Odds Ratio IV, Random, 95% CI	Odds Ratio IV. Random, 95% CI
Carvalho 2018	-5.5215	200000000000000000000000000000000000000	0.0%	0.00 [0.00, 16.86]	₩ 17, Kalidolli, 95% Cl
Cho 2016	-0.0121	0.0068	22.7%	0.99 [0.97, 1.00]	•
Lee G 2015	0	0.0155	7.0%	1.00 [0.97, 1.03]	+
Lin2016	0.01	0.01	14.0%	1.01 [0.99, 1.03]	+
Pavol 2014	-0.0141	0.0052	29.0%	0.99 [0.98, 1.00]	•
Randall 2012	-0.0101	0.007	22.0%	0.99 [0.98, 1.00]	•
Tongol 2013	0.0177	0.0183	5.3%	1.02 [0.98, 1.06]	†
Total (95% CI)			100.0%	0.99 [0.98, 1.00]	•
Heterogeneity: $Tau^2 = 0.00$; $Chi^2 = 8.94$, $df = 6$ (P = 0.18); $I^2 = 33\%$					
Test for overall effect: Z = 1.51 (P = 0.13)					0.5 0.7 1 1.5 2 Favours [experimental] Favours [control]