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Supplemental Methods 
 
Study variables 

 
The baseline clinical information was age, sex, vital signs (systolic blood pressure, 

diastolic blood pressure, heart rate, and body temperature), hemodialysis settings (type of 

hemodialysis [hemodialysis, hemodiafiltration, hemoperfusion, hemofiltration, hemofiltration 

reinfusion, and supplementary ultrafiltration], blood flow rate, dialysate flow rate, target and 

time-varying amounts of ultrafiltration, time setting, access route [arteriovenous fistula and 

graft, temporary catheterization via internal jugular and femoral vein, subcutaneously-tunneled 

catheter, sheath for coronary angiography, and Hickman catheter], pre-dialysis weight, use of 

anti-coagulant [heparin and nafamostat mesilate], priming fluid [normal saline, half saline, and 

red blood cells], dialysate [e.g., Hemo B Dex 0.1% and 0.15%, and Hemotrate-B1] and dialyzer 

[e.g.,  APS-15U,  APS-21U,  Rexeed-13LX,  Rexeed-18LX,  BLS  812G,  BLS  812SD, BLS 

814SD, BLS 816SD, BLS 819SD, NC 1485, PHF0714, SG30, Adsorba, polyflux 14, polyflux 

14H, polyflux 14L, polyflux 14S, polyflux 170H, polyflux 17L, polyflux 17S, polyflux 6H, 

polyflux 8L, polyflux S, Theranova 400, F4 HPS, F5 HPS, F6 HPS, FX, FX paed, FX5, FX8, 

FX40, FX50, FX80, FB 130T, and Sureflux 130E-GA]), the dialysate temperature and 

concentrations of sodium, potassium, calcium, and bicarbonate, incident or prevalent sessions, 

admission status, the presence of comorbidities (e.g., diabetes mellitus, hypertension, 

cardiovascular disease, and kidney transplantation), the number of session per week, the history 

of IDH within one week, total number of sessions with IDH within one week, and medications 

used before initiating hemodialysis. Laboratory blood findings were measured at the beginning 

of the hemodialysis sessions, including white blood cells, hemoglobin, platelet, cholesterol, 

albumin, glucose, calcium, phosphate, uric acid, blood urea nitrogen, creatinine, sodium, 
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potassium, chloride, and total carbon dioxide. There were no missing variables. 

 
Echocardiographic information before hemodialysis sessions including left ventricular 

ejection fraction, left ventricular end-diastolic dimension, left ventricular end-systolic 

dimension, interventricular septum thickness, and left ventricular mass was available for 

227,640 (87%) sessions and 7256 (78%) patients. This information was used in a sensitivity 

analysis. 

 

Model development 

 
Statistical analyses were performed using R software (version 3.5.1; The Comprehensive 

R Archive Network: http://cran.r-project.org) and Python (version 3.6.8; Python Software 

Foundation: http://www.python.org). The PyTorch 1.3 was used as a deep learning framework 

throughout this process (1). 

The categorical and continuous variables of the baseline characteristics are presented as 

proportions and means ± standard deviation, respectively. The dataset was treated as follows: 

S = [(x1,1, y1,1), …, (x1,L1, y1,L1), (x2,1, y2,1), …, (xd,Ld, yd,Ld)], where d and Ld indicate 

the number of dialysis cases and the frame number of the dth dialysis, respectively. The ground 

truth labels were denoted as yp,q = [yp,q,IDH-1, yp,q,IDH-2(initial), yp,q,IDH-2(present)], 

where 0 was normal and 1 was abnormal (i.e., IDH). When converting the data in the training 

dataset into vectors, the continuous features were standardized with a mean of 0 and a variance 

of 1, and the categorical features were transformed into binary variables (i.e. 0 or 1) by one- 

hot encoding. The dataset S was used as the training data to train the recurrent neural network, 

multilayer perceptron, Light Gradient Boosting Machine, and logistic regression models. 

Binary cross-entropy loss was used as the loss function for the recurrent neural network to 
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Pseudocode 1: Predicting IDH Using recurrent neural network Evaluation 

1 Function IDH-prediction (Trained Network, 𝑋𝑝,1:𝐿𝑝, 𝜎) 

Input: Trained Network: BatchNorm, RNN, MLP-1, MLP-2, MLP-3; 

𝜎: logistic function; 

𝑋𝑝,1:𝐿𝑝= (𝑥1, 𝑥2, … , 𝑥𝐿𝑝): entries of p-th dialysis of test data; 

Output :  𝑦̂𝑝,1:𝐿𝑝 
= [(𝑦̂1,𝐼𝐷𝐻−1,  𝑦̂1,𝐼𝐷𝐻−2(𝑖𝑛𝑖𝑡),  𝑦̂1,𝐼𝐷𝐻−3(𝑝𝑟𝑒𝑠𝑒𝑛𝑡)) , … , 

(𝑦̂𝐿𝑝,𝐼𝐷𝐻−1,  𝑦̂𝐿𝑝,𝐼𝐷𝐻−2(𝑖𝑛𝑖𝑡),  𝑦̂𝐿𝑝,𝐼𝐷𝐻−3(𝑝𝑟𝑒𝑠𝑒𝑛𝑡))] : predictions for p-th dialysis 

2 Timestamp index t ← 1 

3 for t =1 to 𝐿𝑝: 

4 𝑥𝑡,𝑏𝑎𝑡𝑐ℎ𝑛𝑜𝑟𝑚 ← BatchNorm(𝑥𝑡) 

5 ℎ𝑡 ← RNN (𝑥𝑡,𝑏𝑎𝑡𝑐ℎ𝑟𝑛𝑜𝑚, ℎ𝑡−1) 

6 𝑦̂𝑡,𝐼𝐷𝐻−1  ←  𝜎( MLP-1(ℎ𝑡) ) 

7 𝑦̂𝑡,IDH−2(init)   ←  𝜎( MLP-2(ℎ𝑡) ) 

8 𝑦̂𝑡,IDH−3(present)   ←  𝜎( MLP-3(ℎ𝑡) ) 

9 t ← t+1 

10 

11 𝑦𝑝,1:𝐿𝑝= [(𝑦1,𝐼𝐷𝐻−1, 𝑦1,𝐼𝐷𝐻−2(𝑖𝑛𝑖𝑡), 𝑦1,𝐼𝐷𝐻−3(𝑝𝑟𝑒𝑠𝑒𝑛𝑡)) , … , (𝑦𝐿𝑝,𝐼𝐷𝐻−1, 

𝑦𝐿𝑝,𝐼𝐷𝐻−2(𝑖𝑛𝑖𝑡), 𝑦𝐿𝑝,𝐼𝐷𝐻−3(𝑝𝑟𝑒𝑠𝑒𝑛𝑡))]: ground truth labels of p-th dialysis 

calculate the difference between actual labels and predictions. We used the Adam optimization 

method as the optimizer (2). The pseudocode for the recurrent neural network is given below. 
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12 Quantitative evaluation using the actual labels  𝑦𝑝,1:𝐿𝑝    and the prediction  𝑦̂𝑝,1:𝐿𝑝 

 
 

RNN, recurrent neural network; MLP, multilayer perceptron 

 

 

The multilayer perceptron algorithm consists of a series of non-linear functions and fully- 

connected layers that are affine transforms as follows: ŷp,q = σn°fn°σn-1°fn-1°…°σ1°f1(xp,q) 

(3). The σj is the jth non-linear function (e.g., σj (x) = max (0, x)) and the fj is the jth fully- 

connected layer (i.e., affine transform). Throughout this calculation, the multilayer perceptron 

can extract meaningful information on higher dimensions of the input vector. For a probability 

model, the last σn is a logistic function. The binary cross-entropy loss and the Adam 

optimization methods were used (2). The architecture of the multilayer perceptron is shown 

below. 

 

 

Layer Shape 

BatchNorm 260 (input feature size) 

Fully connected layer + ReLU 260 × 256 

Fully connected layer + BatchNorm + ReLU 256 × 256 

Fully connected layer + ReLU 256 × 256 

Fully connected layer + ReLU 256 × 256 

Fully connected layer 256 × 3 

Logistic function 3 

 
 

BatchNorm, batch normalization; ReLU, rectified linear unit 
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Light Gradient Boosting Machine combines learned ‘Learners’ after learning several weak 

‘Learners’ (4). Throughout the learning and predicting process for weak ‘Learners’, the error 

is lowered by gradient boosting on residuals of incorrectly predicted results. The Light Gradient 

Boosting Machine method is faster than the other Gradient Boosting Machine methods such as 

extreme gradient boosting (4). Logistic regression calculates the weighted sum of the feature 

vector that is derived from regression coefficients and feature values. 

 

Feature ranking analysis 

 

To estimate how much features contribute to the prediction of IDH, we use the feature 

ranking method proposed in the previous paper (5). This method drops each feature one by one 

from the test dataset when the model inference and compares the prediction results to the 

reference prediction result which is gained without losing any features. Large prediction 

differences between dropped data and full-featured data represent that the dropped features 

have contributed much more when the model makes predictions. 

1 𝑁 

𝑠𝑐𝑜𝑟𝑒𝑓𝑑𝑟𝑜𝑝 = ∑ |𝑝𝑖,𝑓𝑑𝑟𝑜𝑝 − 𝑝𝑖| 
𝑖=1 

. . . (𝐴) 

 

To apply this feature ranking method to our approach, we modify it to suit our settings as 

shown in equation (A). In eq (A), 𝑓𝑑𝑟𝑜𝑝 is the feature we focus on and drop from the input data. 

𝑝𝑖 means the reference prediction result of the i-th data which the model inferences using all 

features and 𝑝𝑖,𝑓𝑑𝑟𝑜𝑝 means that the prediction result of the i-th data when the feature 𝑓𝑑𝑟𝑜𝑝 is 

dropped. These absolute values are averaged over all dataset of size N. The scores were 

calculated for IDH-1, IDH-2, and IDH-3 respectively. 

The batch norm layer serves as a standardization. To drop each feature, we have set each 

 

output of the batch norm layer as 0. The prediction result may be higher or lower than reference 

𝑁 
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prediction, however, to measure the degree of difference between dropped feature data and full 

featured data we average the absolute value of differences. 
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Supplemental Table 1. Characteristics of hemodialysis sessions that were included and 

excluded from the analyses 

Variables 
Excluded 

(n = 20,752) 
Included 

(n = 261,647) 

Age (years) 19 ± 20 62 ± 15 

Male (%) 58 58 

Diabetes mellitus (%) 15 48 

Hypertension (%) 57 68 
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Supplemental Table 2. Description of the four models used in the present study 

 

Models Descriptions Comparison with other models 

 
 

Logistic 

regression 

Output the probability of a certain 

event happening by using a linear 

classifier followed by a logistic 

function. It is able to model the linear 

relationship between the input 
features and the target. 

 
 

No inherent way of modeling 

temporal information 

 

Light 

Gradient 

Boosting 

Machine 

 

Composed of ensemble of tree-based 

models. It is able to make accurate 

predictions by iteratively boosting the 

errors of individual models. 

Able to compute feature importance 

of the input data 

Able to model non-linear 

relationships 
No inherent way of modeling 

temporal information 

 
 

Multilayer 

perceptron 

A class of deep neural network that 

can model complex relationships by 

using multiple hidden layers. Similar 

to above methods, only fixed-size 

input is taken. 

No explicit way of computing 

feature importance (black-box 

model). Feature selection method 

should be applied. 

No inherent way of modeling 

temporal information 

 
Recurrent 

neural 

network 

A class of deep neural network that 

assumes sequential data as inputs 

with temporal relationship. It does 

this by continuously utilizing 

previous sequences for predicting the 
target of current sequence. 

Inherently models input 

sequentially 

No explicit way of computing 

feature importance (black-box 

model). Feature selection method 

should be applied. 
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Supplemental Table 3. Summarized table of feature sets of the model input 
 

 
 

Feature sets Variables 

A (age and sex) Age and sex 

 

 

B (hemodialysis-related 

features) 

Type of hemodialysis, dialysate flow rate, blood flow rate, 

target and time-varying amounts of ultrafiltration, target 

ultrafiltration, time setting, vascular access route, pre- 

dialysis weight, anti-coagulants, priming fluids, dialyzer 

type, dialysate sodium concentration, dialysate potassium 

concentration, dialysate calcium concentration, dialysate 

bicarbonate concentration, dialysate temperature, and 
incident or prevalent hemodialysis. 

C (vital signs) 
Systolic blood pressure, diastolic blood pressure, heart rate, 
and body temperature. 

 
D (clinical information) 

Diabetes mellitus, hypertension, cardiovascular disease, 

kidney transplant donor, kidney transplant recipient, number 

of dialysis session per week, previous history of IDH within 
7 days, and total number of sessions with IDH within 7 days. 

 
E (laboratory findings) 

White blood cell count, hemoglobin, platelet, cholesterol, 

albumin, glucose, calcium, phosphate, uric acid, blood urea 

nitrogen, creatinine, sodium, potassium, chloride, and 
bicarbonate. 

 

 

F (medications) 

Beta-blockers, calcium channel blockers, angiotensin- 

converting enzyme inhibitors, aldosterone receptor blockers, 

diuretics, lipid-lowering agents, minoxidil, aspirin, 

adenosine diphosphate receptor inhibitors, warfarin, oral 

hypoglycemic agents, insulin, allopurinol, febuxostat, 

erythropoietin-stimulating agents, calcium-based phosphate 

binder, and non-calcium-based phosphate binders. 
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Supplemental Table 4. F1 score for predicting intradialytic hypotension in deep and other 

machine learning, and logistic regression models 

   Outcome  

Threshold Models IDH-1 IDH-2 IDH-3 

0.1 RNN 0.5028 0.6116 0.4391 

 MLP 0.5096 0.6114 0.4391 

 LightGBM 0.5025 0.6127 0.4301 

 LR 0.4788 0.5754 0.4102 

0.3 RNN 0.5844 0.6950 0.4981 

 MLP 0.5717 0.6916 0.4846 

 LightGBM 0.5759 0.6963 0.4800 

 LR 0.5498 0.6763 0.4484 

0.5 RNN 0.5197 0.6732 0.3682 

 MLP 0.4765 0.6637 0.3522 

 LightGBM 0.4912 0.6702 0.3186 

 LR 0.4523 0.6271 0.2612 

0.7 RNN 0.3542 0.5631 0.1714 

 MLP 0.2829 0.5479 0.1685 

 LightGBM 0.3002 0.5589 0.0961 

 LR 0.2546 0.4873 0.0829 

0.9 RNN 0.1275 0.3357 0.0163 

 MLP 0.0706 0.3120 0.0102 

 LightGBM 0.0367 0.2689 0.0014 

 LR 0.0454 0.2547 0.0071 

 
 

IDH-1, intradialytic hypotension defined as nadir systolic blood pressure <90 mmHg; IDH-2, 

intradialytic hypotension defined as decrease in systolic blood pressure ≥20 mmHg and/or 

decrease in mean arterial pressure ≥10 mmHg based on blood pressure at initial time point; 

IDH-3, intradialytic hypotension defined as decrease in systolic blood pressure ≥20 mmHg 

and/or decrease in mean arterial pressure ≥10 mmHg based on blood pressure at prediction 
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time point. 

 

BP, blood pressure; RNN, recurrent neural network, MLP, multilayer perceptron; LightGBM, 

Light Gradient Boosting Machine; LR, logistic regression. 
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Supplemental Table 5. F1 scores of the recurrent neural network after ablation of the feature set 

 
   Outcome  

Threshold Models IDH-1 IDH-2 IDH-3 

0.1 Remove set A 0.5051 0.6066 0.4366 

 Remove set B 0.5002 0.5950 0.4174 

 Remove set C 0.4140 0.5086 0.3683 

 Remove set D 0.4965 0.6133 0.4321 

 Remove set E 0.5043 0.6072 0.4317 

 Remove set F 0.5041 0.6103 0.4354 

0.3 Remove set A 0.5818 0.6918 0.4983 

 Remove set B 0.5700 0.6836 0.4766 

 Remove set C 0.4413 0.5592 0.3716 

 Remove set D 0.5733 0.6896 0.4813 

 Remove set E 0.5809 0.6943 0.4972 

 Remove set F 0.5834 0.6948 0.4965 

0.5 Remove set A 0.5129 0.6762 0.3705 

 Remove set B 0.4760 0.6594 0.3266 

 Remove set C 0.2851 0.4156 0.1161 

 Remove set D 0.5120 0.6560 0.3315 

 Remove set E 0.5028 0.6697 0.3569 
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 Remove set F 0.5154 0.6739 0.3630 

0.7 Remove set A 0.3438 0.5697 0.1614 

 Remove set B 0.2991 0.5270 0.1257 

 Remove set C 0.1018 0.1605 0.0122 

 Remove set D 0.3652 0.5340 0.1286 

 Remove set E 0.3328 0.5538 0.1454 

 Remove set F 0.3471 0.5647 0.1657 

0.9 Remove set A 0.1190 0.3358 0.0105 

 Remove set B 0.0880 0.2398 0.0051 

 Remove set C 0.0064 0.0046 0.0000 

 Remove set D 0.1381 0.3119 0.0068 

 Remove set E 0.1119 0.3264 0.0095 

 Remove set F 0.1263 0.3295 0.0154 

 
 

IDH-1, intradialytic hypotension defined as nadir systolic blood pressure <90 mmHg; IDH-2, intradialytic hypotension defined as decrease in 

systolic blood pressure ≥20 mmHg and/or decrease in mean arterial pressure ≥10 mmHg based on blood pressure at initial time point; IDH-3, 

intradialytic hypotension defined as decrease in systolic blood pressure ≥20 mmHg and/or decrease in mean arterial pressure ≥10 mmHg based 

on blood pressure at prediction time point. 

Each set contains features as follows: A, age and sex; B, hemodialysis-related features; C, vital signs; D, comorbidities; E, laboratory findings; 
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and F, medications. 
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Supplemental Table 6. Area under the curves for predicting intradialytic hypotension in 

incidence and prevalent hemodialysis sessions 

Outcomes Groups AUROC (95% CI) AUPRC (95% CI) 

IDH-1 Incident 0.944 (0.941–0.947) 0.652 (0.650–0.653) 

 Prevalent 0.936 (0.935–0.938) 0.610 (0.608–0.612) 

IDH-2 Incident 0.872 (0.868–0.876) 0.783 (0.781–0.784) 

 Prevalent 0.869 (0.868–0.871) 0.780 (0.779–0.782) 

IDH-3 Incident 0.772 (0.766–0.777) 0.473 (0.471–0.475) 

 Prevalent 0.792 (0.790–0.795) 0.516 (0.515–0.518) 

 
 

AUROC, area under the receiver operating characteristic curve; CI, confidence interval; 

AUPRC, area under the precision-recall curve; IDH, intradialytic hypotension. 
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Supplemental Table 7. Area under the curves for predicting intradialytic hypotension according 

to the tertiles of ultrafiltration 

Outcomes Ultrafiltration AUROC (95% CI) AUPRC (95% CI) 

IDH-1 1st tertile 0.951 (0.948–0.953) 0.667 (0.665–0.668) 

 2nd tertile 0.935 (0.932–0.937) 0.593 (0.591–0.594) 

 3rd tertile 0.926 (0.924–0.929) 0.590 (0.588–0.592) 

IDH-2 1st tertile 0.870 (0.868–0.872) 0.745 (0.744–0.747) 

 2nd tertile 0.874 (0.872–0.876) 0.789 (0.787–0.790) 

 3rd tertile 0.862 (0.860–0.864) 0.799 (0.797–0.800) 

IDH-3 1st tertile 0.788 (0.784–0.792) 0.477 (0.475–0.479) 

 2nd tertile 0.799 (0.796–0.803) 0.525 (0.523–0.527) 

 3rd tertile 0.780 (0.777–0.784) 0.525 (0.523–0.526) 

 

 
AUROC, area under the receiver operating characteristic curve; CI, confidence interval; 

AUPRC, area under the precision-recall curve; IDH, intradialytic hypotension. 
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Supplemental Table 8. Area under the curves for predicting intradialytic hypotension based on 

a history of intradialytic hypotension 

Outcomes History of IDH AUROC (95% CI) AUPRC (95% CI) 

IDH-1 Absent 0.938 (0.936–0.941) 0.502 (0.500–0.504) 

 Present 0.860 (0.857–0.863) 0.664 (0.662–0.665) 

IDH-2 Absent 0.884 (0.881–0.886) 0.748 (0.746–0.749) 

 Present 0.858 (0.856–0.860) 0.791 (0.789–0.792) 

IDH-3 Absent 0.792 (0.788–0.796) 0.446 (0.445–0.448) 

 Present 0.784 (0.781–0.786) 0.528 (0.526–0.530) 

 

IDH, intradialytic hypotension; AUROC, area under the receiver operating characteristic curve; 

CI, confidence interval; AUPRC, area under the precision-recall curve. 
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Supplemental Table 9. Performance of the recurrent neural network model after using sessions- 

stratified randomization 

Outcome AUROC (95% CI) AUPRC (95% CI) 

IDH-1 0.943 (0.941–0.944) 0.659 (0.657–0.661) 

IDH-2 0.877 (0.876–0.878) 0.788 (0.787–0.789) 

IDH-3 0.793 (0.791–0.794) 0.508 (0.506–0.510) 

 
 

AUROC, area under the receiver operating characteristic curve; CI, confidence interval; 

AUPRC, area under the precision-recall curve; IDH, intradialytic hypotension. 
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Supplemental Table 10. Performance of the recurrent neural network model in sessions with and without echocardiographic information 

 

Model without echocardiographic information Model with echocardiographic information 

Outcomes AUROC (95% CI) AUPRC (95% CI) AUROC (95% CI) AUPRC (95% CI) 

IDH-1 0.938 (0.936–0.939) 0.643 (0.642–0.645) 0.938 (0.936–0.939) 0.643 (0.642–0.645) 

IDH-2 0.875 (0.874–0.876) 0.783 (0.781–0.784) 0.875 (0.873–0.876) 0.782 (0.781–0.784) 

IDH-3 0.800 (0.797–0.802) 0.522 (0.521–0.524) 0.799 (0.797–0.801) 0.522 (0.520–0.524) 

 
 

AUROC, area under the receiver operating characteristic curve; CI, confidence interval; AUPRC, area under the precision-recall curve; IDH, 

intradialytic hypotension. 
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Supplemental Table 11. Area under the curves for predicting the differently defined 

intradialytic hypotension 

Outcomes Models AUROC (95% CI) P value AUPRC (95% CI) 

IDH-4 RNN 0.930 (0.929–0.932)  0.742 (0.740–0.744) 

 MLP 0.928 (0.926–0.929) <0.001 0.731 (0.729–0.732) 

 LightGBM 0.928 (0.927–0.929) <0.001 0.731 (0.730–0.733) 

 Logistic regression 0.916 (0.914–0.917) <0.001 0.694 (0.692–0.696) 

IDH-5 RNN 0.888 (0.887–0.890)  0.724 (0.722–0.726) 

 MLP 0.884 (0.882–0.885) <0.001 0.715 (0.714–0.717) 

 LightGBM 0.887 (0.885–0.888) <0.001 0.715 (0.714–0.717) 

 Logistic regression 0.872 (0.871–0.874) <0.001 0.687 (0.685–0.688) 

 
AUROC, area under the receiver operating characteristic curve; CI, confidence interval; 

AUPRC, area under the precision-recall curve; IDH, intradialytic hypotension; RNN, recurrent 

neural network, MLP, multilayer perceptron; LightGBM, Light Gradient Boosting Machine; 

LR, logistic regression. 
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Supplemental Figure 1. Exploratory data analysis of the rate of intradialytic hypotension (IDH). 
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Supplemental Figure 2. Confusion matrix plot for (A) IDH-1, (B) IDH-2, and (C) IDH-3. The case numbers are given in each cell. 
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Supplemental Figure 3. Precision-recall graph according to the hemodialysis time. The data 

output thresholds were set as 0.1, 0.3, 0.5, 0.7, and 0.9. (A) IDH-1. (B) IDH-2. (C) IDH-3.  
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Supplemental Figure 4. Decision curve analysis of recurrent neural network (RNN) and three 

other models. (A) Intradialytic hypotension (IDH)-1. (B) IDH-2. (C) IDH-3. MLP, multilayer 

perceptron; LightGBM, Light Gradient Boosting Machine; LR, logistic regression. 
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Supplemental Figure 5. Platt scaling plot used to calibrate the models. (A) Intradialytic 

hypotension (IDH)-1. (B) IDH-2. (C) IDH-3. Bin size = 0.05. RNN, recurrent neural network; 

MLP, multilayer perceptron; LightGBM, Light Gradient Boosting Machine; LR, logistic 

regression. 
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