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F

This supplementary material for [1] a) reviews the Block Proximal Extrapolated Gradient method using a Majorizer
(BPEG-M) [2], [3], b) lists parameters of Momentum-Net, and summarizes selection guidelines or gives default values,
c) compares the convergence properties between Momentum-Net and BCD-Net, and d) provides mathematical proofs or
detailed descriptions to support several arguments in the main manuscript. We use the prefix “S” for the numbers in
section, theorem, equation, figure, table, and footnote in the supplement.

S.1 BPEG-M: REVIEW

This section explains multi-(non)convex optimization problems, and summarizes the state-of-the-art method for block multi-
(non)convex optimization method, BPEG-M [2], [3], along with its convergence guarantees.

S.1.1 Multi-(non)convex optimization
In a block optimization problem, the variables of the underlying optimization problem are treated either as a single block
or multiple disjoint blocks. In multi-(non)convex optimization, we consider the following problem:

min
u

F (u1, . . . , uB) , f(u1, . . . , uB) +
B∑
b=1

rb(ub) (S.1)

where variable u is decomposed into B blocks u1, . . . , uB ({ub ∈ Rnb : b = 1, . . . , B}), f is assumed to be (continuously)
differentiable, but functions {rb : b = 1, . . . , B} are not necessarily differentiable. The function rb can incorporate the
constraint ub ∈ Ub, by allowing rb’s to be extended-valued, e.g., rb(ub) = ∞ if ub /∈ Ub, for b = 1, . . . , B. It is standard
to assume that both f and {rb} are proper and closed, and the sets {Ub} are closed. We consider either that (S.1) has
block-wise convexity (but (S.1) is jointly nonconvex in general) [2], [4] or that f , {rb}, or {Ub} are not necessarily convex
[3], [5]. Importantly, rb can include (non)convex and nonsmooth `p (quasi-)norm, p ∈ [0, 1]. The next section introduces our
optimization framework that solves (S.1).

The following sections review BPEG-M [2], [3], the state-of-the-art optimization framework for solving multi-(non)convex
problems, when used with sufficiently sharp majorizers. BPEG-M uses block-wise extrapolation, majorization, and proximal
mapping. By using a more general Lipschitz continuity (see Definition 1) for block-wise gradients, BPEG-M is particularly
useful for rapidly calculating majorizers involved with large-scale problems, and successfully applied to some large-scale
machine learning and computational imaging problems; see [2], [3], [6] and references therein.

S.1.2 BPEG-M
This section summarizes the BPEG-M framework. Using Definition 1 and Lemma 2, the proposed method, BPEG-M,

is given as follows. To solve (S.1), we minimize majorizers of F cyclically over each block u1, . . . , uB , while fixing the
remaining blocks at their previously updated variables. Let u(i+1)

b be the value of ub after its ith update, and define

f
(i+1)
b (ub) , f

(
u

(i+1)
1 , . . . , u

(i+1)
b−1 , ub, u

(i)
b+1, . . . , u

(i)
B

)
,
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Algorithm S.1 BPEG-M [2], [3]

Require: {u(0)
b = u

(−1)
b : ∀b}, {w(i)

b ∈ [0, 1],∀b, i}, i = 0
while a stopping criterion is not satisfied do

for b = 1, . . . , B do
Calculate M̃ (i+1)

b by (S.4), and E
(i+1)
b to satisfy (S.5) or (S.6)

ú
(i+1)
b = u

(i)
b + E

(i+1)
b

(
u

(i)
b − u

(i−1)
b

)
u

(i+1)
b = Prox

M̃
(i+1)
b

rb

(
ú

(i+1)
b −

(
M̃

(i+1)
b

)−1

∇f (i+1)
b (ú

(i+1)
b )

)
end for
i = i+ 1

end while

for all b, i. At the bth block of the ith iteration, we apply Lemma 2 to functional f (i+1)
b (ub) with a M (i+1)-Lipschitz

continuous gradient at the extrapolated point ú(i+1)
b , and minimize a majorized function. In other words, we consider the

updates

u
(i+1)
b = argmin

ub
〈∇f (i+1)

b (ú
(i+1)
b ), ub − ú(i+1)

b 〉+
1

2

∥∥∥ub − ú(i+1)
b

∥∥∥2

M̃
(i+1)
b

+ rb(ub)

= Prox
M̃

(i+1)
b

rb

(
ú

(i+1)
b −

(
M̃

(i+1)
b

)−1
∇f (i+1)

b (ú
(i+1)
b )︸ ︷︷ ︸

extrapolated gradient step using a majorizer of f(i+1)
b

)
, (S.2)

where
ú

(i+1)
b = u

(i)
b + E

(i+1)
b

(
u

(i)
b − u

(i−1)
b

)
, (S.3)

the proximal operator is defined by (2), ∇f (i+1)
b (ú

(i+1)
b ) is the block-partial gradient of f at ú(i+1)

b , a scaled majorization
matrix is given by

M̃
(i+1)
b = λb ·M (i+1)

b � 0, λb ≥ 1, (S.4)

and M
(i+1)
b ∈ Rnb×nb is a symmetric positive definite majorization matrix of ∇f (i+1)

b (ub). In (S.3), the Rnb×nb matrix
E

(i+1)
b � 0 is an extrapolation matrix that accelerates convergence in solving multi-convex problems [2]. We design it to

satisfy conditions (S.5) or (S.6) below. In (S.4), {λb = 1 : ∀b} and {λb > 1 : ∀b}, for multi-convex and multi-nonconvex
problems, respectively.

For some f (i+1)
b having sharp majorizers, we expect that extrapolation (S.3) has no benefits in accelerating convergence,

and use {E(i+1)
b = 0 : ∀i}. Other than the blocks having sharp majorizers, one can apply some increasing momentum

coefficient formula [7], [8] to the corresponding extrapolation matrices. The choice in [2]–[4] accelerated BPEG-M for some
machine learning and data science applications. Algorithm S.1 summarizes these updates.

S.1.3 Convergence results
This section summarizes convergence results of Algorithm S.1 under the following assumptions:

• Assumption S.1) In (S.1), F is proper and lower bounded in dom(F ) , {u : F (u) <∞}. In addition,
for multi-convex (S.1), f is differentiable and (S.1) has a Nash point or block-coordinate minimizerS.1 (see its definition
in [4, (2.3)–(2.4)]);
for multi-nonconvex (S.1), f is continuously differentiable, rb is lower semicontinuousS.2, ∀b, and (S.1) has a critical
point u? that satisfies 0 ∈ ∂F (u?).

• Assumption S.2) ∇f (i+1)
b (ub) is M -Lipschitz continuous with respect to ub, i.e.,∥∥∥∇f (i+1)

b (u)−∇f (i+1)
b (v)

∥∥∥(
M

(i+1)
b

)−1 ≤ ‖u− v‖M(i+1)
b

,

for u, v ∈ Rnb , where M (i+1)
b is a bounded majorization matrix.

• Assumption S.3) The extrapolation matrices E(i+1)
b � 0 satisfy that

for multi-convex (S.1),
(
E

(i+1)
b

)T
M

(i+1)
b E

(i+1)
b � δ2 ·M (i)

b ; (S.5)

for multi-nonconvex (S.1),
(
E

(i+1)
b

)T
M

(i+1)
b E

(i+1)
b � δ2(λb − 1)2

4(λb + 1)2
·M (i)

b , (S.6)

S.1. Given a feasible set U , a point u? ∈ dom(F ) ∪ U is a critical point (or stationary point) of F if the directional derivative dT∇F (u?) ≥ 0 for
any feasible direction d at u?. If u? is an interior point of U , then the condition is equivalent to 0 ∈ ∂F (u?).

S.2. F is lower semicontinuous at point u0 if lim infu→u0 F (u) ≥ F (u0).
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with δ < 1, ∀b, i.
Theorem S.1 (Multi-convex (S.1): A limit point is a Nash point [2]). Under Assumptions S.1–S.3, let {u(i+1) : i ≥ 0} be the
sequence generated by Algorithm S.1. Then any limit point of {u(i+1) : i ≥ 0} is a Nash point of (S.1).

Theorem S.2 (Multi-nonconvex (S.1): A limit point is a critical point [3]). Under Assumptions S.1–S.3, let {u(i+1) : i ≥ 0} be
the sequence generated by Algorithm S.1. Then any limit point of {u(i+1) : i ≥ 0} is a critical point of (S.1).

Remark S.3. Theorems S.1–S.2 imply that, if there exists a critical point for (S.1), i.e., 0 ∈ ∂F (u?), then any limit point of
{u(i+1) : i ≥ 0} is a critical point. One can further show global convergence under some conditions: if {u(i+1) : i ≥ 0} is
bounded and the critical points are isolated, then {u(i+1) : i ≥ 0} converges to a critical point [2, Rem. 3.4], [4, Cor. 2.4].

S.1.4 Application of BPEG-M to solving multi-(non)convex problem (1)
For update (3), we do not use extrapolation, i.e., (S.3), since the corresponding majorization matrices are sharp, so
one obtains tight majorization bounds in Lemma 2. See, for example, [3, §V-B]. For updates (3) and (5), we rewrite∑K
k=1 ‖hk ∗x− ζk‖22 as ‖x−

∑K
k=1 flip(h∗k)∗ ζk‖22 by using the TF condition in §2.1 [3, §VI], [6].

S.2 EMPIRICAL MEASURES RELATED TO THE CONVERGENCE OF MOMENTUM-NET USING SCNN REFIN-
ERS

This section provides empirical measures related to Assumption 4 for Momentum-Net using single-hidden layer au-
toencoders (18); see Fig. S.1 below. We estimated the sequence {ε(i) : i = 2, . . . , Nlyr} in Definition 7, the sequence
{∆(i) : i = 2, . . . , Nlyr} in Definition 8, and the Lipschitz constants {κ(i) : i = 1, . . . , Nlyr} of refining NNs {Rθ(i) : ∀i},
based on a hundred sets of randomly selected training samples related with the corresponding bounds of the measures,
e.g., u and v in (11) are training input to Rθ(i+1) and Rθ(i) in (Alg.1.1), respectively.

(a) Sparse-view CT: Condition numbers of data-fit majorizers have mild variations.
(a1) {∆(i) : i ≥ 2} (a2) {ε(i) : i ≥ 2} (a3) {κ(i) : i ≥ 1}
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(b) LF photography using focal stack: Condition numbers of data-fit majorizers have strong variations.
(b1) {∆(i) : i ≥ 2} (b2) {ε(i) : i ≥ 2} (b3) {κ(i) : i ≥ 1}
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Fig. S.1. Empirical measures related to Assumption 4 for guaranteeing convergence of Momentum-Net using sCNN refiners (for details, see (18)
and §4.2.1), in different applications. (a) The sparse-view CT reconstruction experiment used fan-beam geometry with 12.5% projections views.
(b) The LF photography experiment used five detectors and reconstructed LFs consisting of 9×9 sub-aperture images. (a1, b1) For both the
applications, we observed that ∆(i) → 0. This implies that the z(i+1)-updates in (Alg.1.1) satisfy the asymptotic block-coordinate minimizer
condition in Assumption 4. (Magenta dots denote the mean values and black vertical error bars denote standard deviations.) (a2) Momentum-Net
trained from training data-fits, where their majorization matrices have mild condition number variations, shows that ε(i) → 0. This implies that
paired NNs (Rθ(i+1) ,Rθ(i) ) in (Alg.1.1) are asymptotically nonexpansive. (b2) Momentum-Net trained from training training data-fits, where their
majorization matrices have mild condition number variations, shows that ε(i) becomes close to zero, but does not converge to zero in one hundred
iterations. (a3, b3) The NNs, Rθ(i+1) in (Alg.1.1), become nonexpansive, i.e., its Lipschitz constant κ(i) becomes less than 1, as i increases.

S.3 PROBABILISTIC JUSTIFICATION FOR THE ASYMPTOTIC BLOCK-COORDINATE MINIMIZER CONDITION
IN ASSUMPTION 4
This section introduces a useful result for an asymptotic block-coordinate minimizer z(i+1): the following lemma provides
a probabilistic bound for ‖x(i) − z(i+1)‖22 in (12), given a subgaussian vector z(i+1) − z(i) with independent and zero-mean
entries.
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Lemma S.4 (Probabilistic bounds for ‖x(i) − z(i+1)‖22). Assume that z(i+1) − z(i) is a zero-mean subgaussian vector of which
entries are independent and zero-mean subgaussian variables. Then, each bound in (12) holds with probability at least

1− exp

 −
(
‖z(i+1) − z(i)‖22 + ∆(i+1)

)2

8ρ · σ(i+1) · ‖Rθ(i+1)(x(i))− x(i)‖22

 ,
where σ(i+1) is a subgaussian parameter for z(i+1) − z(i), and a random variable is subgaussian with parameter σ if P{| · | ≥ t} ≤
2 exp(− t2

2σ ) for t ≥ 0.

Proof. First, observe that∥∥∥x(i) − z(i+1)
∥∥∥2

2
=
∥∥∥x(i) − z(i) − (z(i+1) − z(i))

∥∥∥2

2

=
∥∥∥x(i) − z(i)

∥∥∥2

2
+
∥∥∥z(i+1) − z(i)

∥∥∥2

2
− 2〈x(i) − z(i), z(i+1) − z(i)〉

=
∥∥∥x(i) − z(i)

∥∥∥2

2
+
∥∥∥z(i+1) − z(i)

∥∥∥2

2
− 2〈z(i+1) − z(i) + ρ(x(i) −Rθ(i+1)(x(i))), z(i+1) − z(i)〉 (S.7)

=
∥∥∥x(i) − z(i)

∥∥∥2

2
−
∥∥∥z(i+1) − z(i)

∥∥∥2

2
+ 2ρ〈Rθ(i+1)(x(i))− x(i), z(i+1) − z(i)〉 (S.8)

where the inequality (S.7) holds by x(i) = ρx(i)−ρRθ(i+1) +z(i+1) via (Alg.1.1). We now obtain a probablistic bound for the
third quantity in (S.8) via a concentration inequality. The concentration inequality on the sum of independent zero-mean
subgaussian variables (e.g., [9, Thm. 7.27]) yields that for any t(i+1) ≥ 0

P
{
〈Rθ(i+1)(x(i))− x(i), z(i+1) − z(i)〉 ≥ t(i+1)

}
≤ exp

(
− (t(i+1))2

2σ(i+1)‖Rθ(i+1)(x(i))− x(i)‖22

)
(S.9)

where σ(i+1) is given as in Lemma S.4. Applying the result (S.9) with t(i+1) = 1
2ρ (‖z(i+1) − z(i)‖22 + ∆(i+1)) to the bound

(S.8) completes the proofs.

Lemma S.4 implies that, given sufficiently large ∆(i+1), or sufficiently small σ(i+1) (e.g., variance for a Gaussian random
vector z(i+1) − z(i)) or ‖Rθ(i+1)(x(i))− x(i)‖22, bound (12) is satisfied with high probability, for each i. In particular, ∆(i+1)

can be large for the first several iterations; if paired operators (Rθ(i+1) ,Rθ(i)) in (Alg.1.1) map their input images to similar
output images (e.g., the trained NNs Rθ(i+1) and Rθ(i) have good refining capabilities for x(i) and x(i−1)), then σ(i+1) is
small; if the regularization parameter γ in (Alg.1.3) is sufficiently large, then ‖Rθ(i+1)(x(i))− x(i)‖22 is small.

S.4 PROOFS OF PROPOSITION 9
First, we show that

∑∞
i=0 ‖x(i+1) − x(i)‖22 <∞ for convex and nonconvex F (x; y, z(i+1)) cases.

• Convex F (x; y, z(i+1)) case: Using Assumption 2 and {M̃ (i+1) =M (i+1) :∀i} for the convex case via (7), we obtain the
following results for any X :

F
(
x(i); y, z(i)

)
− F

(
x(i+1); y, z(i+1)

)
+ γ∆(i+1)

≥ F
(
x(i); y, z(i+1)

)
− F

(
x(i+1); y, z(i+1)

)
(S.10)

≥ 1

2

∥∥∥x(i+1) − x́(i+1)
∥∥∥2

M(i+1)
+
(
x́(i+1) − x(i)

)T
M (i+1)

(
x(i+1) − x́(i+1)

)
(S.11)

=
1

2

∥∥∥x(i+1) − x(i)
∥∥∥2

M(i+1)
− 1

2

∥∥∥E(i+1)
(
x(i) − x(i−1)

)∥∥∥2

M(i+1)
(S.12)

≥ 1

2

∥∥∥x(i+1) − x(i)
∥∥∥2

M(i+1)
− δ2

2

∥∥∥x(i) − x(i−1)
∥∥∥2

M(i)
(S.13)

where the inequality (S.10) uses the condition (12) in Assumption 4, the inequality (S.11) is obtained by using the results
in [2, Lem. S.1], the equality (S.12) uses the extrapolation formula (Alg.1.2) and the symmetry of M (i+1), the inequality
(S.13) holds by Assumption 3.
Summing the inequality of F (x(i); y, z(i))−F (x(i+1); y, z(i+1)) + γ∆(i+1) in (S.13) over i = 0, . . . , Nlyr− 1, we obtain

F
(
x(0);y,z(0)

)
−F

(
x(Nlyr);y,z(Nlyr)

)
+γ

Nlyr−1∑
i=0

∆(i+1)≥
Nlyr−1∑
i=0

1

2

∥∥∥x(i+1)−x(i)
∥∥∥2

M(i+1)
− δ

2

2

∥∥∥x(i)−x(i−1)
∥∥∥2

M(i)

≥
Nlyr−1∑
i=0

1−δ2

2

∥∥∥x(i+1)−x(i)
∥∥∥2

M(i+1)
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≥
Nlyr−1∑
i=0

mF,min(1−δ2)

2

∥∥∥x(i+1)−x(i)
∥∥∥2

2
(S.14)

where the inequality (S.14) holds by Assumption 2. Due to the lower boundedness of F (x; y, z) in Assumption 1 and
the summability of {∆(i+1) ≥ 0 : ∀i} in Assumption 4, taking Nlyr →∞ gives

∞∑
i=0

∥∥∥x(i+1) − x(i)
∥∥∥2

2
<∞. (S.15)

• Nonconvex F (x; y, z(i+1)) case: Using Assumption 2, we obtain the following results without assuming that F (x; y, z(i+1))
is convex:

F
(
x(i); y, z(i)

)
− F

(
x(i+1); y, z(i+1)

)
+ γ∆(i+1)

≥ F
(
x(i); y, z(i+1)

)
− F

(
x(i+1); y, z(i+1)

)
(S.16)

≥ λ− 1

4

∥∥∥x(i+1) − x(i)
∥∥∥2

M(i+1)
− (λ+ 1)2

λ− 1

∥∥∥x(i) − x́(i+1)
b

∥∥∥2

M(i+1)
(S.17)

=
λ− 1

4

∥∥∥x(i+1) − x(i)
∥∥∥2

M(i+1)
− (λ+ 1)2

λ− 1

∥∥∥E(i+1)
(
x(i) − x(i−1)

)∥∥∥2

M(i+1)
(S.18)

≥ λ− 1

4

(∥∥∥x(i+1) − x(i)
∥∥∥2

M(i+1)
− δ2

∥∥∥x(i) − x(i−1)
∥∥∥2

M(i)

)
(S.19)

where the inequality (S.16) uses the condition (12) in Assumption 4, the inequality (S.17) use the results in [3, §S.3], the
equality (S.18) holds by (Alg.1.2), the inequality (S.19) is obtained by Assumption 3.
Summing the inequality of F (x(i); y, z(i))−F (x(i+1); y, z(i+1)) + γ∆(i+1) in (S.19) over i = 0, . . . , Nlyr− 1, we obtain

F
(
x(0);y,z(0)

)
−F

(
x(Nlyr);y,z(Nlyr)

)
+γ ·

Nlyr−1∑
i=0

∆(i+1)≥
Nlyr−1∑
i=0

λ−1

4

(∥∥∥x(i+1)−x(i)
∥∥∥2

M(i+1)
−δ2

∥∥∥x(i)−x(i−1)
∥∥∥2

M(i)

)

≥
Nlyr−1∑
i=0

(λ−1)(1−δ2)

2

∥∥∥x(i+1)−x(i)
∥∥∥2

M(i+1)

≥
Nlyr−1∑
i=0

mF,min(λ−1)(1−δ2)

2

∥∥∥x(i+1)−x(i)
∥∥∥2

2
,

where we follow the arguments in obtaining (S.14) above. Again, using the lower boundedness of F (x; y, z) and the
summability of {∆(i+1) ≥ 0 : ∀i}, taking Nlyr →∞ gives the result (S.15) for nonconvex F (x; y, z(i+1)).

Second, we show that
∑∞
i=0 ‖z(i+1) − z(i)‖22 <∞. Observe∥∥∥z(i+1) − z(i)

∥∥∥2

2
=
∥∥∥(1− ρ)

(
x(i) − x(i−1)

)
+ ρ

(
Rθ(i+1)(x(i))−Rθ(i)(x(i−1))

)∥∥∥2

2

≤ (1− ρ)
∥∥∥x(i) − x(i−1)

∥∥∥2

2
+ ρ

∥∥∥Rθ(i+1)(x(i))−Rθ(i)(x(i−1))
∥∥∥2

2

≤
∥∥∥x(i) − x(i−1)

∥∥∥2

2
+ ρε(i+1) (S.20)

where the first equality uses the image mapping formula in (Alg.1.1), the first inequality holds by applying Jensen’s in-
equality to the (convex) squared `2-norm, the second inequality is obtained by using the asymptotically non-expansiveness
of the paired operators (Rθ(i+1) ,Rθ(i)) in Assumption 4. Summing the inequality of ‖z(i+1) − z(i)‖22 in (S.20) over
i = 0, . . . , Nlyr − 1, we obtain

Nlyr−1∑
i=0

∥∥∥z(i+1) − z(i)
∥∥∥2

2
≤
Nlyr−2∑
i=0

∥∥∥x(i+1) − x(i)
∥∥∥2

2
+ ρ

Nlyr−1∑
i=0

ε(i+1), (S.21)

where we used x(0) = x(−1) as given in Algorithm 1. By taking Nlyr →∞ in (S.21), using result (S.15), and the summability
of the sequence {ε(i+1) : i ≥ 0}, we obtain

∞∑
i=0

∥∥∥z(i+1) − z(i)
∥∥∥2

2
<∞. (S.22)

Combining the results in (S.15) and (S.22) completes the proofs.
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S.5 PROOFS OF THEOREM 10
Let x̄ be a limit point of {x(i) : i ≥ 0} and {x(ij)} be the subsequence converging to x̄. Let z̄ be a limit point of {z(i) : i ≥ 0}
and {z(ij)} be the subsequence converging to z̄. The closedness of X implies that x̄ ∈ X . Using the results in Proposition 9,
{x(ij+1)} and {z(ij+1)} also converge to x̄ and z̄, respectively. Taking another subsequence if necessary, the subsequence
{M (ij+1)} converges to some M̄ , since M (i+1) is bounded by Assumption 2. The subsequences {θ(ij+1)} converge to some
θ̄, since x(ij+1) → x̄, z(ij+1) → z̄, and {θ(i+1)} is bounded via Assumption 4.

Next, we show that the convex proximal minimization (S.23) below is continuous in the sense that the output point
x(ij+1) continuously depends on the input points x́(ij+1) and z(ij+1), and majorization matrix M̃ (ij+1):

x(ij+1) = argmin
x∈X

〈∇F (x́(ij+1); y, z(ij+1)), x− x́(ij+1)〉+
1

2

∥∥∥x− x́(ij+1)
∥∥∥2

M̃(ij+1)
(S.23)

= ProxM̃
(ij+1)

IX

(
x́(ij+1) −

(
M̃ (ij+1)

)−1∇F (x́(ij+1); y, z(ij+1))
)
.

where the proximal mapping operator ProxM̃
(ij+1)

IX (·) is given as in (2). We consider the two cases of majorization matrices
{M (i+1)} given in Theorem 10:

• For a sequence of diagonal majorization matrices, i.e., {M (i+1) : i ≥ 0}, one can obtain the continuity of the convex
proximal minimization (S.23) with respect to x́(ij+1), z(ij+1), and M̃ (ij+1), by extending the existing results in [10,
Thm. 2.26], [11] with the separability of (S.23) to element-wise optimization problems.

• For a fixed general majorization matrix, i.e., M = M (i+1), ∀i, we obtain that the convex proximal minimization (S.24)
below is continuous with respect to the input points x́(ij+1) and z(ij+1):

x(ij+1) = argmin
x∈X

〈∇F (x́(ij+1); y, z(ij+1)), x− x́(ij+1)〉+
1

2

∥∥∥x− x́(ij+1)
∥∥∥2

M̃
(S.24)

= ProxM̃IX
(
x́(ij+1) − M̃−1∇F (x́(ij+1); y, z(ij+1))

)
=
(
Id + M̃−1∂̂IX

)−1(
x́(ij+1) − M̃−1∇F (x́(ij+1); y, z(ij+1))

)
(S.25)

where ∂̂f(x) is the subdifferential of f at x and Id denotes the identity operator, and the proximal mapping of IX
relative to ‖ · ‖M̃ is uniquely determined by the resolvent of the operator M̃−1∂̂IX in (S.25).
First, we obtain that the operator M̃−1∂̂IX is monotone. For a convex extended-valued function fe : RN → R ∪ {∞},
observe that M̃−1∂̂fe is a monotone operator:

〈M̃−1∂̂fe(u)− M̃−1∂̂fe(v), u− v〉 = 〈M̃−1M̃︸ ︷︷ ︸
=I

∂̂fe(M̃ũ)− M̃−1M̃︸ ︷︷ ︸
=I

∂̂fe(M̃ṽ), M̃ ũ− M̃ṽ〉 ≥ 0, ∀u, v, (S.26)

where the equality uses the variable change {u = M̃ũ, v = M̃ṽ}, a chain rule of the subdifferential of a composition of
a convex extended-valued function and an affine mapping [12, §7], and the symmetry of M̃ , and the inequality holds
because the subdifferential of convex extended-valued function is a monotone operator [13, §4.2]. Because characteristic
function of a convex set is extended-valued function, the result in (S.26) implies that the operator M̃−1∂̂IX is monotone.
Second, note that the resolvent of a monotone operator M̃−1∂̂IX (with a parameter 1), i.e., (Id+M̃−1∂̂IX )−1 in (S.25), is
nonexpansive [10, §6] and thus continuous. We now obtain that the convex proximal minimization (S.24) is continuous
with respect to the input points x́(ij+1) and z(ij+1), because the proximal mapping operator (Id+M̃−1∂̂IX )−1 in (S.25),
the affine mapping M̃−1, and ∇F (x; y, z) are continuous with respect to their input points.

For the two cases above, using the fact that x(ij+1) → x̄, x́(ij+1) → x̄, z(ij+1) → z̄, and M (ij+1) → M̄ (or M̄ = M for
the {M (i+1) = M} case) as j →∞, (S.23) becomes

x̄ = argmin
x∈X

〈∇F (x̄; y, z̄), x− x̄〉+
1

2
‖x− x̄‖2M̄ . (S.27)

Thus, x̄ satisfies the first-order optimality condition of minx∈X F (x; y, z̄):

〈∇F (x̄; y, z̄), x− x̄〉 ≥ 0, for any x ∈ X ,

and this completes the proof of the first result.
Next, note that the result in Proposition 9 imply∥∥∥∥AM(i+1)

R
θ(i+1)

([
x(i)

x(i−1)

])
−
[
x(i)

x(i−1)

]∥∥∥∥
2

→ 0. (S.28)

Additionally, note that a function AM(i+1)

R
θ(i+1)

− I is continuous. To see this, observe that the convex proximal mapping in
(Alg.1.3) is continuous (see the obtained results above), and Rθ(i+1) is continuous (see Assumption 4). Combining (S.28),
the convergence of {M (ij+1),R

θ(ij+1)}, and the continuity of AM(i+1)

R
θ(i+1)

− I , we obtain [x̄T, x̄T ]T =AM̄Rθ̄ ([x̄
T, x̄T ]T ), and this

completes the proofs of the second result.
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S.6 PROOFS OF COROLLARY 11
To prove the first result, we use proof by contradiction. Suppose that dist(x(i),S) 9 0. Then there exists ε > 0 and a
subsequence {x(ij)} such that dist(x(ij),S) ≥ ε, ∀j. However, the boundedness assumption of {x(ij)} in Corollary 11
implies that there must exist a limit point x̄ ∈ S via Theorem 10. This is a contradiction, and gives the first result (via the
result in Proposition 9). Under the isolation point assumption in Corollary 11, using the obtained results, ‖x(i+1)−x(i)‖2 →
0 (via Proposition 9) and dist(x(i+1),S)→ 0, and the following the proofs in [4, Cor. 2.4], we obtain the second result.

S.7 MOMENTUM-NET VS. BCD-NET

This section compares the convergence properties of Momentum-Net (Algorithm 1) and BCD-Net (Algorithm 2). We first
show that for convex f(x; y) and X , the sequence of reconstructed images generated by BCD-Net converges:

Proposition S.5 (Sequence convergence). In Algorithm 2, let f(x; y) be convex and subdifferentiable, and X be convex. Assume
that the paired operators (Rθ(i+1) ,Rθ(i)) are asymptotically contractive, i.e.,

‖Rθ(i+1)(u)−Rθ(i)(v)‖2 < ‖u− v‖2 + ε(i+1),

with
∑∞
i=0 ε

(i+1) < ∞ and {ε(i+i) ∈ [0,∞) : ∀i}, ∀u, v, i. Then, the sequence {x(i+1) : i ≥ 0} generated by Algorithm 2 is
convergent.

Proof. We rewrite the updates in Algorithm 2 as follows:

x(i+1) = argmin
x∈X

f(x; y) +
γ

2

∥∥∥x−Rθ(i+1)(x(i))
∥∥∥2

2
= ProxγIf+IX

(
Rθ(i+1)(x(i))

)
=
(
Id + γ−1∂̂(f(x; y) + IX )

)−1(Rθ(i+1)(x(i))
)

=: A(i+1)(x(i)).

We first show that the paired operators {A(i+1),A(i)} is asymptotically contractive:∥∥∥A(i+1)(u)−A(i)(v)
∥∥∥

2

=
∥∥∥(Id + γ−1∂̂(f(x; y) + IX )

)−1(Rθ(i+1)(u)
)
−
(
Id + γ−1∂̂(f(x; y) + IX )

)−1(Rθ(i)(v)
)∥∥∥

2

≤ ‖Rθ(i+1)(u)−Rθ(i)(v)‖2 (S.29)

≤ L′‖u− v‖2 + ε(i+1)‖u− v‖2, (S.30)

∀u, v, where the inequality (S.29) holds because the subdifferential of the convex extended-valued function f(x; y) + IX
(the characteristic function of a convex set X , IX , is convex, and the sum of the two convex functions, f(x; y) + IX ,
is convex) is a monotone operator [13, §4.2], and the resolvent of a monotone relation with a positive parameter, i.e.,
(Id + γ−1∂̂(f(x; y) + IX ))−1 with γ−1 > 0, is nonexpansive [13, §6], and the inequality (S.30) holds by L′ < 1 via the
contractiveness of the paired operators (Rθ(i+1) ,Rθ(i)), ∀i. Note that the inequality (S.29) does not hold for nonconvex
f(x; y) and/or X . Considering that L′ < 1, we show that the sequence {x(i+1) : i ≥ 0} is Cauchy sequence:∥∥∥x(i+l) − x(i)

∥∥∥
2

=
∥∥∥(x(i+l) − x(i+l−1)) + . . .+ (x(i+1) − x(i))

∥∥∥
2

≤
∥∥∥x(i+l) − x(i+l−1)

∥∥∥+ . . .+
∥∥∥x(i+1) − x(i)

∥∥∥
2

≤
(
L′
l−1

+ . . .+ 1
)∥∥∥x(i+1) − x(i)

∥∥∥
2

+
(
ε(i+l) + . . .+ ε(i+1)

)
≤ 1

1− L′
∥∥∥x(i+1) − x(i)

∥∥∥
2

+
l∑

i′=1

ε(i+i
′)

where the second inequality uses the result in (S.30). Since the sequence {x(i+1) : i ≥ 0} is Cauchy sequence, {x(i+1) : i ≥
0} is convergent, and this completes the proofs.

In terms of guaranteeing convergence, BCD-Net has three theoretical or practical limitations compared to Momentum-
Net:

• Different from Momentum-Net, BCD-Net assumes the asymptotic contractive condition for the paired operators
{Rθ(i+1) ,Rθ(i)}. When image mapping operators in (Alg.2.1) are identical across iterations, i.e., {Rθ = Rθ(i+1) : i≥0},
thenRθ is assumed to be contractive. On the other hand, a mapping operator (identical across iterations) of Momentum-
Net only needs to be nonexpansive. Note, however, that when f(x; y) = 1

2‖y − Ax‖2W with AHWA � 0 (e.g.,
Example 5), BCD-Net can guarantee the sequence convergence with the asymptotically nonexpansive paired operators
(Rθ(i+1) ,Rθ(i)) (see Definition 7) [14].

• When one applies an iterative solver to (Alg.2.2), there always exist some numerical errors and these obstruct the
sequence convergence guarantee in Proposition S.5. To guarantee sufficiently small numerical errors from iterative
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methods solving (Alg.2.2) (so that one can find a critical point solution for the MBIR problem (Alg.2.2)), one needs to
use sufficiently many inner iterations that can substantially slow down entire MBIR.

• BCD-Net does not guarantee the sequence convergence for nonconvex data-fit f(x; y), whereas Momentum-Net
guarantees convergence to a fixed-point for both convex f(x; y) and nonconvex f(x; y).

S.8 FOR THE SCNN ARCHITECTURE (18), CONNECTION BETWEEN CONVOLUTIONAL TRAINING LOSS
(P2) AND ITS PATCH-BASED TRAINING LOSS

This section shows that given the sCNN architecture (18), the convolutional training loss in (P2) has three advantages over
the patch-based training loss in [14], [15] that may use all the extracted overlapping patches of size R:

• The corresponding patch-based loss does not model the patch aggregation process that is inherently modeled in (18).
• It is an upper bound of the convolutional loss (P2).
• It requires about R times more memory than (P2).

We prove the benefits of (P2) using the following lemma.

Lemma S.6. The loss function (P2) for training the residual convolutional autoencoder in (18) is bounded by the patch-based loss
function:

1

2L

S∑
s=1

∥∥∥x̂(i)
s −

K∑
k=1

dk ~ Tαk(ek ~ x(i)
s )
∥∥∥2

2
≤ 1

2LR

S∑
s=1

∥∥X̂(i)
s −DTα̃(EX(i)

s )
∥∥2

F
, (S.31)

where the residual is defined by x̂(i)
s , xs−x(i)

s , {xs, x(i)
s } are given as in (P2), X̂s ∈ RR×Vs and Xs ∈ RR×Vs are the lth training

data matrices whose columns are Vs vectorized patches extracted from the images x̂s and xs (with the circulant boundary condition
and the “stride” parameter 1), respectively, D , [d1, . . . , dK ] ∈ CR×K is a decoding filter matrix, and E , [e∗1, . . . , e

∗
K ]H ∈ CK×R

is an encoding filter matrix. Here, the definition of soft-thresholding operator in (6) is generalized by

(Tα̃(u))k ,

{
uk − αk · sign(uk), |uk| > αk,

0, otherwise, (S.32)

for K = 1, . . . ,K , where α̃ = [α1, . . . , αK ]T . See other related notations in (18).

Proof. First, we have the following reformulation [3, §S.1]: e1∗u
...

eK ∗u

 = P ′

 EP1

...
EPN


︸ ︷︷ ︸

, Ẽ

u, ∀u, (S.33)

where P ′ ∈ CKN×KN is a permutation matrix, E is defined in Lemma (S.6), and Pn ∈ CR×N is the nth patch extraction
operator for n = 1, . . . , N . Considering that

∑K
k=1 flip(e∗k) ~ (ek ~ u) = 1

R Ẽ
HẼu via the definition of Ẽ in (S.33) (see also

the reformulation technique in [3, §S.1]), we obtain the following reformulation result:

K∑
k=1

flip(e∗k) ~ Tαk(ek ~ x(i)
s ) =

1

R

N∑
n=1

PHn E
HTα̃

(
EPnx

(i)
s

)
(S.34)

where the soft-thresholding operators {Tαk(·) : ∀k} and Tα̃(·) are defined in (S.32) and we use the permutation invariance
of the thresholding operator Tα(·), i.e., Tα(P (·)) = PTα(·) for any α. Finally, we obtain the result in (S.31) as follows:

1

2L

S∑
s=1

∥∥∥x̂(i)
s −

K∑
k=1

dk ~ Tαk(ek ~ x(i)
s )
∥∥∥2

2
=

1

2L

S∑
s=1

∥∥∥x̂(i)
s −

1

R

N∑
n=1

PHn DTα̃
(
EPnx

(i)
s

)∥∥∥2

2
(S.35)

=
1

2L

S∑
s=1

∥∥∥ 1

R

N∑
n=1

PHn Pnx̂
(i)
s −

1

R

N∑
n=1

PHn DTα̃
(
EPnx

(i)
s

)∥∥∥2

2
(S.36)

=
1

2LR2

S∑
s=1

∥∥∥∥ N∑
n=1

PHn

(
x̂

(i)
l,n −DTα̃

(
Ex

(i)
l,n

))∥∥∥∥2

2

≤ 1

2LR

S∑
s=1

N∑
n=1

∥∥∥x̂(i)
l,n −DTα̃

(
Ex

(i)
l,n

)∥∥∥2

2
(S.37)

=
1

2LR

S∑
s=1

∥∥∥X̂(i)
s −DTα̃

(
EX(i)

s

)∥∥∥2

F
,
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where D is defined in Lemma S.6, {x̂(i)
l,n = Pnx̂

(i)
s ∈ CR, x(i)

l,n = Pnx
(i)
s ∈ CR : n = 1, . . . , N} is a set of extracted patches,

the training matrices {X̂(i)
s , X

(i)
s } are defined by X̂

(i)
s , [x̂

(i)
l,n, . . . , x̂

(i)
l,N ] and X

(i)
s , [x

(i)
l,1, . . . , x

(i)
l,N ]. Here, the equality

(S.35) uses the result in (S.34), the equality (S.36) holds by
∑N
n=1 P

H
n Pn = R · I (for the circulant boundary condition in

Lemma S.6), and the inequality (S.37) holds by P̃ P̃H � R · I with P̃ , [PH1 · · ·PHN ]H .

Lemma S.6 reveals that when the patch-based training approach extract all the R-size overlapping patches, 1) the
corresponding patch-based loss is an upper bound of the convolutional loss (P2); 2) it requires about R-times larger
memory than (P2) because Vs ≈ RNs for x ∈ RNs and the boundary condition described in Lemma S.6, ∀l; and 3) it
misses modeling the patch aggregation process that is inherently modeled in (18) – see that the patch aggregation operator∑N
n=1 P

H
n (·)n is removed in the inequality (S.37) in the proof of Lemma S.6. In addition, different from the patch-based

training approach [14], [15], i.e., training with the function on the right-hand side in (S.31), one can use different sizes of
filters {ek, dk : ∀k} in the convolutional training loss, i.e., the function on the left-hand side in (S.31).

S.9 DETAILS OF EXPERIMENTAL SETUP

S.9.1 Majorization matrix designs for quadratic data-fit
For (real-valued) quadratic data-fit f(x; y) in the form of 1

2‖y − Ax‖2W , if a majorization matrix M exists such that
AHWA �M , it is straightforward to verify that the gradient of quadratic data-fit f(x; y) satisfies theM -Lipchitz continuity
in Definition 1, i.e.,

‖∇f(u; y)−∇f(v; y)‖M−1 = ‖AHWAu−AHWAv‖M−1 ≤ ‖u− v‖2M , ∀u, v ∈ RN .

because the assumptionATWA �M ⇔M−1/2ATWAM−1/2 � I implies that the eigenspectrum ofM−1/2ATWAM−1/2

lies in the interval [0, 1], and gives the following result:(
M−1/2ATWAM−1/2

)2 � I ⇔ (ATWA)M−1(ATWA) �M.

Next, we review a useful lemma in designing majorization matrices for a wide class of quadratic data-fit f(x; y):

Lemma S.7 ( [2, Lem. S.3]). For a (possibly complex-valued) matrix A and a diagonal matrix W with non-negative entries,
AHWA � diag(|AH |W |A|1), where |A| denotes the matrix consisting of the absolute values of the elements of A.

S.9.2 Parameters for MBIR optimization models: Sparse-view CT reconstruction
For MBIR model using EP regularization, we combined a EP regularizer

∑N
n=1

∑
n′∈Nn ιnιn′ϕ(xn − xn′) and the data-fit

f(x; y) in §4.1.1, where Nn is the set of indices of the neighborhood, ιn and ιn′ are parameters that encourage uniform
noise [16], and ϕ(·) is the Lange penalty function, i.e., ϕ(t) = δ2(|t/δ| − log(1 + |t/δ|)), with δ= 10 in HU. We chose the
regularization parameter (e.g., γ in (P0)) as 215.5. We ran the relaxed linearized augmented Lagrangian method [17] with
100 iterations and 12 ordered-subsets, and initialized the EP MBIR algorithms with a conventional FBP method using a
Hanning window.

For MBIR model using a learned convolutional regularizer [6, (P2)], we trained convolutional regularizer with filters of
{hk ∈ RR : R=K= 72} via CAOL [3] in an unsupervised training manner; see training details in [3]. The regularization
parameters (e.g., γ in (1)) were selected by applying the “spectral spread” based selection scheme in §3.2 with the tuned
factor χ?=167.64. We selected the spatial-strength-controlling hard-thresholding parameter (i.e., α′ in [6, (P2)]) as follows:
for Test samples #1–2, we chose it is as 10−10 and 6−11, respectively. We initialized the MBIR model using a learned
regularizer with the EP MBIR results obtained above. We terminated the iterations if the relative error stopping criterion
(e.g., [2, (44)]) is met before reaching the maximum number of iterations. We set the tolerance value as 10−13 and the
maximum number of iterations to 4×103.

S.9.3 Parameters for MBIR optimization models: LF photography using a focal stack
For MBIR model using 4D EP regularization [18], we combined a 4D EP regularizer

∑N
n=1

∑
n′∈Nn ϕ(xn−xn′) and the data-

fit f(x; y) in §4.1.2, where Nn is the set of indices of the 4D neighborhood, and ϕ(·) is the hyperbola penalty function, i.e.,
ϕ(t) = δ2(

√
1 + |t/δ|2 − 1). We selected the hyperbola function parameter δ and regularization parameter (e.g., γ in (P0))

as follows: for Test samples #1–3, we chose them as {δ= 10−4, γ= 103}, {δ= 10−1, γ= 107}, and {δ= 10−1, γ= 5×103},
respectively. We ran the conjugate gradient method with 100 iterations, and initialized the 4D EP MBIR algorithms with
AT y rescaled in the interval [0, 1].

S.9.4 Reconstruction accuracy and depth estimation accuracy of different MBIR methods
Tables S.1–S.3 below provide reconstruction accuracy numerics of different MBIR methods in sparse-view CT reconstruction
and LF photography using a focal stack, and reports the SPO depth estimation [19] accuracy numerics on reconstructed
LFs from different MBIR methods:
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TABLE S.1
RMSE (HU) of different CT MBIR methods

(fan-beam geometry with 12.5% projections views and 105 incident photons)

(a) FBP (b) EP
reg.

(c) Learned convolutional
reg. [3], [6]

(d) Momentum-Net-
sCNN

(e) Momentum-Net-
sCNN w/ larger width

(f) Momentum-Net-
dCNN

Test #1 82.8 40.8 35.2 19.9 19.5 19.8
Test #2 74.9 38.5 34.5 18.4 17.7 17.8

(c)’s convolutional regularizer uses {R=K=72}
(d)’s refining sCNNs are in the form of residual single-hidden layer convolutional autoencoder (18) with {R=K=72}.
(e)’s refining sCNNs are in the form of residual single-hidden layer convolutional autoencoder (18) with {R= 72,K = 92}.
This setup gives results in Fig. 8(d), as described in §4.2.1.
(f)’s refining dCNNs are in the form of residual multi-hidden layer CNN (19) with {L=4, R=32,K=64}.

TABLE S.2
PSNR (dB) of different LF MBIR methods

(LF photography systems with C=5 detectors obtain a focal stack of LFs consisting of S=81 sub-aperture images)

(a) AT y (b) 4D EP reg. [18] (c) Momentum-Net-sCNN (d) Momentum-Net-dCNN
Test #1 16.4 32.0 35.8 37.1
Test #2 21.1 28.1 30.7 32.0
Test #3 21.6 28.1 30.9 31.7

(c)’s refining sCNNs are in the form of residual single-hidden layer convolutional autoencoder with {R=52,K=32}.
(d)’s refining dCNNs are in the form of residual multi-hidden layer CNN (19) with {L=6, R=32,K=16}.
Momentum-Nets use refining CNNs in an epipolar-domain; see details in §4.2.1.

TABLE S.3
RMSE (in 10−2, m) of estimated depth from reconstructed LFs with different LF MBIR methods

(LF photography systems with C=5 detectors obtain a focal stack of LFs consisting of S=81 sub-aperture images)

(a) Ground truth
LF

(b) Reconstructed LF
by AT y

(c) Reconstructed LF
by 4D EP reg. [18]

(d) Reconstructed LF
by Momentum-Net-sCNN

(e) Reconstructed LF
by Momentum-Net-dCNN

Test #1 4.7 41.0 13.8 8.0 5.7
Test #2 30.5 117.6 39.5 34.6 31.9
Test #3 n/a† n/a† n/a† n/a† n/a†

SPO depth estimation [19] was applied to reconstructed LFs.
(d)’s refining sCNNs are in the form of residual single-hidden layer convolutional autoencoder with {R=52,K=32}.
(e)’s refining dCNNs are in the form of residual multi-hidden layer CNN (19) with {L=6, R=32,K=16}.
Momentum-Nets use refining CNNs in an epipolar-domain; see details in §4.2.1.
†The ground truth depth map for Test sample #3 does not exist in the LF dataset [20].

S.9.5 Reconstructed images and estimated depths with noniterative analytical methods
This section provides reconstructed images by an analytical back-projection method in sparse-view CT reconstruction and
LF photography using a focal stack (see the first two columns in Fig. S.2), and estimated depths from reconstructed LFs via
the SPO depth estimation method [19] (see the third column in Fig. S.2(c)). Results in Fig. S.2 below are supplementary to
Fig. 8, Fig. 9, and Fig. 10, and the first two columns visualize initial input images to INN methods.

S.10 HOW TO CHOOSE PARAMETERS OF IMAGE REFINING MODULES IN SOFT-REFINING INNS?
In soft-refining INNs using iterative-wise refining NNs, one does not need to greatly increase parameter dimensions of
refining NNs [14], [21]. The natural question then arises, “How one can choose between sCNN (18) and dCNN (19) refiners,
and select their parameters (R, K , and L)?” The first answer to this question depends on some understanding of data-
fit f(x; y) in MBIR problem (P1), e.g., the regularization strength γ and the condition number variations across training
data-fit majorizers. (An additional criteria could be general understandings between sample size/diversity and parameter
dimension of NNs.)

For example, the sparse-view CT system in §4.1.1 needs moderate regularization strength (χ? = 167.64) and the
majorization matrices of its training data-fits have mild condition number variations (the standard deviation is 1.1). training
data-fits have mild parameter variations across samples. Comparing results between Momentum-Net-sCNN and -dCNN
in Fig. 5 and Table S.1 demonstrates that sCNN (18) seems suffice. Table S.1(d)–(e) shows that one can further improve the
refining accuracy of sCNN (18) by increasing its width, i.e., K . The LF photography system using a limited focal stack in
§4.1.2 needs a large γ value (χ?= 1.5), and the majorization matrices of its training data-fits have large condition number
variations (the standard deviation is 2245.5). Comparing results between Momentum-Net-sCNN and -dCNN in Fig. 7 and
Table S.2 demonstrates that dCNN (19) yields higher PSNR than sCNN (18). For dCNN (19), we observed increasing its
depth, i.e., L, up to a certain number is more effective than increasing its width, i.e., K , as briefly discussed in §4.2.1.
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Fig. 8: FBP

RMSE (HU)
= 82.8

RMSE (HU)
= 82.8

RMSE (HU)
= 74.9

RMSE (HU)
= 74.9

Fig. 9: Error maps of AT y

PSNR (dB) = 16.5 (16.4)

PSNR (dB) = 22.6 (21.1)

PSNR (dB) = 23.4 (21.6)

Fig. 10: Estimated depth
from LF recon. by AT y

RMSE (m) = 41.0×10−2

RMSE (m) = 117.6×10−2

n/a
Fig. S.2. Reconstructed images from analytical back-projection methods. We used such results in the first two columns to initialize INN methods.

For choosing the relaxation parameter ρ in (Alg.1.1), we also suggest considering the regularization strength in (Alg.1.3).
For an application that needs moderate regularization strength, e.g., sparse-view CT in §4.1.1, we suggest setting ρ to 0.5
so as to mix information between input and output of refining NNs, rather than 1− ε that does not mix input and output.
For an application that needs strong regularization, e.g., LF photography using a limited focal stack in §4.1.2, we suggest
using ρ=1− ε than ρ=0.5. Results in the next section validate this suggestion.

Performance of Momentum-Net with different relaxation parameters ρ in (Alg.1.1)
Fig. S.3 below compares the performances of Momentum-Net-sCNN with different ρ values. The results in Fig. S.3 support
the ρ selection guideline in §4.2.3. One can maximize the MBIR accuracy of Momentum-Net by properly selecting ρ.

Note that ρ ∈ (0, 1) controls strength of inference from refining NNs in (Alg.1.1), but does not affect the convergence
guarantee of Momentum-Net. Fig. S.3 illustrates that Momentum-Net appears to converge regardless of ρ values.

(a) Sparse-view CT (b) Light-field photography using focal stack

0 20 40 60 80 100
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U
)

(18) R = K = 49, ρ = 1− ǫ

(18) R = 49,K = 81, ρ = 1− ǫ

(18) R = K = 49, ρ = 0.5
(18) R = 49,K = 81, ρ = 0.5

0 20 40 60 80 100
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26

28

30

32
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N
R
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)

(18) R = 25,K = 32, ρ = 1− ǫ

(18) R = 25,K = 32, ρ = 0.5

Fig. S.3. Convergence behavior of Momentum-Net-sCNN with different relaxation parameters, ρ = 0.5 and ρ = 1 − ε. For both applications (see
their imaging setups in §4.1), PyTorch ver. 0.3.1 was used.
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S.11 PARAMETERS OF MOMENTUM-NET

Table S.4 below lists parameters of Momentum-Net, and summarizes selection guidelines or default values. Similar to BCD-
Net/ADMM-Net, the main tuning jobs to maximize the performance of Momentum-Net include selecting architectures of
refining NNs {Rθ(i) :∀i} in (Alg.1.1), and choosing a regularization parameter γ in (Alg.1.3) by tuning χ in §3.2. One can
simplify the tuning process by using the selection guidelines in §S.10 for selecting architectures of {Rθ(i) :∀i}, and training
χ in §3.2. Note that one designs majorization matrices {M (i) : ∀i} rather than tuning them: majorization matrices can be
analytically designed, e.g., Lemma S.7 as used in §4.2.1; one can algorithmically design them [22]. Tighter majorization
matrices are expected to further accelerate the convergence of Momentum-Net [2], [3].

TABLE S.4
Guidelines for choosing parameters of Momentum-Net

Param. Module Guidelines or default values

{Rθ(i) :∀i} (Alg.1.1)
Trainable by §3.1. For selecting their
architecture/param., see guideline
§S.10.

ρ ∈ (0, 1) (Alg.1.1) Use regularization strength γ; see
guideline in §S.10.

δ < 1 in
(8)–(9) (Alg.1.2) 1−ε

{M(i) :∀i} (Alg.1.3)
Designed off-line. For large-scale
inverse problems with quadratic
data-fit, use Lemma S.7.

λ ≥ 1 in (7) (Alg.1.3) For convex F (x; y, z(i+1)), λ=1;
for nonconvex F (x; y, z(i+1)), λ=1+ε.

γ>0 (Alg.1.3) Chosen by tuning/training χ in §3.2

All INN methods also must select a number of INN iterations,Niter. One could determine it by using the convergence behavior
of iteration-wise refiners in Fig. 2.
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