
S1. Supplementary Materials

S1.1. Empirical Mode Decomposition

An important consideration when using measures of PS is to appropriately 
narrow-bandpass filter the data before applying the Hilbert transform. An 
alternative approach is to instead use empirical mode decomposition (EMD)
(Huang, 2014). Here one decomposes the time series into a sum of oscillatory 
modes, referred to as intrinsic mode functions (IMF), that correspond to 
different frequency contents in the time series. EMD provides a data-driven 
signal decomposition that does not require an a priori defined basis system. 
The first IMF consists of the largest frequency oscillation present in the signal, 
and each subsequent IMF consists of increasingly lower frequency oscillations 
than those previously extracted.

The approach has recently found widespread usage in neuroimaging. For 
example, in an application to EEG data, Mutlu and Aviyente (2011) proposed 
using EMD to obtain a more robust representation of the time-varying phase 
synchronization across frequencies. Similarly, in applications to fMRI data 
Zhou et al. (2020) used EMD to predict and perform classification of sleep 
quality based on phase synchronization measured during resting state fMRI, 
while Goldhacker et al. (2018) used EMD followed by filter-bank to study 
frequency-resolved dynamic functional connectivity.

As we are primarily interested in bivariate measures of PS, we focus our 
attention on bivariate EMD (BEMD) (Rilling et al., 2007). Here EMD is 
performed jointly on the bivariate signal to ensure that the frequencies of the 
IMFs are matched to both signals. For simplicity, the bivariate signal is 
treated as a complex valued signal. In general, given a set of directions ϕk = 
kπ for k = 1, 2, the BEMD is performed as outlined in Algorithm 1.

We repeated Simulations 1-3 described in Section 2.3 using the BEMD-based 
phase synchronization of the generated signals. Results are shown in Figures 
S1 - S3 and described in the Sections 3.1 - 3.3.
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Algorithm 1 Bivariate Empirical Mode Decomposition
1: procedure BEMD(x(t), stoppage criteria, number of IMFs) .
x(t) is the input signal

2: x̃(t)← x(t)
3: for 1 ≤ k ≤ N do
4: Project the complex-valued signal x(t) on direction ϕk:
5: pϕk

(t) = IRe
(
e−iϕkx(t)

)

6: Extract the maxima of pϕk
(t) : {tkj , pkj }

7: Interpolate the set {(tkj , pkj )} to obtain the ”tangent“ in direction
8: ϕk : e

′
ϕk

(t)
9: end for

10: Compute the mean of all tangents: m(t) = 2
N

∑
k

e
′
ϕk

(t)

11: d(t)← x̃(t)−m(t)
12: x̃(t)← d(t) go to line 3; repeat until d(t) becomes an IMF .

Stoppage Criteria
13: repeat lines 2:7 until desired number of IMFs obtained

Figure S1: Results of Simulation 1 using BEMD-based PS. The bold line indicates the
average estimated value, while the shaded area represents the 95% confidence interval.
Results are shown for: (a) PLV using a sliding window; (b) circular-circular correlation
using a sliding window; (c) toroidal correlation using a sliding window; (d) phase coherence;
and (e) CRP. The sliding window techniques are evaluated at three different window
lengths.
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Figure S2: Results of Simulation 2 using BEMD-based PS. The bold line indicates the
average estimated value, while the shaded area represents the 95% confidence interval. (a)
The ground truth phase shift between the two signals as a function of time. Results are
shown for: (b) PLV using a sliding window; (c) circular-circular correlation using a sliding
window; (d) toroidal correlation using a sliding window; (e) phase coherence; and (f) CRP.
The sliding window techniques are evaluated at three different window lengths.
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Figure S3: Results of Simulation 3 using BEMD-based PS. The bold line indicates the
average estimated value, while the shaded area represents the 95% confidence interval. (a)
The ground truth phase shift between the two signals as a function of time. Results are
shown for: (b) PLV using a sliding window; (c) circular-circular correlation using a sliding
window; (d) toroidal correlation using a sliding window; (e) phase coherence; and (f) CRP.
The sliding window techniques are evaluated at three different window lengths.
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S1.2. Extended simulation results

In this section, we present quantitative values for the bias and variance of 
the various PS measures estimated from Simulations 1 - 3. These values are 
provided as a supplement to Figures 3 - 8. To compute the bias, we calculated 
‘ground truth’ values for the various methods based on the ground truth 
phase difference ∆ Φg(t) computed at each time point. For circular-circular 
correlation, toroidal correlation, and CRP we used the value cos(∆Φg(t)) as

the ground truth. For PLV and PC, we used 1 − |sin(∆Φg(t))| as the ground 
truth. For Simulation 1 we do not have measures of the bias for PLV and PC,

as the appropriate null value is somewhat ambiguous. The values reported 
in Tables S1 - S3 are averages over time and repetitions of the simulation
for each method. In the case of the bias, it is the average of the absolute 
value of the bias at each time point. To compute variances we estimated 
the variation in the repetitions around its mean value, and averaged across 
time.

No band-pass filtering
PS Measure Bias Variance

Sim 1 Sim 2 Sim 3 Sim 1 Sim 2 Sim 3
PLV, w = 30 - 04550 0.2283 0.0115 0.0185 0.0186
PLV, w = 60 - 0.4801 0.2116 0.0060 0.0095 0.0106
PLV, w= 120 - 0.5015 0.2021 0.0029 0.0049 0.0056

PC - 0.4361 0.2325 0.0945 0.0953 0.0945
CIRC, w= 30 0.0138 0.7837 0.6313 0.0346 0.0795 0.0849
CIRC, w=60 0.0063 0.8168 0.6116 0.0172 0.0460 0.0608

CIRC, w = 120 0.0052 0.8068 0.5475 0.0084 0.0303 0.0344
TORC, w = 30 0.0249 0.7680 0.6236 0.0027 0.0061 0.0066
TORC, w =60 0.0128 0.7925 0.5997 0.0007 0.0018 0.0023
TORC, w = 120 0.0064 0.7828 0.5353 0.0002 0.0006 0.0006

CRP 0.0177 0.5651 0.4671 0.4998 0.4380 0.4502

Table S1: The average bias and variance for each measure evaluated for each of the three
simulations in the case where no band-pass filtering was performed.

Note we have separated the methods based on their range, as it is difficult to 
directly compare the bias and variance values across metrics that take 
different values and seek to measure different quantities. Generally, the bias
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Band-pass filtering
PS Measure Bias Variance

Sim 1 Sim 2 Sim 3 Sim 1 Sim 2 Sim 3
PLV, w = 30 - 0.2651 0.5408 0.0511 0.0208 0.0132
PLV, w = 60 - 0.2065 0.5149 0.0310 0.0162 0.0129
PLV, w= 120 - 0.2540 0.4380 0.0173 0.0081 0.0129

PC - 0.2732 0.1118 0.0950 0.0723 0.0738
CIRC, w= 30 0.0843 0.4612 0.5187 0.1546 0.1472 0.0517
CIRC, w=60 0.0261 0.4529 0.3371 0.0809 0.0677 0.1082

CIRC, w = 120 0.0076 0.5895 0.3113 0.0414 0.0727 0.1913
TORC, w = 30 0.2563 0.5437 0.5858 0.0260 0.0328 0.0313
TORC, w =60 0.1295 0.5613 0.5581 0.0088 0.0132 0.0208
TORC, w = 120 0.0652 0.5975 0.5123 0.0026 0.0053 0.0084

CRP 0.0177 0.1487 0.1181 0.5060 0.1127 0.1503

Table S2: The average bias and variance for each measure evaluated for each of the three
simulations in the case where band-pass filtering was performed.

EMD
PS Measure Bias Variance

Sim 1 Sim 2 Sim 3 Sim 1 Sim 2 Sim 3
PLV, w = 30 - 0.2840 0.4758 0.0573 0.0386 0.0329
PLV, w = 60 - 0.2509 0.4425 0.0367 0.0293 0.0289
PLV, w= 120 - 0.2934 0.3949 0.0205 0.0178 0.0209

PC - 0.3242 0.1444 0.0949 0.0860 0.0840
CIRC, w= 30 0.1273 0.5491 0.5299 0.1818 0.2853 0.3111
CIRC, w=60 0.0486 0.6800 0.4975 0.0970 0.1832 0.2927

CIRC, w = 120 0.0175 0.7509 0.5127 0.0504 0.1408 0.1630
TORC, w = 30 0.2959 0.5761 0.5799 0.0349 0.0378 0.0397
TORC, w =60 0.1510 0.6100 0.5591 0.0125 0.0189 0.0266
TORC, w = 120 0.0765 0.6397 0.5158 0.0036 0.0087 0.0100

CRP 0.0128 0.2553 0.2054 0.4956 0.2258 0.2391

Table S3: The average bias and variance for each measure evaluated for each of the three
simulations in the case where EMD filtering was performed.

and the variance is lower for methods that take values in the range [0, 1], 
compared with those that take values in the range [−1, 1].

51



Studying the Tables, a few things standout. First, for each WPS method as the 
window length increases, the variance decreases. This is reasonable as 
additional data is used to calculate the metric of interest. Of the three WPS 
methods, TORC shows the lowest variance followed by PLV and CIRC. Again, 
note that PLV is measured on a different range than the other two measures 
which can complicate direct comparisons. Second, CRP reports consistently 
higher variance than the other methods (perhaps with the exception of CIRC). 
However, the bias is lower and it is clear from the figures that CRP is able to 
handle PS transitions better than any of the other methods. Hence, there is a 
bias-variance trade-off taking place which should be considered when 
choosing an appropriate measure. Finally, we found that when using the EMD-
based phase synchronization approach, the results are consistent with those 
obtained using band-pass filtering. However, we found that the variance of the 
estimates obtained using the EMD-based phase synchronization framework is 
higher for the same level of noise.
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S1.3. Re-analysis of Kirby data using different band-pass filters

We re-analyzed the Kirby data using a wider cutoff frequency band [0.01, 0.1] Hz 
as well as a number of different frequency bands [0.01, 0.05] Hz, [0.05, 0.1] Hz, 
and [0.1, 0.15] Hz respectively.

Figure S4 illustrates that using a wider frequency band ([0.01, 0.1] Hz) pro-
vides similar results to those shown in Figure 9, where a more narrow band 
([0.03, 0.7] Hz) was used. While, the values in the estimated brain states are 
slightly lower, the overall structure is maintained. This is consistent with the 
results observed in the simulations performed without band-pass filtering. This 
behavior is particularly apparent for the WPS measures.

Figures S5 - S7 compare the results obtained using three different frequency 
bands: [0.01, 0.05] Hz, [0.05, 0.1] Hz, and [0.1, 0.15] Hz. In general, all bands 
appear to provide similar brain state estimates. Focusing on the results 
obtained for the band [0.05, 0.1] Hz, CRP yielded slightly lower estimates 
compared to those obtained using [0.01, 0.05] Hz and [0.03, 0.07] Hz. Using 
the band [0.1, 0.15] Hz yielded even lower estimates. Here the brain states 
estimated using CRP, took values closer to those obtained with PW-CSW.
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Figure S4: Re-analysis of the Kirby data using a wider cutoff frequency band [0.01, 0.1]Hz.
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Figure S5: Analysis of the PS measures on Kirby21 Data using the cutoff frequency band
[0.01, 0.05]Hz
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Figure S6: Analysis of the PS measures on Kirby21 Data using a wider cutoff frequency
band [0.05, 0.1]Hz
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Figure S7: Analysis of the PS measures on Kirby21 Data using a wider cutoff frequency
band [0.1, 0.15]Hz
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S1.4. Application to HCP data

We repeated our analysis using rs-fMRI data from the 900-subject public data 
release from the Human Connectome Project (HCP) (Van Essen et al., 2013). 
For each subject, four 15 minute fMRI scans with a temporal resolution of 
0.73 seconds and a spatial resolution of 2-mm isotropic were available. We 
used the preprocessed and artifact-removed rs-fMRI data provided through 
the HCP900-PTN data release. This data has been extensively described in 
multiple other publications, so we only briefly discuss it below.

The preprocessing pipeline followed the procedure outlined in Smith et al.
(Smith et al., 2013). Spatial preprocessing was applied using the procedure 
described by Glasser et al. (2013). ICA, followed by FMRIBs ICA-based X-
noisefier (FIX) from the FMRIB Software Library (FSL) (Griffanti et al., 
2014), was used for structured artifact removal, removing more than 99 
percent of the artifactual ICA components in the dataset. Group spatial ICA 
was then used to obtain a parcellation of 50 components that cover both the 
cortical surfaces and the subcortical areas. Global signal regression was not 
employed. The parcellation was used to project the fMRI data into 50 time 
series.

Following the same analysis pipeline as described in Section 2.4.3 we analyzed 
a single run consisting of 1200 time points for 50 subjects. We computed 
PS measures and used k-means clustering to estimate recurring brain states 
across subjects. Using the Davies-Bouldin Index we chose the number of 
centroids to represent four distinct brain states. Results are shown in Figure 
S8 below and described in the Results section.
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Figure S8: Comparison of the various phase syncrhonization measures on 50 subjects from
HCP data
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