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Supplementary Methods 1: Analysis of changes in the components of NBP variance 
 
In Figure 1, pairs of simulations (CTL and ExpA) are used to investigate changes in the variance of NBP 
using its decomposition into carbon uptake and release (NBP = GPP-ReD). As the correlation between 
GPP and ReD is generally different from zero, the variance (σ") of NBP corresponds the sum of the 
variance-covariance matrix of these two components: 
 
 σ" NBP = σ" 𝐺𝑃𝑃 + σ" 𝑅𝑒𝐷 + 2σ 𝐺𝑃𝑃, 𝑅𝑒𝐷  Eq. S1	
 
When evaluating the impact of changes in individual components on the NBP variance, two types of 
changes should be distinguished. On the one hand, there can be a change in the variance of an individual 
component, which will automatically impact the covariance between this component and all the other 
components. On the other hand, and independently of changes in the variance of a component, a change 
in the correlation between two components can impact the covariance between these components. These 
two different effects are identified as follows. 
 
First, changes in the variance of each individual component are assessed, for instance: 
 
	 Δσ" GPP = σ" GPP2345 − σ" GPP789 	 Eq.	S2	
	
	 Δσ" ReD = σ" ReD2345 − σ" ReD789 	 Eq.	S3	
 
Then, we calculate the covariance which would be expected in experiment ExpA if the correlation (r) 
between the components was the same in ExpA as it is in the CTL experiment: 
 

σB34BCDBE GPP2345, ReD2345 = r GPP789, ReD789 ∙ σ"(GPP2345) ∙ σ"(ReD2345)	

	 	
	 	 Eq.	S4	
 
The impact of any change in the correlation between components on the covariance is calculated as the 
difference between the actual covariance in ExpA and the covariance expected in ExpA. 
	

∆	2σ GPP, ReD = 2σ GPP2345, ReD2345 − 2σB34BCDBE GPP2345, ReD2345 	
	 	
	 	 Eq.	S5	
 
Equations S2, S3 and S5 indicate how the contributions illustrated inside the bars of Figure 1c are 
estimated. 
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Supplementary Methods 2: Estimation of NBPT&VPD LAC and NBPT&VPD NonLAC variances 
 
In Figure 3, we separate the temperature and VPD–driven NBP variance 𝜎" 𝑁𝐵𝑃PQRQ&TUV , into a LAC-
dependent contribution 𝜎" 𝑁𝐵𝑃PQRQ&TUV	RWP  corresponding to indirect (feedback) soil moisture effects, 
and a non LAC-dependent contribution 𝜎" 𝑁𝐵𝑃PQRQ&TUV	XYZRWP  at the local (grid-cell) scale. These two 
contributions (LAC and NonLAC) are estimated as follows. 
 
In the control experiment (CTL), NBPT&VPD includes both of these two contributions (i.e. the LAC and 
non-LAC dependent contributions). By definition, the overall NBPT&VPD variance in the CTL 
experiment is the sum of the variance of each of the two contributions and the covariance between them: 
 
σ" NBP7898&TUV = σ" NBP7898&TUV	957 + σ" NBP7898&TUV	[\]957 + 2	σ NBP7898&TUV	957, NBP7898&TUV	[\]957  
 
  Eq. S6 
 
The left term 𝜎" 𝑁𝐵𝑃PQRQ&TUV  can be computed directly (Eq. 1-2 in the main Methods section). The term 
𝜎" 𝑁𝐵𝑃PQRQ&TUV	XYZRWP  corresponds to the part of the variance in NBPT&VPD which is independent of 
LAC. It can be estimated from the NBPT&VPD that still persists in ExpA: 
 
 σ" 𝑁𝐵𝑃PQRQ&TUV	XYZRWP ≈ σ" 𝑁𝐵𝑃_`aWQ&TUV  Eq. S7	
 
Note that 𝑁𝐵𝑃_`aWQ&TUV is obtained by fitting Eq. 1 (main Methods section) to the ExpA simulation, thus 
potential changes in the sensitivities (𝛽c,dQ  or 𝛽c,dTUV) between CTL and ExpA are also accounted for. 
 
Rearranging Eq. S6 with Eq. S7 and solving for σ" NBP7898&efg	957  yields: 
 
σ" NBP7898&efg	957 = σ" NBP7898&efg − σ" NBP23458&efg	 − 2	σ NBP7898&efg	957, NBP7898&efg	[\]957  

 
  Eq. S8 
 
The remaining unknown in Eq. S8 is the covariance term 𝜎 𝑁𝐵𝑃PQRQ&TUV	RWP, 𝑁𝐵𝑃PQRQ&TUV	XYZRWP . With 
Eq. S7, this term can be written as: 
 

σ NBP7898&TUV	957, NBP7898&TUV	[\]957

= 	r NBP7898&TUV	957, NBP7898&TUV	[\]957 ∙ σ"(NBP7898&TUV	957) ∙ σ"(NBP23458&TUV	)	

	
	 	 Eq.	S9	
 
Where the only remaining unknown (beyond σ" NBP7898&efg	957 ) is the correlation between the LAC-
dependent and the non LAC-dependent contributions. This correlation is constrained by the following 
inequality: 
 
 −1	 ≤ r NBP7898&TUV	957, NBP7898&TUV	[\]957 ≤ 1	 Eq.	S10	
 
Thus, while it is not possible to estimate 𝜎 𝑁𝐵𝑃PQRQ&TUV	RWP, 𝑁𝐵𝑃PQRQ&TUV	XYZRWP 	exactly, a range of 
possible values can be estimated, thus also giving a range of possible values for σ" NBP7898&TUV	957 . 
 
The smallest (and most conservative) σ" NBP7898&TUV	957  occurs if the correlation between LAC-
dependent and non LAC-dependent effects is exactly 1. In this hypothetical case, the ecosystem 
sensitivity to a given change in temperature (or VPD) is assumed to be the same whether that change in 
temperature was itself dependent on LAC or not, and the effect of LAC on T and VPD anomalies is 
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assumed to be positive and linear. In Figure 3, we estimate σ" NBP7898&TUV	957  with this conservative 
assumption that r NBP7898&TUV	957, NBP7898&TUV	[\]957  is equal to 1. Assuming a lower correlation would 
cause σ" NBP7898&TUV	957  to become even larger relative to σ" NBP7898&TUV	[\]957 , however, the 
impact on the overall results is limited (see Supplementary Fig. 16, which reproduces Figure 3b and 
Extended Data Fig. 7 but assumes a correlation of 0 between LAC-dependent and non LAC-dependent 
effects). 
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Supplementary Table 1. Change in global mean NBP inter-annual variability between the CTL and 
ExpA experiments and attribution to changes in GPP and ReD variability. The two leftmost columns 
have units of PgC yr-1. Values are computed from annual means (n=46 years). 
 

 Var(NBPCTL) Var(NBPExpA) Reduction Contr. of 
∆GPP Var 

Contr. of 
∆ReD Var 

Contr. of 
∆r(GPP,ReD) 

CCSM4 0.75 0.08 89.8% 59.4% 30.4% 10.2% 
ECHAM6 2.42 0.17 92.9% 74.5% 18.2% 7.3% 

GFDL 7.63 0.86 88.7% 83.0% 16.3% 0.7% 
IPSL 2.09 0.14 93.4% N/A N/A N/A 

Mean 
 

3.22 0.31 91.2% 
(2.3%) 

72.3% 
(12%) 

21.6% 
(7.7%) 

6.0% 
(4.8%) 

 
 
Supplementary Table 2. Relative contribution to global mean inter-annual NBP*

CTL variance, by 
meteorological driver. Values are computed from annual means (n=46 years). 
 

 Var(NBPSM) Var(NBPT&VPD LAC) Var(NBPT&VPD NonLAC) Var(NBPR) 
CCSM4 34.4% 40.0% 9.8% 17.8% 

ECHAM6 17.8% 60.5% 8.3% 13.4% 
GFDL 1.4% 82.1% 9.1% 7.4% 

IPSL 24.9% 58.8% 9.9% 6.4% 
Mean 
(SD) 

19.6% 
(13.9%) 

59.9% 
(18.0%) 

9.3% 
(0.7%) 

11.2% 
(5.3) 

 
 
Supplementary Table 3. Net effect of suppressing direct and indirect SM effects on inter-annual 
NBP*

CTL variance (taking into account the covariance between the components). This agrees with the 
raw model outputs (third column in Supplementary Table 1), even though the sensitivity analysis can 
slightly under- or overestimate the magnitude of the reduction. Values are computed from annual 
means (n=46 years). 
 

 Var(NBP*
CTL) Var(NBPT&VPD NonLAC+NBPR) Reduction 

CCSM4 0.30 0.03 88.7% 
ECHAM6 2.20 0.14 93.6% 

GFDL 12.22 0.92 92.5% 
IPSL 2.69 0.11 95.8% 
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Supplementary Table 4. Data availability of carbon flux variables within GLACE-CMIP5. If some 
variables that were not saved can be calculated from other variables, this is indicated in parentheses. 
NBP, net biome production; GPP, gross primary production; NPP, net primary production; RA, 
autotrophic respiration; RH, heterotrophic respiration; Re, autotrophic and heterotrophic respiration; 
D, disturbances (fire and land use change if applicable); NEE, net ecosystem exchange; ReD, sum of 
Re and D. 
 

  CCSM4 ECHAM6 GFDL IPSL 
CTL NBP yes yes yes yes 

GPP yes yes yes no 
NPP yes yes no no 
RA yes no (GPP-NPP) yes yes 
RH yes yes no yes 
Re no (RA+RH) no (RA+RH) no no 
D no (NEE-NBP) no (NEE-NBP) no no 
NEE no (GPP-Re) no (GPP-Re) no no 
ReD no (GPP-NBP) no (GPP-NBP) no (GPP-NBP) no 

ExpA NBP yes yes yes yes 
GPP yes yes yes no 
NPP no (GPP-RA) yes no no 
RA yes no (GPP-NPP) yes no 
RH yes yes no no 
Re no (RA+RH) no (RA+RH) no no 
D no (NEE-NBP) no (NEE-NBP) no no (NEE-NBP) 
NEE no (GPP-Re) no (GPP-Re) no yes 
ReD no (GPP-NBP) no (GPP-NBP) no (GPP-NBP) no 
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Supplementary Figure 1. Evaluation of the statistical sensitivity analysis (see Methods) for the control 
experiment (CTL). Each row depicts time series of the original global mean NBP (NBPCTL) and the 
result of the global mean NBP (NBP*CTL) from the local month-wise regression (Eq. 1) against the 
main climatic drivers, at monthly resolution. The scatter plots depict the agreement between both time 
series (n=552 months). 
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Supplementary Figure 2. Evaluation of the statistical sensitivity analysis (see Methods) for the 
experiment with no soil moisture inter-annual variability (ExpA). Each row depicts time series of the 
original global mean NBP (NBPExpA) and the result of the global mean NBP (NBP*ExpA) from the local 
month-wise regression (Eq. 1) against the main climatic drivers, at monthly resolution. The scatter 
plots depict the agreement between both time series (n=552 months). 
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Supplementary Figure 3. Evaluation of the sensitivity analysis approach (see Methods) for both CTL 
and ExpA at the regional scale. a-b) Correlation between NBP and NBP* for the CTL and ExpA 
simulations. c,e) Standard deviation (SD) of NBP and NBP* for the CTL simulation. d,f) Standard 
deviation of NBP and NBP* for the ExpA simulation. The median of the models is shown. 
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Supplementary Figure 4. Evaluation of the ability of the statistical sensitivity analysis (see Methods) 
to reproduce the difference in standard deviation (SD) between the CTL and the ExpA simulations. 
Left: Difference based on the raw climate model simulations. Right: Difference estimated from the 
sensitivity analysis (NBP*). Each row corresponds to one of the four climate models employed in the 
study. 
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Supplementary Figure 5. a) Same Extended Data Fig. 7 but using another formulation for the 
sensitivity analysis (NBP = NBPSM+NBPT+NBPR), which neglects VPD. This formulation is directly 
comparable to Jung et al.2 and (b) reproduces their findings. For a discussion of the different 
formulations, refer to the Methods section “Sensitivity analysis”.  
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Supplementary Figure 6. (a-d) NBP IAV (de-trended) as simulated by models in the control 
experiment. (e) NBP IAV (de-trended) as estimated from the FLUXCOM RS+METEO (GSWP3 
forcing) dataset, which is a machine-learning-based upscaling of flux tower observations (period 
1980-2010). (f) Biospheric fluxes estimated from the CAMS v18r3 atmospheric CO2 inversion (period 
2000-2018). (g) Spatial pattern correlation between the different data sources shown in (a-f). (h) 
global NBP IAV (de-trended) as estimated by the different products, as well as by the TRENDY 
dynamic global vegetation models (DGVMs) used in the Global Carbon Budget 2019. The error bar 
for the TRENDY models indicate the minimum and maximum value among the different DGVMS. 
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Supplementary Figure 7. Seasonal cycles of global mean NBP, GPP and ReD simulated by the four 
climate models used in this study. The GPP and ReD outputs are not available for the IPSL model (see 
Supplementary Table 4). Positive values indicate a flux from the atmosphere to the land (uptake). 
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Supplementary Figure 8. Global mean IAV of NBP, SM, T, VPD and radiation, as simulated by the 
four climate models used in this study. The CTL time series (black) is the reference run, the ExpA time 
series (blue) is the simulation with prescribed seasonal soil moisture (suppressed soil moisture 
variability). The bottom row shows the standard deviation of these time series. 
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Supplementary Figure 9. (a-d) Soil moisture IAV as simulated by models in the control experiment. (e) 
Soil moisture IAV as estimated from ERA5-Land, which is a land surface model forced with bias-
corrected historical weather data. (f) Soil moisture IAV as estimated by the ESA CCI v4.5 combined 
satellite product, which measures shallow soil moisture (top 5 to 10 cm). (g) Spatial pattern 
correlation between the different data sources shown in (a-f). (h) global soil moisture IAV (and 
terrestrial water storage, from the GRACE JPL mascons satellite data), as estimated by different 
datasets. 
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Supplementary Figure 10. (a-d) Temperature IAV as simulated by models in the control experiment. 
(e) Temperature IAV as estimated from ERA5, which is an atmospheric reanalysis. (f) Temperature 
IAV as estimated from the CRU dataset, which is based on in-situ weather station measurements. (g) 
Spatial pattern correlation between the different data sources shown in (a-f). (h) global temperature 
standard deviation as estimated by the different datasets (de-trended data). 
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Supplementary Figure 11. (a-d) VPD IAV as simulated by models in the control experiment. (e) VPD 
IAV as estimated from ERA5, which is an atmospheric reanalysis. (f) VPD IAV as estimated from the 
CRU dataset, which is based on in-situ weather station measurements. As CRU VPD is computed from 
monthly means of temperature and humidity (instead of daily means), it should be expected to exhibit 
a lower amount of variability overall. (g) Spatial pattern correlation between the different data 
sources shown in (a-f). (h) global SM (or TWS) IAV as estimated by the different datasets. 
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Supplementary Figure 12. (a-d) Annual GPP as simulated by models in the control experiment (not 
available for IPSL). (e) Annual GPP as estimated from FLUXCOM RS+METEO (GSWP3 forcing) 
dataset, which is a machine-learning-based upscaling of flux tower observations. (f) Annual GPP as 
estimated from the VPM GPP v20 dataset, which is based on satellite observations. (g) Spatial pattern 
correlation between the different data sources shown in (a-f). (h) global mean GPP as estimated by 
the different datasets. 
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Supplementary Figure 13. Evaluation of the statistical sensitivity analysis (see Methods) when applied 
to observational datasets. a,c) depicts time series of the original global mean NBP and the result of 
the global mean NBP of the grid-scale month-wise regression (NBP*) (Eq. 1) against the main 
climatic drivers. The scatter plots (b,d) depict the agreement between these two time series. e-f) show 
the correlation between NBP and NBP* 
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Supplementary Figure 14. Same as Extended Data Fig. 7 but using a different formulation for the 
sensitivity analysis (NBP = NBPSM+NBPT+ NBPT·SM+NBPR, where T·SM represents an interaction 
term between T and SM). 
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Supplementary Figure 15. Same as Extended Data Fig. 7 but using a different formulation for the 
sensitivity analysis (NBP = NBPSM+NBPT+ NBPRH+NBPR, where RH indicates relative air humidity). 
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Supplementary Figure 16. Same as Extended Data Fig. 7, but assuming a correlation of zero between 
NBP7898&efg	957 and NBP7898&efg	[\]957 (see Methods) when decomposing NBP7898&efg. 
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