Supplementary Information

In vivo activation of pH-responsive oxidase-like graphitic nanozymes for selective killing of *Helicobacter pylori*

Lufeng Zhang¹, Liang Zhang¹, Hui Deng¹, Huan Li², Wentao Tang¹, Luyao Guan¹, Ye Qiu¹, Michael J Donovan¹, Zhuo Chen¹* & Weihong Tan^{1,3}

¹Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha, 410082, China

²Department of Gastroenterology, the Third Xiangya Hospital of Central South University, Changsha, 410013, China

³The Cancer Hospital of the University of Chinese Academy of Sciences, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China These authors contributed equally: Lufeng Zhang, Liang Zhang.

*E-mail: zhuochen@hnu.edu.cn

Supplementary Figures

Supplementary Figure 1. TEM image of PtCo@G.

Supplementary Figure 2. UV-Vis absorbance of PtCo@G solution. Source data are provided as a

Source Data file.

Supplementary Figure 3. The characterization of PtCo@G. (a) Hydrodynamic diameter and (b)

Zeta potential of PtCo@G characterized by dynamic light scattering. Source data are provided as a Source Data file.

Supplementary Figure 4. Hydrodynamic diameter of PtCo@G in H₂O, PBS (pH 1.0), and SGF

after 12 h incubation. Source data are provided as a Source Data file.

Supplementary Figure 5. The dissolution experiments of PtCo@G. Profiles for (a) Co²⁺ and (b)

Pt²⁺ release from PtCo@G nanocrystals in H₂O, PBS (pH 1.0) and SGF. The data indicate the means and SD from three parallel experiments. Source data are provided as a Source Data file.

Supplementary Figure 6. Time-dependent absorbance spectra of TMB catalyzed by PtCo@G.

Source data are provided as a Source Data file.

Supplementary Figure 7. The oxidase-like activity of PtCo@G is dependent on pH and temperature. The data indicate the means and SD from three parallel experiments. Source data are provided as a Source Data file.

Supplementary Figure 8. Peroxidase-like activity of PtCo@G nanocrystals. (a) The UV-Vis absorbance spectra and visual color changes of TMB in different reaction systems: (1) PtCo@G, (2) TMB, (3) TMB+H₂O₂, (4) PtCo@G+TMB, and (5) PtCo@G+TMB+H₂O₂ in a pH 4.0 PBS buffer after 10 min incubation. (b) PtCo@G catalyzes oxidation of various peroxidase substrates in the presence of H₂O₂ to produce different color reactions. (1) TMB, (2) ABTS, (3) OPD. Insert images show corresponding visual color changes. (c) Time-dependent absorbance spectra of TMB catalyzed by PtCo@G in the presence of H₂O₂. Data are presented as means \pm standard deviation (s.d.). Error bars were based on s.d. of three independent experiments. Source data are provided as a Source Data file.

Supplementary Figure 9. Peroxidase-like activity of PtCo@G nanocrystals. (a) and (b) show that the peroxidase-like activity of PtCo@G is dependent on pH and temperature. Data are presented as means \pm s.d. Error bars were taken from three independent experiments. Source data are provided as a Source Data file.

Supplementary Figure 10. The catalytic oxidation of TMB by PtCo@G at strong acidic pH condition. (a) Oxidase-like activity of the PtCo@G nanocrystals in PBS (pH 1.0) buffer: (1) PtCo@G, (2) TMB, (3) PtCo@G+TMB. Insert images show corresponding visual color changes. (b) The schematic illustration for catalytic oxidation process of TMB by PtCo@G. At weak acidic pH condition, TMB could be oxidized by the oxidase-like PtCo@G to produce blue colored charge transfer complexes. However, the oxidation of TMB in strong acidic pH yielded yellow di-imine products. Source data are provided as a Source Data file.

Supplementary Figure 11. The characterization of the superoxide radical (O_2^{\bullet}) generation during the oxidase-like activity of PtCo@G nanocrystals. (a) Fluorescence spectra of hydroethidine (HE) in different reaction systems: (1) PtCo@G+HE, (2) HE, (Excitation: 370 nm) (3) PtCo@G+HE, (4) HE, (5) PtCo@G (Excitation: 535 nm) in pH 1.0 PBS buffer after 30 min incubation. Insert shows the reaction of HE as a fluorescence probe for trapping the superoxide radical (O_2^{\bullet}). (b) Fluorescence spectra of hydroethidine (HE) before and after the addition of PtCo@G nanocrystals. (c) Histograms of FL intensity show the fluorescence product ethidium catalyzed by PtCo@G nanocrystals. *P* values were calculated by the Student's two-sided *t* test: *****p < 0.0001. Data are presented as means \pm s.d. Error bars were taken from three independent experiments. Source data are provided as a Source Data file.

Supplementary Figure 12. The characterization of the hydroxyl radical (•OH) generation during the peroxidase-like activity of PtCo@G nanocrystals. (a) The reaction between terephthalic acid (TA) and hydroxyl radical (•OH). The fluorescence product is 2-hydroxy terephthalic acid (TAOH). (b) Fluorescence spectra of the PBS (pH 1.0) solution include only TA; TA and PtCo@G; TA and H₂O₂; TA, PtCo@G and H₂O₂. (c) Histograms of Δ FL intensity show the fluorescence product, 2-hydroxy terephthalic acid (TAOH) catalyzed by PtCo@G nanocrystals. *P* values were calculated by the Student's two-sided *t* test: *****p* < 0.0001. Data are presented as means ± s.d. Error bars were taken from three independent experiments. Source data are provided as a Source Data file.

Supplementary Figure 13. The characterization of the hydroxyl radical (•OH) generation during the peroxidase-like activity of PtCo@G nanocrystals. (a) The reaction of DEPMPO trapping hydroxyl radical (•OH). (b) EPR spectra of DEPMPO-OH obtained by trapping •OH with the spin-trap agent DEPMPO in different reaction systems: (1) $Fe^{2+}+H_2O_2$, (2) $Fe^{2+}+H_2O_2+DEPMPO$, (3) PtCo@G+H₂O₂, (4) PtCo@G+H₂O₂+DEPMPO in pH 1.0 PBS buffer. Source data are provided as a Source Data file.

Supplementary Figure 14. ¹H-NMR characterization of C₁₈-PEGn-Benzeneboronic acid (CPB)

with MQ 400 MHz. Source data are provided as a Source Data file.

Supplementary Figure 15. Raman spectra characterization of CPB functionalized PtCo@G.

Source data are provided as a Source Data file.

Supplementary Figure 16. The oxidase-like property comparison of PtCo@G and PtCo@G@CPB in SGF: (1) TMB, (2) PtCo@G+TMB, (3) PtCo@G@CPB+TMB. Insert images show corresponding visual color changes. Source data are provided as a Source Data file.

Supplementary Figure 17. The comparison of oxidase-like activity of PtCo@G@CPB in SGF

under air and microaerobic atmosphere. Source data are provided as a Source Data file.

Supplementary Figure 18. The enzyme kinetics of PtCo@G@CPB. Kinetics for (a), (b), (c)

oxidase-like and (**d**), (**e**) peroxidase-like activities of PtCo@G@CPB. The data indicate the means and SD from three parallel experiments. Source data are provided as a Source Data file.

Supplementary Figure 19. The dose-activity test in vitro. (a) Photographs of *H. pylori* colonies under treatment with different concentrations of PtCo@G@CPB. (b) The antibacterial activity of PtCo@G@CPB at different concentrations against *H. pylori*. The data indicate the means and SD from three parallel experiments. Source data are provided as a Source Data file.

Supplementary Figure 20. The antibacterial activity of PtCo@G@CPB against *H. pylori*. (a) Photographs of *H. pylori* colonies under different treatments. (b) The bacterial activity of *H. pylori* under different treatments. The amounts of CPB molecules in the experimental groups of *H. pylori* + CPB and *H. pylori* + PtCo@G@CPB (70 µg/mL) are same. *P* values were calculated by the Student's two-sided *t* test: ***p < 0.001. The data indicate the means and SD from three parallel experiments. Source data are provided as a Source Data file.

Supplementary Figure 21. SEM images of *H. pylori* treatment without or with PtCo@G@CPB.

Supplementary Figure 22. Cytotoxicity assay of PtCo@G@CPB. The data indicate the means and

SD from three parallel experiments. Source data are provided as a Source Data file.

Supplementary Figure 23. Characterization of *H. pylori*-infected mouse model. (a) Photographs of *H. pylori* colonies after gastric mucosa reculture. (b) Quantification of bacterial burden in the stomach of *H. pylori*-infected mouse. Data are presented as mean \pm SD (n=6 biologically independent mice). (c) The gram staining of a slice from the gastric mucosa of *H. pylori*-infected mouse. Slice thickness, 5 µm. Red arrows point to bacteria. Source data are provided as a Source Data file.

Supplementary Figure 24. Raman imaging and spectra of slice from the gastric mucosa. Scale bar:

 $20\ \mu\text{m},$ Slice thickness, $5\ \mu\text{m}.$ Source data are provided as a Source Data file.

Supplementary Figure 25. The distribution of PtCo@G@CPB in the stomach of *H. pylori*-infected mouse. Data are presented as mean \pm SD (n=6 biologically independent mice). *P* values were calculated by the Student's two-sided *t* test: ***p* < 0.01. Source data are provided as a Source Data file.

Supplementary Figure 26. The characterization of PtCo@G@CPB toxicity in vivo. (a) H&E staining of slice from the gastric mucosa after treatment with DPBS, PtCo@G@CPB and OAC. Slice thickness, 5 μ m. The inflammation score (b) and injury score (c) of gastric mucosa, according to the images of H&E staining. Data are presented as mean \pm SD (DPBS: n=5, PtCo@G@CPB and OAC: n=6 biologically independent mice). *P* values were calculated by the Student's two-sided *t* test: **p* = 0.0101. Source data are provided as a Source Data file.

Supplementary Figure 27. The distribution of PtCo@G@CPB in organs after treatment. Data are presented as mean \pm SD (n=4 biologically independent mice). Source data are provided as a Source Data file.

Supplementary Tables

Supplementary Table 1. The Michaelis-Menten constant (K_m) and maximal reaction velocity (V_{max})

Catalyst	Substrate	$K_{\rm m}({ m mM})$	V _{max} (µM s ⁻¹)	Reaction condition
PtCo@G@CPB	TMB	0.0503	0.141	SGF (Air)
PtCo@G@CPB	TMB	0.0505	0.129	SGF (Microaerobic condition)
PtCo@G@CPB	TMB	ND	ND	pH 7.08 (Air)

for the oxidase-like activity of PtCo@G@CPB with TMB as the substrate.

ND: not detected. The concentration of PtCo@G@CPB was 21.265 $\mu g/mL.$

Supplementary Table 2. The Michaelis-Menten constant (K_m) and maximal reaction velocity (V_{max})

for the peroxidase-like activity of PtCo@G@CPB with H₂O₂ as the substrate.

Catalyst	Substrate	$K_{\mathrm{m}}(\mathrm{m}\mathbf{M})$	V _{max} (μM s ⁻¹)	Reaction condition
PtCo@G@CPB	H_2O_2	1.276	0.757	SGF
PtCo@G@CPB	H_2O_2	ND	ND	рН 7.08

ND: not detected. The concentration of PtCo@G@CPB was 21.265 $\mu g/mL.$

Supplementary Table 3. Sequences of the primers used for quantitative real-time PCR.

Primer name	Primer sequence	Note
Bac16s8F	5-AGAGAGTTTGATCCTGGCTCAG-3	Forward primer
Bac16s338R	5-CATTACCGCGGCTGCTGG-3	Reverse primer