Supplemental Material

Age-dependent ataxia and neurodegeneration caused by an αII spectrin mutation with impaired regulation of its calpain sensitivity

Arkadiusz Miazek^{1,3}, Michał Zalas¹, Joanna Skrzymowska¹, Bryan A. Bogin², Krzysztof Grzymajło³, Tomasz Goszczynski¹, Zachary A. Levine^{2,4}, Jon S. Morrow^{4,5,^} and Michael C. Stankewich^{4,^}

1 Department of Tumor Immunology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114 Wroclaw, Poland 2 Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT, U.S.A

3 Department of Biochemistry and Molecular Biology, Wroclaw University of Environmental and Life Sciences, Norwida 31, 50-375 Wroclaw, Poland

4 Department of Pathology, Yale School of Medicine, New Haven, CT, U.S.A

5 Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT, U.S.A

^ Co-senior Authors

Supplemental Figure Legends

Figure S1: Coordination testing of R1098 and Q1098 mice.

- Figure S2: In-utero comparison of fetal mice.
- Figure S3: Comparison of WT vs. heterozygote cerebellum immunostained for βIIIspectrin at postnatal day 7.
- Figure S4: Secondary structure predictions

Figure S5: Compaction of the spectrin repeat unit relaxed in mutant

- Figure S6: Original un-cropped Western blots used in Figure 3.
- Figure S7: Measured cerebellar changes with age.
- Table T1: Variants identified by WES

Movie M1: WT vs. R1098Q mice at 9 months of age.

Movie M2: Dynamics simulation of WT vs Q1098 spectrin ± calmodulin; Y1176 (calpain cleavage site) is colored blue.

Supplemental Figure S1: - Coordination testing of R1098Q mice

Age-dependent ataxia and neurodegeneration caused by an α II spectrin mutation with impaired regulation of its calpain sensitivity

Wild Type αII spectrin

R1098Q αII spectrin homozyous R1098Q αII spectrin homozyous

Supplemental Figure S2 - In-utero comparison of fetal mice

Age-dependent ataxia and neurodegeneration caused by an α II spectrin mutation with impaired regulation of its calpain sensitivity

50 L

P7 brain stained with anti-βIII spectrin

R1098Q

het

WT

Supplemental Figure 3: Comparison of wt vs heterozygote cerebellum immunostained for β III-spectrin at postnatal day 7.

Age-dependent ataxia and neurodegeneration caused by an α II spectrin mutation with impaired regulation of its calpain sensitivity

Supplemental Figure S4 - Secondary Strucure Predictions.

Age-dependent ataxia and neurodegeneration caused by an α II spectrin mutation with impaired regulation of its calpain sensitivity

Supplemental Figure S5 - Compaction of the spectrin repeat unit relaxed in mutant

Age-dependent ataxia and neurodegeneration caused by an α II spectrin mutation with impaired regulation of its calpain sensitivity

Supplemental Figure 6: Original uncropped western blots used in Figure 3.

Age-dependent ataxia and neurodegeneration caused by an αII spectrin mutation with impaired regulation of its calpain sensitivity

Supplemental Figure 7: Measured cerebellar changes with age.

Age-dependent ataxia and neurodegeneration caused by an α II spectrin mutation with impaired regulation of its calpain sensitivity

Age-dependent ataxia and neurodegeneration caused by an all spectrin mutation with impaired regulation of its calpain sensitivity

Arkadiusz Miazek, Michał Zalas, Joanna Skrzymowska, Bryan A. Bogin, Krzysztof Grzymajło, Tomasz Goszczynski, Zachary A. Levine, Jon S. Morrow and Michael C. Stankewich

Ch	gene	name	Putative function/association	SIFT
1	AC133103.1	BAC clone, not characterized		tolerated
1	AC168977.1	BAC clone, not characterized		deleterious
1	Hjurp	HJURP Holliday junction recognition protein	DNA binding; cellular component organization	tolerated
1	Mroh2a	MROH2A maestro heat like repeat family	uncharacterized	tolerated
1	Prg4	PRG4 proteoglycan 4	proteoglycan synthesis in cartilage	tolerated
1	Rrs1	RRS1 ribosome biogenesis regulator 1	protein synthesis	deleterious
		UGT1A1 UDP glucuronosyltransferase family 1	Crigler-Najjar syndromes - metabolism of	
1	Ugt1a1	member A1	bilirubin	tolerated
2	Sptan1	Spectrin non-erythroid alpha1	West syndrome et al.	deleterious
3	Pias3	protein inhibitor of activated STAT 3	transferase; retinal phenotype	deleterious
		RPTN repetin	Diminished serum repetin levels in patients with	
3	Rptn		schizophrenia and bipolar disorder	tolerated
4	Zfp990	Zfp990 zinc finger protein 990	transcriptional regulator	tolerated
5	Gm17019	predicted gene, not characterized		deleterious
5	Tacc3	TACC3 transforming acidic coiled-coil	motor spindle protein that may play a role in	tolerated
6	Peg10	PEG10 paternally expressed 10	role in cell proliferation, differentiation and	deleterious
6	Phf14	PHF14 PHD finger protein 14	mitosis regulation and tumorgenesis	deleterious
7	Zfp936	Zfp936 zinc finger protein 936	transcription factor, low expression in brain	deleterious
8	Pkd1l3	PKD1L3 polycystin 1 like 3, transient receptor	cation channel pores	tolerated
		THAP1 THAP domain containing 1	proapoptotic factor that links PAWR to PML	
8	Thap1		nuclear bodies.	deleterious
10	Duxf3	Duxt3 double nomeobox family member 3	DNA binding	tolerated
11	Gm11555	predicted gene, not characterized		tolerated
12	Gm2022	predicted gene, not characterized		tolerated
13	Nkapl	NKAPL NFKB activating protein like	polymorphic association with schizophrenia	deleterious
14	Gm21103	predicted gene, not characterized		tolerated
15	Krt78	KRT78 keratin 78	structural protein in epithelial	tolerated
16	Muc13	MUC13 mucin 13, cell surface associated	epithelial mucin	tolerated
16	Muc4	MUC4 mucin 4, cell surface associated	epithelial mucin	tolerated
	Duda: 0	PRDM9 PR/SET domain 9	histone methyltransferase activity that catalyzes	
17	Pram9	TDL 0 transducin bata like 0	histone H3 lysine 4 trimethylation (H3K4me3)	deleterious
1/	TDI3		wD40 repeat protein mediating protein-protein	tolerated
17	Vmn2r114	Vmn2r114 vomeronasal 2, receptor 114	pheromone receptor	deleterious
17	Vmn2r115	Vmn2r115 vomeronasal 2, receptor 115	pneromone receptor	deleterious
17	Vmn2r117	vmn2r115 vomeronasal 2, receptor 11/	pneromone receptor	tolerated
x	Cdr1	CDR1 cerebellar degeneration related protein 1	Cerebellar degeneration-related autoantigen 1	tolerated
x	Vmn2r121	vmn2r121 vomeronasal 2, receptor 121	pheromone receptor	deleterious
У	Gm4064	predicted gene, not characterized		tolerated

Supplemental Table 1: Variants identified by WES in ataxis C57/B/6J mice but not in WT littermates.