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Supplemental Figures  

 

 

Figure S1: Principal component analyses (PCA) of hippocampal gene expression 

data to identify outliers (A) PCA identified one control sample (red arrow) as an outlier 

when all samples from both sugar and Parabacteroides enrichment experiments were 

considered. (B) PCA identified one treatment sample (red arrow) from the Parabacteroides 

experiment as an outlier.  After removing the outliers, PCA for the remaining samples from the 

sugar treatment experiment (C) and those from the Parabacteroides enrichment experiments 

(D). 
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Figure S2: Effect of early life sugar consumption on food intake and metabolic 

measures  (A, B) There were no differences in lean mass or in fat mass between animals fed 

sugar solutions or control animals (n=10,11; two-tailed, type 2 Student’s T-test). (C) Kcals from 

chow intake were lower throughout the feeding period in animals fed early life sugar (n=10,11). 

(D) Results from the intraperitoneal glucose tolerance test show an elevated area under the 

curve (AUC) in rodents fed sugar solutions during early life (n=10,11; two-tailed, type 2 

Student’s T-test; P<.05). CTL=control, SUG= sugar, PN= post-natal day; data shown as mean + 

SEM. 
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Figure S3: Relationship between Parabacteroides and behavioral outcomes in the 

Novel Object in Context task (NOIC) A) Linear regression of log normalized fecal 

Parabacteroides counts against shift from baseline performance scores in the NOIC task in 

sugar (SUG) and control (CTL) groups (n=10, 11). (B, C) Linear regression of the most abundant 

fecal Parabacteroides species against shift from baseline performance scores in NOIC across all 

groups tested (n=10, 11). *P<0.05; data shown as mean + SEM. 
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Figure S4: Effect of early life sugar consumption on the rat cecal microbiota (A) 

Principal component analysis (PCA) was run using all phylogenic levels (112 normalized taxa 

abundances) and shows different clustering patterns based on overall cecal microbial profiles. 
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(B) Linear discriminant analysis (LDA) Effect Size (LEfSe), run using the GALAXY platform, 

identified characteristic features of the cecal microbiota of rats fed a control diet or early life 

sugar. Relative differences among groups were used to rank the features with the LDA score set 

at 2. (C) Identified taxa are displayed by scores and on a phylogenic cladogram. CTL=control, 

SUG= sugar.  
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Figure S5: Effect of early life sugar consumption on the rat fecal microbiota. 

Filtered bacterial abundances by taxonomic levels phylum, class, order, family, genus in fecal 
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samples from rats fed a control diets or early life sugar. Differences in abundances were assessed 

by Mann-Whitney non-parametric test. * p<0.05, *** p<0.001. CTL=control, SUG= sugar. 
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Figure S6: Effect of early life sugar consumption on the rat cecal microbiota: 

Filtered bacterial abundances by taxonomic levels phylum, class, order, family, genus in cecal 
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samples from rats fed a control diets or early life sugar. Differences in abundances were assessed 

by Mann-Whitney non-parametric test. * p<0.05, *** p<0.001. CTL=control, SUG= sugar.  

 
 
 
Phylogenic taxonomy legend for Figure S5, S6:  
 

 
 
 
 
 
 
 
 
 
 
 

 

Genus
C Clostridiaceae Clostridium

Blautia
Dorea

P Peptococcaceae 
Ps Peptostreptococcaceae 
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β Betaproteobacteria B Burkholderiales S Sutterellaceae Sutterella
Desulfovibrio
Bilophila

T Tenericutes M Mollicutes RF RF39 
D Deferribacteres D Deferribacteres D Deferribacterales D Deferribacteraceae Mucispirillum
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Figure S7: Experimental design, food intake, and metabolic measures for gut 

Parabacteroides enrichment (A) Effect of antibiotic treatment on food intake (B) and body 

weight (n=7,8). (C) Effect of gut Parabacteroides enrichment on body weight at PN 51 prior to 
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the start of behavioral testing (n=7,8; one way ANOVA with Tukey’s post hoc test, F(2,20)= 8.79; 

*P<.05) (D) Effect of gut Parabacteroides enrichment on body weight (n=7,8; one way ANOVA 

with Tukey’s post hoc test, F(2,19)= 5.7; *P<.05) (E) lean mass (n=7,8; one way ANOVA with 

Tukey’s post hoc test, F(2,19)= 5.33; *P<.05) (F) and body fat (one way ANOVA, n.s.) at PN 76. (G) 

Blood glucose levels during an interaperitoneal glucose tolerance test (IP GTT) (n=7,8 one way 

ANOVA for AUC; n.s.) SAL-SAL=saline-saline control, ABX-SAL= antibiotics-saline control, 

ABX-PARA= antibiotics-P. johnsonii and P. distasonis enriched, PN= post-natal day; data 

shown as mean + SEM. 
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Figure S8: Comparison of hippocampal gene expression pathways altered by sugar 

and Parabacteriodes. The dopaminergic synapse pathway overlaps in the sugar and 

Parabacteroides transfer experiments. Red= upregulated by sugar, dark blue= downregulated 

by sugar, orange= upregulated by Parabacteroides, light blue= downregulated by 

Parabacteroides.  * P < 0.05 and ** P < 0.01. Dotted line indicated ± 0.25 log2 fold change.  
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