Table of Contents

- **1. Appendix Figure S1:** CEACAM1 does not bind to *S. sanguinis.*
- **2.** Appendix Figure S2: The N-terminal domain of CEACAM1 binds β -IgSF.
- **3. Appendix Figure S3:** Binding of CEACAMs to GBS.
- 4. Appendix Figure S4: Alignment of IgI3 domain sequences from β protein of GBS
- 5. Appendix Figure S5: Predicted structures of IgI3 homologs.
- 6. Appendix Figure S6: IgI3 domains bind CEACAM1 through alternative binding pockets.
- Appendix Figure S7: Isothermal titration calorimetry (ITC) binding curve of CEACAM1-N and R28-IgI3.
- 8. Appendix Table S1. Bacterial strains used in this study.
- 9. Appendix Table S2: Expression vectors constructs.
- **10.** Appendix Table S3: Isothermal Titration Calorimetry (ITC) binding curves constants and thermodynamic paramters for CEACAM-N and β -IgSF interactions.
- **11.** Appendix Table S4. Data collection and refinement statistics for β -IgI3 and CEACAM1 (CC1)-N.
- **12. Appendix Table S5.** Contact sites in (β-IgI3)(CEACAM1-N) complex.
- **13. Appendix Table S6:** Isothermal Titration Calorimetry (ITC) binding curves constants and thermodynamic paramters for CEACAM1 (CC1)-N and β-IgI3 mutants.
- 14. Appendix Table S7: Cell lines used in this study.
- **15.** Appendix Table S8: Antibodies used in this study.

Appendix Figure S1: CEACAM1 does not bind to *S. sanguinis.* Binding of rCEACAM1-His (rCC1) (10 μ g/mL) to GBS strain A909 and *S. sanguinis* strain SK36. Fluorescence of bacteria was measured by flow cytometry. Data representative of *n* = 3.

Appendix Figure S2: The N-terminal domain of CEACAM1 binds β -IgSF. A) Schematic of CEACAM1-4L (CC1) structure. The extracellular region of the receptor is composed of the N terminal (IgV-like) domain, and the A1, B1 and A2 (IgC2) domains. The cytoplasmic tail of full length CEACAM1 contain immunoreceptor tyrosine-based inhibitory motifs (ITIM) for signalling. B) Control showing binding of anti-CC1-N or anti-CC1-A1B1 mAb (5 µg/mL) to dynabeads (DB) coated with CC1 or buffer. Mean and SD values are reported for n = 3. C) rHopQ inhibits binding of β -IgSF tetramers (3 µg/mL) to DB.CC1. D) Control showing binding of anti-CC1 mAb to DB coated with rCC1, rCC1-N and rCC1-A1B1A2 but not to controls. Data representative of n = 3. E) rCC1-N but not rCC1-A1B1A2 binds to β -IgSF-, but not HSA-, coated DB in a concentration-dependent manner. Mean and SD values are reported for n = 3. Fluorescence of DB in B, C, D and E was measured by flow cytometry. Note: error bars in controls are smaller than symbols.

Appendix Figure S3: Binding of CEACAMs to GBS. Binding rCEACAM1-His (CC1), rCEACAM3-His (CC3), rCEACAM5-His (CC5), rCEACAM6-His (CC6) and rCEACAM8-His (CC8) (10 μ g/mL) to a panel of GBS strains. Serotype and carriage of *bac* gene is indicated for each strain. Data representative of *n* = 3. Fluorescence of bacteria was measured by flow cytometry.

EPU95478.1:428540/1-113 WP 000295505.1:94206/1-113 KXA56917.1:93205/1-113 WP_000477137.1:428540/1-113 WP 017650912.1:428540/1-113 WP_132935284.1:428540/1-113 WP 001933343.1:428540/1-113 WP 025195781.1:428540/1-113 WP 132868240.1:428540/1-113 WP_041980967.1:428540/1-113 CFQ92576.1:130/1-113 EPV41091.1:160272/1-113 WP_049458979.1:428540/1-113 SQA16054.1:253365/1-113 BAE45252.1:428540/1-113 WP 055345127.1:428540/1-113 WP_017650863.1:428540/1-113 CNE84135.1:307419/1-113 WP_060457561.1:428540/1-113 WP_060458554.1:428540/1-113 WP 000477135.1:428540/1-113 WP 121070430 1:428540/1-113 P27951.1:428540/1-113 WP_047199360.1:428540/1-113 WP 017647376.1:428540/1-113 WP_141445744.1:401513/1-113 WP 050152779.1:428540/1-113 WP 000477136.1:428540/1-113 EPV99179.1:351463/1-113 WP 071150949.1:419531/1-113 WP_000477141.1:428540/1-113 WP 157140373.1:377489/1-113 WP_000477134.1:428540/1-113 WP 094754263.1:428540/1-113 WP 001905993.1:428540/1-113 WP 017645156.1:423535/1-113 WP_094969800.1:428540/1-113 WP 047211709.1:423535/1-113 WP_050198886.1:428540/1-113 WP 000477132.1:423535/1-113 WP 000477143.1:428540/1-113 WP 047198467.1:428540/1-113 CAA41384.1:428540/1-113 WP_001880680.1:428540/1-113 WP 000477140.1:428540/1-113 WP_000477139.1:428540/1-113 WP 000477138.1:428540/1-113 WP 070841624.1:428540/1-113 WP 047205529.1:428540/1-113 WP_060800989.1:428540/1-113 WP_000477144.1:428540/1-113 WP_079219395.1:428540/1-113 WP_150411773.1:428540/1-113 WP 001885839 1:428540/1-113 WP_150418747.1:428540/1-113 WP_150415581.1:428540/1-113 AAT10376.1:428540/1-113

10 30 20 40 ANENNQQKIELTVSPENITVYEGEDVKFTVTAKSDSKTTLDFSDL ANENNQQKIELTVSPENITVYEGEDVKFTVTAKSDSKTTLDFSDL ANENNQQK IELTVSPEN I TVYEGEDVK FTV TAKSDSK TTLD FSDL ANENNQQKIELTVSPENITVYEGEDVKFTVTAKSDSKTTLDFSDL ANENNQQKIELTVSPENITVYEGEDVKFTVTAKSDSKTTLDFSDL ANENNQQKIELTVSPENITVYEGEDVKFTVTAKSDSKTTLDFSDL ANENNQQKIELTVSPENITVYEGEDVKFTVTAKSDSKTTLDFSDL ANENNQQK IELTVSPEN I TVYEGEDVK FTV TAKSDSK TTLD FSDL ANENNQQKIELTVSPENITVYEGEDVKFTVTAKSDSKTTLDFSDL ANENNQQKIELTVSPENITVYEGEDVKFTVTAKSDSKTTLDFSDL ANENNQQKIELTVSPENITVYEGEDVKFTVTAKSDSKTTLDFSDL ANENNQQKIELTVSPENITVYEGEDVKFTVTAKSDSKTTLDFSDL ANENNQQKIELTVSPENITVYEGEDVKFTVTAKSDSKTTLDFSDL ANENNQQKIELTVSPENITVYEGEDVKFTVTAKSDSKTTLDFSDL ANENNOOK IELTVSPEN I TVYEGEDVK FTV TAKSDSK TTLD FSDL ANENNOQK I EL TVSPEN I TVYEGEDVK FTV TAKSDSK TTLD FSDL ANENNQQKIELTVSPENITVYEGEDVKFTVTAKSDSKTTLDFSDL ANENNQQKIELTVSPENITVYEGEDVKFTVTAKSDSKTTLDFSDL ANENNQQKIELTVSPENITVYEGEDVKFTVTAKSDSKTTLDFSDL ANENNQQKIELTVSPENITVYEGEDVKFTVTAKSDSKTTLDFSDL ANENNQQKIELTVSPENITVYEGEDVKFTVTAKSDSKTTLDFSDL ANENNOOK LET TVSPEN I TVYEGEDVK ETV TAKSDSK TTI DESDI ANENNQQKIELTVSPENITVYEGEDVKFTVTAKSDSKTTLDFSDL ANENNQQKIELTVSPENITVYEGEDVKFTVTAKSDSKTTLDFSDL ANENNQQKIELTVSPENITVYEGEDVKFTVTAKSDSKTTLDFSDL ANENNQQKIELTVSPENITVYEGEDVKFTVTAKSDSKTTLDFSDL ANENNQQKIELTVSPENITVYEGEDVKFTVTAKSDSKTTLDFSDL ANENNQQKIELTVSPENITVYEGEDVKFTVTAKSDSKTTLDFSDL ANENNQQKIELTVSPENITVYEGEDVKFTVTAKSDSKTTLDFSDL ANENNQQKIELTVSPENITVYEGEDVKFTVTAKSDSKTTLDFSDL ANENNQQKIELTVSPENITVYEGEDVKFTVTAKSDSKTTLDFSDL **ANENNQQKIELTVSPENITVYEGEDVKFTVTAKSDSKTTLDFSDL** ANENNQQKIELTVSPENITVYEGEDVKFTVTAKSDSKTTLDFSDL ANENNQQKIELTVSPENITVYEGEDVKFTVTAKSDSKTTLDFSDL ANENNOOK LELTVSPEN I TVYEGEDVK FTV TAKSDSK TTLD FSDL ANENNQQK I E L TVSPEN I TVYEGEDVK F TV TAKSDSK T T L D FSD L ANENNQQKIELTVSPENITVYEGEDVKFTVTAKSDSKTTLDFSDL ANENNQQKIELTVSPENITVYEGEDVKFTVTAKSDSKTTLDFSDL ANENNQQKIELTVSPENITVYEGEDVKFTVTAKSDSKTTLDFSDL ANENNQQKIELTVSPENITVYEGEDVKFTVTAKSDSKTTLDFSDL ANENNQQK I EL TVSPEN I TVYEGEDVK FTV TAKSDSK TTLD FSDL ANENNOOK LET TVSPEN I TVYEGEDVKETV TAKSDSKTTI DESDI ANENNQQKIELTVSPENITVYEGEDVKFTVTAKSDSKTTLDFSDL ANENNQQKIELTVSPENITVYEGEDVKFTVTAKSDSKTTLDFSDL ANENNQQKIELTVSPENITVYEGEDVKFTVTAKSDSKTTLDFSDL ANENNQQKIELTVSPENITVYEGEDVKFTVTAKSDSKTTLDFSDL ANENNQQKIELTVSPENITVYEGEDVKFTVTAKSDSKTTLDFSDL ANENNOOK LELTVSPEN I TVYEGEDVK ETV TAKSDSK TTLDESDL ANENNQQKIELTVSPENITVYEGEDVKFTVTAKSDSKTTLDFSDL ANENNQQKIELTVSPENITVYEGEDVKFTVTAKSDSKTTLDFSDL ANENNQQKIELTVSPENITVYEGEDVKFTVTAKSDSKTTLDFSDL ANENNQQKIELTVSPENITVYEGEDVKFTVTAKSDSKTTLDFSDL ANENNQQKIELTVSPENITVYEGEDVKFTVTAKSDSKTTLDFSDL ANENNOOK LET TVSPEN I TVYEGEDVK ETV TAKSDSK TTI DESDI ANENNQQKIELTVSPENITVYEGEDVKFTVTAKSDSKTTLDFSDL ANENNQQKIELTVSPENITVYEGEDVKFTVTAKSDSKTTLDFSDL ANENNQQKIELTVSPENITVYEGEDVKFTVTAKSDSKTALDFSDL

EPU95478.1:428540/1-113 WP 000295505.1:94206/1-113 KXA56917.1:93205/1-113 WP_000477137.1:428540/1-113 WP_017650912.1:428540/1-113 WP_132935284.1:428540/1-113 WP 001933343.1:428540/1-113 WP 025195781.1:428540/1-113 WP 132868240.1:428540/1-113 WP 041980967.1:428540/1-113 CFQ92576.1:130/1-113 EPV41091.1:160272/1-113 WP_049458979.1:428540/1-113 SQA16054.1:253365/1-113 BAE45252.1:428540/1-113 WP 055345127.1:428540/1-113 WP_017650863.1:428540/1-113 CNE84135.1:307419/1-113 WP_060457561.1:428540/1-113 WP_060458554.1:428540/1-113 WP 000477135.1:428540/1-113 WP 121070430 1:428540/1-113 P27951.1:428540/1-113 WP_047199360.1:428540/1-113 WP_017647376.1:428540/1-113 WP_141445744.1:401513/1-113 WP_050152779.1:428540/1-113 WP 000477136.1:428540/1-113 EPV99179.1:351463/1-113 WP 071150949.1:419531/1-113 WP_000477141.1:428540/1-113 WP 157140373.1:377489/1-113 WP_000477134.1:428540/1-113 WP 094754263.1:428540/1-113 WP 001905993.1:428540/1-113 WP 017645156.1:423535/1-113 WP_094969800.1:428540/1-113 WP_047211709.1:423535/1-113 WP_050198886.1:428540/1-113 WP_000477132.1:423535/1-113 WP 000477143.1:428540/1-113 WP 047198467.1:428540/1-113 CAA41384.1:428540/1-113 WP_001880680.1:428540/1-113 WP 000477140.1:428540/1-113 WP_000477139.1:428540/1-113 WP 000477138.1:428540/1-113 WP 070841624.1:428540/1-113 WP 047205529.1:428540/1-113 WP_060800989.1:428540/1-113 WP_000477144.1:428540/1-113 WP 079219395.1:428540/1-113 WP_150411773.1:428540/1-113 WP 001885839.1:428540/1-113 WP 150418747.1:428540/1-113 WP_150415581.1:428540/1-113 AAT10376.1:428540/1-113

50 60 70 80 LTKYNPSVSDRISTNYKTNTDNHKIAEITIKNLKLNESQTVTLKA LTKYNPSVSDR I STNYK TN TDNHK I AE I TIKNLK LNESQTV TLKA LTKYNPSVSDRISTNYK TN TDNHK I AE I TIKNLK LNESQTV TLKA LTKYNPSVSDRISTNYKTNTDNHKIAEITIKNLKLNESQTVTLKA LTKYNPSVSDRISTNYKTNTDNHKIAEITIKNLKLNESQTVTLKA LTKYNPSVSDRISTNYKTNTDNHKIAEITIKNLKLNESQTVTLKA L TKYNPSVSDR I S TNYK TN TDNHK I AE I T I KN LK LNESQTV T LKA LTKYNPSVSDR I STNYK TN TDNHK I AE I TIKNLK LNESQTV TLKA I TKYNPSVSDB I STNYK TN TDNHK I AF I T I KNI KLNESOTV TI KA L TKYNPSVSDR I STNYK TN TDNHK I AE I TIKNLK LNESQTV TLKA LTKYNPSVSDR IS TNYK TN TDNHK I AE I T I KN LK LNESQTV T LKA LTKYNPSVSDR I STNYK TNTDNHK I AE I TIKNLK LNESQTVTLKA LTKYNPSVSDRISTNYKTNTDNHKIAEITIKNLKLNESQTVTLKA LTKYNPSVSDRISTNYKTNTDNHKIAEITIKNLKLNESQTVTLKA L TKYNPSVSDB I S TNYK TN TDNHK I AE I T I KNLK LNESOTV T LKA L TKYNPSVSDR I STNYK TN TDNHK I AE I T I KNLK LNESQTV T LKA LTKYNPSVSDR IS TNYK TN TDNHK I AE I T I KN LK LNESQTV T LKA LTKYNPSVSDR I STNYK TN TDNHK I AE I TIKNLK LNESQTV TLKA L TKYNPSVSDR I STNYK TN TDNHK I AE I TIKNLK LNESQTV TLKA LTKYNPSVSDRISTNYKTNTDNHKIAEITIKNLKLNESQTVTLKA LTKYNPSVSDRISTNYKTNTDNHKIAEITIKNLKLNESQTVTLKA I TKYNPSVSDB I STNYK TNTDNHK I AF I TIKNI KI NESOTVTI KA L TKYNPSVSDR IS TNYK TN TDNHK I AE I T I KN LK LNESQTV T LKA L TKYNPSVSDR I STNYK TN TDNHK I AE I T I KNLK LNESQTV T LKA LTKYNPSVSDRISTNYKTNTDNHKIAEITIKNLKLNESQTVTLKA LTKYNPSVSDRISTNYKTNTDNHKIAEITIKNLKLNESQTVTLKA LTKYNPSVSDRISTNYKTNTDNHKIAEITIKNLKLNESQTVTLKA L TKYNPSVSDR I STNYK TN TDNHK I AE I TIKNLK LNESQTV TLKA L TKYNPSVSDR I STNYK TN TDNHK I AE I TIKNLK LNESQTV TLKA L TKYNPSVSDR I STNYK TN TDNHK I AE I T I KNLK LNESQTV T LKA L TKYNPSVSDR I S TNYK TN TDNHK I AE I T I KN LK LNESQTV T LKA LTKYNPSVSDRISTNYK TN TDNHK I AE I TIKNLK LNESQTV TLKA LTKYNPSVSDRISTNYKTNTDNHKIAEITIKNLKLNESQTVTLKA LTKYNPSVSDRISTNYKTNTDNHKIAEITIKNLKLNESQTVTLKA L TKYNPSVSDR I STNYK TN TDNHK I AE I TIKNLK LNESOTV TLKA L TKYNPSVSDR I STNYK TN TDNHK I AE I T I KN LK LNESQTV T LKA LTKYNPSVSDRISTNYKTNTDNHKIAEITIKNLKLNESQTVTLKA LTKYNPSVSDR I STNYK TNTDNHK I AE I TIKNLK LNESQTVTLKA LTKYNPSVSDRISTNYKTNTDNHKIAEITIKNLKLNESQTVTLKA LTKYNPSVSDRISTNYKTNTDNHKIAEITIKNLKLNESQTVTLKA L TKYNPSVSDR I STNYK TN TDNHK I AE I T I KN LK LNESQTV T LKA I TKYNPSVSDB I STNYK TNTDNHK I AF I TIKNI KI NESOTVTI KA LTKYNPSVSDRISTNYKTNTDNHKIAEITIKNLKLNESQTVTLKA LTKYNPSVSDRISTNYK TNTDNHK I AE I TIKNLK LNESQTVTLKA LTKYNPSVSDRISTNYKTNTDNHKIAEITIKNLKLNESQTVTLKA L TKYNPSVSDR I S TNYK TN TDNHK I AE I T I KN LK LNESQTV T LKA LTKYNPSVSDR I STNYK TNTDNHK I AE I TIKNLK LNESQTVTLKA I TKYNPSVSDB I STNYK TN TDNHK I AF I TIKNI KI NESOTV TI KA LTKYNPSVSDRISTNYKTNTDNHKIAEITIKNLKLNESQTVTLKA L TKYNPSVSDR I S TNYK TN TDNHK I AE I T I KNLK LNESQTV T LKA LTKYNPSVSDRISTNYKTNTDNHKIAEITIKNLKLNESQTVTLKA LTKYNPSVSDRISTNYKTNTDNHKIAEITIKNLKLNESQTVTLKA LTKYNPSVSDRISTNYKTNTDNHKIAEITIKNLKLNESQTVTLKA L TKYNPSVSDR I S TNYK TN TDNHK I AE I T I KNLK LNESQ TV TLKA LTKYNPSVSDRISTNYK TN TDNHK I AE I TIKNLK LNESQTV TLKA LTKYNPSVSDRISTNYK TN TDNHK I AE I TIKNLK LNESQTV TLKA LTKYNPSVSDR IS TNYK TN TDNHK I AE I T I KN LK LNESQTV T LKA

	100	110
EPU95478.1:428540/1-113	KDDSGNVVEKT	FTITVQKKEEKQ
WP 000295505.1:94206/1-113	KDDSGNVVEKT	FTITVQKKEEKQ
KXA56917.1:93205/1-113	KDDSGNVVEKT	FTITVQKKEEKQ
WP 000477137.1:428540/1-113	KDDSGNVVEKT	FTITVQKKEEKQ
WP_017650912.1:428540/1-113	KDDSGNVVEKT	FTITVQKKEEKQ
WP 132935284.1:428540/1-113	KDDSGNVVEKT	FTITVQKKEEKQ
WP 001933343.1:428540/1-113	KDDSGNVVEKT	FTITVQKKEEKQ
WP 025195781.1:428540/1-113	KDDSGNVVEKT	FTITVQKKEEKQ
WP_132868240.1:428540/1-113	KDDSGNVVEKT	FTITVQKKEEKQ
WP_041980967.1:428540/1-113	KDDSGNVVEKT	FTITVQKKEEKQ
CFQ92576.1:130/1-113	KDDSGNVVEKT	FTITVQKKEEKQ
EPV41091.1:160272/1-113	KDDSGNVVEKT	FTITVQKKEEKQ
WP_049458979.1:428540/1-113	KDDSGNVVEKT	FTITVQKKEEKQ
SQA16054.1:253365/1-113	KDDSGNVVEKT	FTITVQKKEEKQ
BAE45252.1:428540/1-113	KDDSGNVVEKT	FTITVQKKEEKQ
WP_055345127.1:428540/1-113	KDDSGNVVEKT	FTITVQKKEEKQ
WP_017650863.1:428540/1-113	KDDSGNVVEKT	FTITVQKKEEKQ
CNE84135.1:307419/1-113	KDDSGNVVEKT	FTITVQKKEEKQ
WP_060457561.1:428540/1-113	KDDSGNVVEKT	FTITVQKKEEKQ
WP_060458554.1:428540/1-113	KDDSGNVVEKT	FTITVQKKEEKQ
WP_000477135.1:428540/1-113	KDDSGNVVEKT	FTITVQKKEEKQ
WP_121070430.1:428540/1-113	KDDSGNVVEKT	FTITVQKKEEKQ
P27951.1:428540/1-113	KDDSGNVVEKT	FTITVQKKEEKQ
WP_047199360.1:428540/1-113	KDDSGNVVEKT	FTITVQKKEEKQ
WP_017647376.1:428540/1-113	KDDSGNVVEKT	FTITVQKKEEKQ
WP_141445744.1:401513/1-113	KDDSGNVVEKT	FTITVQKKEEKQ
WP_050152779.1:428540/1-113	KDDSGNVVEKT	FTITVQKKEEKQ
WP_000477136.1:428540/1-113	KDDSGNVVEKT	FTITVQKKEEKQ
EPV99179.1:351463/1-113	KDDSGNVVEKT	FTITVQKKEEKQ
WP_071150949.1:419531/1-113	KDDSGNVVEKT	FTITVQKKEEKQ
WP_000477141.1:428540/1-113	KDDSGNVVEKT	FTITVQKKEEKQ
WP_157140373.1:377489/1-113	KDDSGNVVEKT	FTITVQKKEEKQ
WP_000477134.1:428540/1-113	KDDSGNVVEKT	FTITVQKKEEKQ
WP_094754263.1:428540/1-113	KDDSGNVVEKT	FTITVQKKEEKQ
WP_001905993.1:428540/1-113	KDDSGNVVEKT	FTITVQKKEEKQ
WP_017645156.1:423535/1-113	KDDSGNVVEKT	FTITVQKKEEKQ
WP_094969800.1:428540/1-113	KDDSGNVVEKT	FTITVQKKEEKQ
WP_04/211/09.1:423535/1-113	KDDSGNVVEKT	FTITVQKKEEKQ
WP_050198886.1:428540/1-113	KDDSGNVVEKT	FTITVQKKEEKQ
WP_000477132.1:423535/1-113	KDDSGNVVEKT	FILIVQKKEEKQ
WP_000477143.1:428540/1-113	KDDSGNVVEKT	FTITVQKKEEKQ
WP_047198467.1:428540/1-113	KDDSGNVVEKT	FTITVQKKEEKQ
CAA41384.1:428540/1-113	KDDSGNVVEKT	FTITVQKKEEKQ
WP_001880680.1:428540/1-113	KDDSGNVVEKT	FTITVQKKEEKQ
WP_000477140.1:428540/1-113	KDDSGNVVEKT	FTITVQKKEEKQ
WP_000477139.1:428540/1-113	KDDSGNVVEKT	FTITVQKKEEKQ
WP_000477138.1:428540/1-113	KDDSGNVVEKT	FTITVQKKEEKQ
WP_070641624.1.428540/1-113	KDDSGNVVEKT	FTITVQKKEEKQ
WP_047205529.1.428540/1-113	KDDSGNVVEKT	FTITVQKKEEKQ
WP_000477144 1:428540/1-113	KDDSGNVVEKT	FTITVQKKEEKQ
WP_079219395 1:428540/1-113	KDDSGNVVEKT	FTITVOKKEEKO
WP 150411773.1:428540/1-113	KDDSGNVVEKT	FTITVQKKEEKQ
WP 001885839.1:428540/1-113	KDDSGNVVEKT	FTITVQKKEEKQ
WP 150418747.1:428540/1-113	KDDSGNVVEKT	FTITVQKKEEKQ
WP_150415581.1:428540/1-113	KDDSGNVVEKT	FTITVQKKEEKQ
AAT10376.1:428540/1-113	KDDSGNVVEKT	FTITVQKKEEKQ

Appendix Figure S4: Alignment of IgI3 domain sequences from β protein of GBS. Alignment of

IgI3 domain sequences of β protein in the BLAST database.

β–**lgl3** clade III-lgl3 S. oralis β–**lgl3** β–**lgl3** β–**lgl3** clade IV-IgI3 S. pseudopneumoniae QMEAN: -2.73 clade II-IgI3 S. pyogenes clade V-IgI3 S. pseudopneumoniae QMEAN: -2.85 QMEAN: -3.18 QMEAN: -3.53 β-lgl3 clade VII-lgl3 β–**IgI3** clade IX-IgI3 S. pseudopneumoniae β–**IgI3** clade X-IgI3 S. pseudopneumoniae β–**lgl3** clade VIII-IgI3 S. pseudopneumoniae QMEAN: -2.09 S. anginosus QMEAN: -2.03 QMEAN: -3.35 QMEAN: -1.93 β–**lgl3** β–**lgl3** β–**lgl3** clade XVIII-IgI3 S. pseudopneumoniae QMEAN: -2.71 clade XIV-IgI3 clade XV-IgI3 S. mitis G. vaginalis QMEAN: -2.94 QMEAN: -2.70

Appendix Figure S5: Predicted structures of IgI3 homologs. Structure of β -IgI3 homologs was predicted using SWISS-MODEL in which the β -IgI3 was used as a template. The predicted structures of 11 sequences (red) are superimposed onto β -IgI3 structure (blue), with the clade, bacterial species and QMEAN score of the model shown.

Appendix Figure S6: IgI3 domains bind CEACAM1 through alternative binding pockets.

A) Structure of β -IgI3 and predicted structure of R28-IgI3. **B**) Superposition of the known IgI3 domain from β protein (blue) onto predicted structure of IgI3 domain from R28 (red), only the *C* to *D* strand region is shown. **C**) Pipeline showing prediction of key and unfavourable IgI3 residues at the CEACAM1 binding interface. β -IgI3 and R28-IgI3 docking to CEACAM1-N (CC1-N) was simulated 50 times using ZDOCK. CC1-N residues 29, 44, 89, 91 and 95 were set as important binding residues. Each simulation was analysed by MM/GBSA analysis to quantify the free energy binding for each residue independently. **D**) Surface structure of β -IgI3 shown, with key (F42, L46 and V53) or unfavourable (D55) residues required for CC1-N binding shown in blue. **E**) Surface structure of R28-IgI3 shown, with key (K48, I54, I56 and K59) residues required for CC1-N binding shown in red.

Appendix Figure S7: Isothermal titration calorimetry (ITC) binding curve of CEACAM1-N and R28-IgI3. Representative ITC plot for rCEACAM1 (CC1)-N domain and R28-IgI3 duplicates. Experiments were performed using an iTC200 instrument (GE Healthcare), at 25 °C with 16 injections of 2.42 μL aliquots. All data were analyzed using Origin 7.0 software.

Species	Strain	Notes	Growth*	Reference ^{\$}
Streptococcus	M1 5448		TH-Y, 37℃	1
pyogenes	M2		TH-Y, 37⁰C	N. van Sorge, this study
(GAS)	M3		TH-Y, 37°C	N. van Sorge, this study
	M6		TH-Y, 37°C	N. van Sorge, this study
	M11		TH-Y, 37⁰C	N. van Sorge, this study
	M12		TH-Y, 37⁰C	N. van Sorge, this study
	M89		TH-Y, 37℃	N. van Sorge, this study
	AL368		TH-Y, 37⁰C	2
Streptococcus	A909	Serotype la; bac positive	TH, 37°C	3
agalactiae	A909∆ <i>bac</i>		TH, 37°C	4
(GBS)	A909 Δ bac + pLZ.bac		$TH + k + s$, $37^{\circ}C$	4
	A909∆bca		TH + k, 37°C	E. Movert, T. Areschoug, Lund University
	A909∆ <i>cap</i>		TH + k, 37°C	E. Movert, T. Areschoug, Lund University
	A909 Δ bac Δ cap		TH + k, 37°C	E. Movert, T. Areschoug, Lund University
	BS39	Serotype Ia; <i>bac</i> negative; invasive isolate	TH, 37°C	G. Lindahl, this study
	515	Serotype Ia; <i>bac</i> negative	TH, 37°C	5
	BS22	Serotype Ib; bac positive	TH, 37°C	5
	H36B	Serotype Ib; bac positive	TH, 37°C	ATCC #BAA-1174
	BS29	Serotype II; <i>bac</i> positive; invasive isolate	TH, 37°C	G. Lindahl, this study
	18RS21	Serotype II; bac negative	TH, 37°C	ATCC #BAA1175
	BM110	Serotype III; bac negative	TH, 37°C	6
	COH1	Serotype III; bac negative	TH, 37°C	ATCC #BAA-1176
	SBL3066	Serotype V; <i>bac</i> positive; invasive isolate	TH, 37°C	G. Lindahl, this study
	NCTC10/84	Serotype V; <i>bac</i> negative	TH, 37°C	ATCC #49447
	SB35	<i>bac</i> positive	TH, 37°C	6
	SB10	<i>bac</i> positive	TH, 37°C	5
	SB20	Serotype III; bac positive	TH, 37°C	5
	BS26	<i>bac</i> positive	TH, 37°C	5
	H1147 (PHEGBS0159)	alp3 positive	TH, 37°C	7
Streptococcus	CS2	Invasive infection	TH, 37°C	G. Lindahl, this study
zooepidemicus	CS3	Invasive infection	TH, 37°C	G. Lindahl, this study
(GCS)	CS4	Invasive infection	TH, 37°C	G. Lindahl, this study

	CS7	Invasive infection	TH. 37°C	G. Lindahl, this study
	CS8	Invasive infection	TH. 37°C	G. Lindahl, this study
	131	Invasive infection	TH. 37°C	G. Lindahl, this study
	L32	Invasive infection	TH. 37°C	G. Lindahl, this study
Streptococcus	G148		TH. 37°C	8
dvsgalactiae	GS1	Invasive infection	TH. 37°C	G. Lindahl. this study
(GGS)	GS2	Invasive infection	TH. 37°C	G. Lindahl, this study
	GS3	Invasive infection	TH, 37°C	G. Lindahl. this study
	GS4	Invasive infection	TH, 37°C	G. Lindahl. this study
	GS5	Invasive infection	TH. 37°C	G. Lindahl, this study
	GS6	Invasive infection	TH. 37°C	G. Lindahl, this study
	GS7	Invasive infection	TH. 37°C	G. Lindahl, this study
	GS8	Invasive infection	TH, 37°C	G. Lindahl, this study
	GS9	Invasive infection	TH, 37°C	G. Lindahl, this study
	L33	Invasive infection	TH, 37°C	G. Lindahl, this study
	L34	Invasive infection	TH, 37°C	G. Lindahl, this study
Streptococcus	PBCN22		TH, 37°C	UMC Utrecht, this study
pneumoniae	D39		TH, 37°C	NCTC #7466
1	TIGR4		TH, 37°C	BAA-334
	PBCN57		TH, 37°C	UMC Utrecht, this study
	PBCN79		TH, 37°C	UMC Utrecht, this study
	PBCN24		TH, 37°C	UMC Utrecht, this study
	PBCN133		TH, 37°C	UMC Utrecht, this study
Enterococcus	E8284		TH, 37°C	9
faecium	E4413		TH, 37°C	9
	E656		TH, 37°C	9
	E4227		TH, 37°C	9
	E7313		TH, 37°C	9
	E7098		TH, 37°C	9
Enterococcus	E02500	Human blood isolate	ТН, 37℃	UMC Utrecht, this study
faecalis	E02504	Human blood isolate	TH, 37°C	UMC Utrecht, this study
	E02608	Human blood isolate	TH, 37°C	UMC Utrecht, this study
	E02835	Human blood isolate	TH, 37°C	UMC Utrecht, this study

	E4877	Human faecal isolate	TH, 37°C	UMC Utrecht, this study
	E6568	Human faecal isolate	TH, 37°C	UMC Utrecht, this study
Staphylococcus	MW2		TSB, 37°C	ATCC #BAA-1707
aureus	MRSA252		TSB, 37°C	ATCC #BAA-1720
	PS66		TSB, 37°C	U. Bläsi, Vienna
	80286		TSB, 37°C	10
	USA300		TSB, 37°C	ATCC #BAA-1556
	N315		TSB, 37°C	11
	Newman		TSB, 37°C	12

Appendix Table S1. Bacterial strains used in this study. * Growth media as follows, Todd-Hewitt (TH) broth, Todd-Hewitt + 0.6% yeast (TH-Y) broth, 0 Tryptic Soy (TS) broth. Media was supplemented with 500 µg/ml kanamycin (k) and/or 70 µg/ml spectinomycin (s). Strain names available from American 1 Type Culture Collection (ATCC) or National Collection of Type Cultures (NCTC). ¹Chatellier, S. et al. Genetic relatedness and superantigen expression in 2 3 group A Streptococcus serotype M1 isolates from patients with severe and nonsevere invasive diseases. Infect Immun 68, 3523–3534 (2000).² Stålhammar-4 Carlemalm, M., Areschoug, T., Larsson, C. & Lindahl, G. The R28 protein of Streptococcus pyogenes is related to several group B streptococcal surface 5 proteins, confers protective immunity and promotes binding to human epithelial cells. Mol Microbiol 33, 208–219 (1999). ³ Michel, J. L. et al. Large, identical, tandem repeating units in the C protein alpha antigen gene, bca, of group B streptococci. Proc Natl Acad Sci U S A 89, 10060–10064 (1992). ⁴ Areschoug, T., 6 Stålhammar-Carlemalm, M., Karlsson, I. & Lindahl, G. Streptococcal β protein has separate binding sites for human factor H and IgA-Fc. J Biol Chem 277, 7 12642–12648 (2002).⁵ Areschoug, T., Linse, S., Stålhammar-Carlemalm, M., Hedén, L. O. & Lindahl, G. A proline-rich region with a highly periodic sequence 8 9 in streptococcal β protein adopts the polyproline II structure and is exposed on the bacterial surface. J Bacteriol 184, 6376–6383 (2002). ⁶ Stålhammar-10 Carlemalm, M., Stenberg, L. & Lindahl, G. Protein Rib: a novel group B streptococcal cell surface protein that confers protective immunity and is expressed 11 by most strains causing invasive infections. J Exp Med 177, 1593-603 (1993). ⁷ Jauneikaite, E. et al. Serial clustering of late-onset group B streptococcal 12 infections in the neonatal unit: a genomic re-evaluation of causality. Clin Infect Dis 67, 854–860 (2018). 8 Kronvall, G., Simmons, A., Myhre, E. B. & Jonsson, 13 S. Specific absorption of human serum albumin, immunoglobulin A, and immunoglobulin G with selected strains of group A-and G streptococci. Infect Immun 25, 1–10 (1979). ⁹ Arredondo-Alonso, S. et al. Plasmids shaped the recent emergence of the major nosocomial pathogen Enterococcus faecium. 14 *mBio* **11**, e03284-19 (2020). ¹⁰ Winstel, V. *et al.* Wall teichoic acid glycosylation governs Staphylococcus aureus nasal colonization. *mBio* **6**, 15

- 16 e00632-15 (2015). ¹¹ Kuroda, M. et al. Whole genome sequencing of meticillin-resistant Staphylococcus aureus. Lancet **357**, 1225–40 (2001).
- ¹² Baba, T., Bae, T., Schneewind, O., Takeuchi, F. & Hiramatsu, K. Genome sequence of Staphylococcus aureus strain newman and comparative
- 18 analysis of staphylococcal genomes: Polymorphism and evolution of two major pathogenicity islands. *J Bacteriol* **190**, 300–310 (2008).

Vector	Protein	Expression system
pcDNA3.4.CEACAM1	rCEACAM1-His	Expi293F
pcDNA3.4.CEACAM3	rCEACAM3-His	Expi293F
pcDNA3.4.CEACAM5	rCEACAM5-His	Expi293F
pcDNA3.4.CEACAM6	rCEACAM6-His	Expi293F
pcDNA3.4.CEACAM8	rCEACAM8-His	Expi293F
pRSET-C-CEACAM1N	rCEACAM1-N-His	E. coli RG
pRSET-C-CEACAM1NAF29A	rCEACAM1-N∆F29A-His	E. coli RG
pRSET-C-CEACAM1N∆Q44A	rCEACAM1-N∆Q44A-His	E. coli RG
pRSET-C-CEACAM1N∆A49V	rCEACAM1-N∆A49V-His	E. coli RG
pRSET-C-CEACAM1N∆Q89A	rCEACAM1-N∆Q89A-His	E. coli RG
pRSET-C-CEACAM1NAL95A	rCEACAM1-NAL95A-His	E. coli RG
pRSET-C-CEACAM1N∆V96A	rCEACAM1-N∆V96A-His	E. coli RG
pRSET-C-CEACAM1NAN97A	rCEACAM1-NAN97A-His	E. coli RG
pRSET-C-CEACAM1A1B1A2	rCEACAM1-A1B1A2-His	E. coli RG
pRSET-C-CEACAM3N	rCEACAM3-N-His	E. coli RG
pRSET-C-CEACAM5N	rCEACAM5-N-His	E. coli RG
pRSET-C-CEACAM6N	rCEACAM6-N-His	E. coli RG
pRSET-C-CEACAM8N	rCEACAM8-N-His	E. coli RG
pET21d-CEACAM1N	rCEACAM1-N	E. coli RG
pET21d-CEACAM1NAF29A	rCEACAM1-N∆F29A	E. coli RG
pET21d-CEACAM1N∆Q44A	rCEACAM1-N∆Q44A	E. coli RG
pET21d-CEACAM1N∆A49V	rCEACAM1-N∆A49V	E. coli RG
pET21d-CEACAM1N∆Q89A	rCEACAM1-N∆Q89A	E. coli RG
pET21d-CEACAM1N∆L95A	rCEACAM1-N∆L95A	E. coli RG
pET21d-CEACAM1N∆V96A	rCEACAM1-N∆V96A	E. coli RG
pET21d-CEACAM1NAN97A	rCEACAM1-NAN97A	E. coli RG
pRSET-C-B6N	rB6N-His	E. coli RG
pRSET-C-IgABR	rIgABR-His	E. coli RG
pRSET-C-B6C	rB6C-His	E. coli RG
pRSET-C-β-IgSF / β-IgI3	rβIgSF-His, β-IgI3-His	E. coli RG
	rβIgI3ΔF42A-His	E. coli RG
	rβIgI3ΔL45A-His	E. coli RG
	rβIgI3ΔL46A-His	E. coli RG
	rβIgI3ΔS52A-His	E. coli RG
	rβIgI3ΔV53A-His	E. coli RG
	rβIgI3ΔD55A-His	E. coli RG
pRSET-C-β75KN	rβ75KN-His	E. coli RG
pRSET-C-R28-IgI3	rR28-IgI3-His	E. coli RG

Appendix Table S2: Expression vectors constructs. Open reading frames (ORFs) coding the extracellular domains of CEACAMs were cloned into pcDNA3.4 vectors, and proteins were expressed in Expi293F cells. ORFs coding the N domains of CEACAMs, the A1B1A2 domain of CEACAM1 and β protein domains were cloned into pRSET-C vectors, and proteins were expressed in *E. coli*.

	K _D (nM)	ΔH (kcal mol ⁻¹)	TΔS (kcal mol ⁻¹)
β-IgSF			
rCC1-N	96±2	-4.7±0.3	+4.9
rCC3-N	No Binding Observed		
rCC5-N	152±27	-2.2±0.1	+7.1
rCC6-N	No Binding Observed		
rCC8-N	No Binding Observed		

Appendix Table S3: Isothermal Titration Calorimetry (ITC) binding curves constants and thermodynamic paramters for CEACAM-N and β -IgSF interactions. Experiments were performed using β -IgI3 and N domains of (r)CEACAM1 (CC1), CEACAM3 (CC3), CEACAM5 (CC5), CEACAM6 (CC6) and CEACAM8 (CC8) on an iTC200 instrument (GE Healthcare), at 25 °C with 16 injections of 2.42 µL aliquots. All data were analyzed using Origin 7.0 software.

	β-IgI-CEACAM1-N	
Data collection		
Space group	I4122	
Cell dimensions		
a, b, c (Å)	131.62 131.62 257.07	
α, β, γ (°)	90.00 90.00 90.00	
Resolution (Å)	48.57-3.25	
R _{merge}	0.076 (1.386)	
$R_{p.i.m}$	0.035 (0.635)	
Ι/σΙ	18.2 (2.2)	
Completeness (%)	99.8 (99.8)	
Redundancy	10.7 (10.9)	
CC _{1/2}	0.999 (0.919)	
Refinement		
Resolution (Å)	48.57-3.25	
No. reflections	18198	
$R_{ m work}$ / $R_{ m free}$	21.8/24.4	
No. atoms		
Protein	3311	
Water	1	
Ligand	37	
<i>B</i> -factors		
Protein	161.19	
Water	152.40	
Ligands	193.10	
R.m.s. deviations		
Bond lengths (Å)	0.004	
Bond angles (°)	1.422	

Appendix Table S4. Data collection and refinement statistics for β -IgI3 and CEACAM1 (CC1)-

N. Values in parentheses are for highest-resolution shell.

β-IgI3 atom	Distance (Å)	CC1-N atom
L40	3.88	S93 [C]
	3.86	S93 [O]
	3.65	D94 [N]
	3.24	D94 [CA]
	3.27	D94 [CB]
D41 [CA]	3.53	S93 [O]
D41 [OD1]	3.66	S93 [CB]
D41 [C]	3.49	S93 [O]
F42 [N]	3.72	S93 [C]
	2.57	S93 [O]
F42 [CA]	3.40	S93 [O]
F42 [CB]	3.34	S93 [O]
	3.66	L95 [CD1]
F42 [CG]	3.77	S93 [O]
	3.65	L95 [CD2]
	3.97	L95 [CD1]
F42 [CD2]	3.36	S93 [O]
	3.93	D94 [CA]
	3.59	D94 [C]
	3.75	D94 [O]
	3.89	L95 [N]
	3.57	L95 [CB]
	3.59	L95 [CD2]
	3.84	L95 [CG]
	3.84	L95 [CD1]
F42 [CE2]	3.79	D94 [C]
	3.84	D94 [O]
	3.79	L95 [CB]
	3.94	L95 [CD2]
F42 [C]	3.93	S93 [O]
S43 [OG]	3.95	S93 [OG]
L46 [CB]	3.79	F29 [CG]
	3.54	F29 [CD2]
	3.52	F29 [CE2]
	3.99	F29 [CE1]
	3.75	F29 [CZ]
L46 [CG]	3.68	F29 [CD1]
	3.84	F29 [CD2]
L46 [CD1]	3.34	F29 [CB]
	3.62	F29 [CD1]
	5.59 2.20	F29 [CG]
	5.59 2.51	Г29 [CD2] 1.05 [CD1]
L40 [CD2]	5.51 2.71	L93 [CD1]
L40 [U] L46 [O]	3./1	Г29 [CZ] F20 [CZ]
L40 [U]	3.19	F29 [CL]
14/[11]	3.90	F29 [CE1] F20 [C7]
T47 [CG2]	3.00	F29 [CE] F20 [CE1]
14/ [CG2] N50 [ND2]	2.34	Г29 [CEI] 101 [CD1]
N50 [ND2]	3.50	131 [CD1]
	3.19	F29 [CE2]
P51 [O]	3.55	
\$52 [CA]	3 33	T56 [OC1]
	5.55	100[001]

S52 [CB]	2.94	T56 [OG1]
	3.71	T56 [CB]
V53 [CB]	3.89	Y31 [O]
V53 [CG1]	3.97	G30 [C]
[]	4 00	G30 [0]
	3.81	Y31 [C]
	3.80	V31 [N]
	3.00	\$32 [N]
	2.54	552 [N] 101 [CC1]
	2.24	191 [CO1] 101 [CD1]
	3.30	
	3.93	S32 [CB]
V53 [CG2]	3.69	G30 [C]
	3.76	Y31 [N]
	3.46	G30 [CA]
	3.98	Y48 [N]
	3.54	Y48 [C]
	3.32	Y48 [O]
	3.65	A49 [N]
	3.89	A49 [CA]
V53 [C]	3.91	S32 [OG]
	3.62	044 [NE2]
V53 [O]	3.93	\$32 [OG]
,55[0]	4 00	G47 [CA]
	3.66	S32 [CB]
	3.57	044 [CD]
	3.97	$Q_{44} [CD]$
	2.50	$Q_{44}[0E1]$
954 [N]	2.50	$\begin{array}{c} Q44 [NL2] \\ 822 [OC] \end{array}$
554 [N]	3.95	552 [UG]
	3.81	
554 [CA]	3.29	Y 34 [OH]
S54 [C]	3.47	Y 34 [OH]
554 [U]	3.22	I9I [CDI]
D55 [N]	3.24	Y 34 [OH]
D55 [CG]	3.74	G41 [N]
	3.80	G41 [CA]
D55 [OD1]	3.82	G41 [CA]
D55 [OD2]	3.50	V39 [O]
	3.75	D40 [C]
	2.90	G41 [N]
	3.37	G41 [CA]
I57 [CG2]	4.00	L95 [CD2]
T59 [CB]	3.80	L95 [O]
T59 [OG1]	2.86	L95 [0]
T59 [CG2]	3.76	L95 [CB]
	3.45	L95 CD21
	3.98	L95 [O]
	3.56	L95 [CG]
Y61 [CZ]	3.45	D94 [0]
	3.89	D94 [CB]
	2.07	D94 [CD]
	2.11	D74 [C]
VCI ICEO	2.00	D94 [U]
101 [CE2]	3.43	V90 [CG1]
	5.45	D94 [O]
	3.98	L95 [O]

Y61 [CD2]	3.99	V96 [CG1]

Appendix Table S5. Contact sites in (β-IgI3)(CEACAM1-N) complex. β-IgI3 atoms within 4.0Å of CEACAM1-N (CC1-N) atoms are displayed as calculated using Ncont from the CCP4 suite of programs (Winn *et al*, 2011).

	K _D (nM)	ΔH (kcal mol ⁻¹)	TΔS (kcal mol ⁻¹)	
Binding to rCC1-N				
β-IgI3	96±2	-4.7±0.3	+4.9	
β-IgI3 ^{F42A}	16±15	-6.3±0.2	+5.2	
β-IgI3 ^{L45A}	234±16	-4.7±0.1	+4.3	
β-IgI3 ^{L46A}		No Binding Observed		
β-IgI3 ^{S52A}	85±20	-4.8±0.1	+4.9	
β-IgI3 ^{V53A}	562±44	-4.3±0.0	+4.3	
β-IgI3 ^{D55A}	690±52	-3.1±0.1	+5.3	
Binding to β-IgI3				
rCC1-N	96±2	-4.7±0.3	+4.9	
rCC1-N ^{F29A}		No Binding Observed		
rCC1-N ^{Q44A}	996±116	-7.6±0.1	+0.6	
rCC1-N ^{Q89A}	No Binding Observed			
rCC1-N ^{I91A}	No Binding Observed			
rCC1-N ^{L95A}	1350±460	-2.3±0.1	+5.7	
rCC1-N ^{V96A}	370±4	-7.0±0.1	+1.8	
rCC1-N ^{N97A}	490±120	-9.2±0.4	-0.5	

Appendix Table S6: Isothermal Titration Calorimetry (ITC) binding curves constants and thermodynamic paramters for CEACAM1 (CC1)-N and β -IgI3 mutants. Experiments were performed using an iTC200 instrument (GE Healthcare), at 25 °C with 16 injections of 2.42 µL aliquots. All data were analyzed using Origin 7.0 software.

Cell Line	Description
Expi293F	For expression of soluble recombinant proteins
HeLa.EV	HeLa cells carry empty vector
HeLa.CEACAM1	HeLa cells stably expressing CEACAM1
HeLa.CEACAM3	HeLa cells stably expressing CEACAM3
HeLa.CEACAM5	HeLa cells stably expressing CEACAM5
HeLa.CEACAM6	HeLa cells stably expressing CEACAM6
HeLa.CEACAM8	HeLa cells stably expressing CEACAM8
CHO.EV	Chinese Hamster Ovary cells carrying empty vector
CHO.CEACAM1	Chinese Hamster Ovary cells stably expressing CEACAM1
CHO.CEACAM3	Chinese Hamster Ovary cells stably expressing CEACAM3
CHO.CEACAM5	Chinese Hamster Ovary cells stably expressing CEACAM5
CHO.CEACAM6	Chinese Hamster Ovary cells stably expressing CEACAM6
CHO.CEACAM8	Chinese Hamster Ovary cells stably expressing CEACAM8

Appendix Table S7: Cell lines used in this study.

Target	Clone or	Conjug	Manufactu	Link
	catalog #	ate	rer	
N-terminal	CC1/3/5-	-	LeukoCom	
domain of	Sab		GmbH,	
CEACAM1,			Essen,	
CEACAM3			Germany.	
and				
CEACAM5				
A1B1 domain	B3-17	-	LeukoCom	https://www.kerafast.com/productgroup/860/ceacam1cd66a-antibodies
of CEACAM1			GmbH,	
			Essen,	
			Germany.	
A1B1 domain	C5-1X	-	LeukoCom	https://www.kerafast.com/productgroup/860/ceacam1cd66a-antibodies
of CEACAM1			GmbH,	
			Essen,	
			Germany.	
A1B1A2B2A	5C8C4	-	LeukoCom	https://ximbio.com/reagent/153325/anti-ceacam5-cd66e-5c8c4-monoclonal-antibody
3B3 domain			GmbH,	
of CEACAM5			Essen,	
			Germany.	
Mouse IgG	#R0480	PE	LeukoCom	https://www.agilent.com/store/en_US/Prod-R048001-2/R048001-
			GmbH,	2?navAction=push&catId=SubCat2ECS_146502&pCatName=Secondary%20Antibo
			Essen,	dy%20Conjugates
			Germany.	
Mouse IgG	#1036-05	HRP	LeukoCom	https://www.southernbiotech.com/?catno=1036-05&type=Polyclonal#&panel2-1
			GmbH,	
			Essen,	
			Germany.	
Rabbit IgG	#AB_2632	PE	LeukoCom	https://www.jacksonimmuno.com/catalog/products/111-117-008/Goat-Rabbit-IgG-
	461		GmbH,	Fc-R-Phycoerythrin
			Essen,	
			Germany.	

6xHis	#AD1.1.10	FITC	LeukoCom	https://www.thermofisher.com/antibody/product/6x-His-Tag-Antibody-clone-AD1-
			GmbH,	1-10-Monoclonal/MA1-81891
			Essen,	
			Germany.	

Appendix Table S8: Antibodies used in this study.