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1. Proof of Theorem 1

Proof. By Condition 1, we have limy→∞ f1(y | x) = 0 for any x ∈ X and hence tc(x) is

continuous and strictly monontonous with respect to (w.r.t.) c for 0 < c ≤ c∗ and f1(y | x) is

continuous and strictly monontonous with respect to y. Thus E1[F1(tc(X) | X)] is continuous

and strictly monontonous with respect to c for 0 < c ≤ c∗ and limc→0 E1[F1(tc(X) | X)] = 1

by dominated convergence theorem. Since E1[F1(tc∗(X) | X)] ≤ 1− ε, by intermediate value

theorem, there is a constant 0 < c0 ≤ c∗ such that E1[F1(tc0(X) | X)] = 1− ε. For any rule

function t(·), define the lagrange problem

E0t(X)− 1

c0
P1(Y ≤ t(X))

= E0t(X)− 1

c0
E1[F1(t(X) | X)]

=

∫
t(x)f0(x)dµ(x)− 1

c0

∫
F1(t(x) | x)f1(x)dµ(x). (S1)

Suppose t0(·) is the minimum point of variation problem (S1). Then for any x ∈ X , t0(x)

satisfies the Euler’s equation (Gelfand and Fomin, 1963)

f0(x)− 1

c0
f1(t0(x) | x)f1(x) = 0

or equivalently

f1(t0(x) | x)
f1(x)

f0(x)
= c0.

Because 0 < c0 ≤ c∗ and f1(y | x) is either strictly monontonous or unimodal and piecewise

strictly monontonous with respect to y, the set Cx = {y : f1(y | x)f1(x)
f0(x)

≥ c0} is either a

single point or a closed interval. For any given x ∈ X , let t+(x) = supCx and t−(x) = inf Cx.

Then t+(x) = tc0(x) and any solution of f1(y | x)f1(x)/f0(x) = c0 equals to t−(x) or t+(x).

Hence for any x ∈ X , t0(x) = t−(x) or t0(x) = t+(x). Define X+ = {x : t0(x) = t+(x)} and
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X− = {x : t0(x) = t−(x)}. Then∫
t0(x)f0(x)dµ(x)− 1

c0

∫
F1(t0(x) | x)f1(x)dµ(x)−∫

t+(x)f0(x)dµ(x) +
1

c0

∫
F1(t+(x) | x)f1(x)dµ(x)

=

∫
X−

[
(t0(x)− t+(x))f0(x) +

1

c0

∫ t+(x)

t0(x)

f1(y | x)f1(x)dy
]
dµ(x)

=

∫∫
H

1

c0
(f1(y | x)f1(x)− f0(x))dydµ(x) ≤ 0,

where the last inequality follows from the fact that t0(·) is a minimum point of problem (S1)

and H = {(x, y) : x ∈ X−, t0(x) < y < t+(x)}.

On the other hand,

1

c0
f1(y | x)f1(x)− f0(x) > 0

on H. This implies H is a null set and t0(·) = t+(·) = tc0(·) with probability one. Thus tc0(·)

is the unique minimum point of problem (S1) and satisfies
∫
F1(tc0(x) | x)f1(x)dµ(x) =

E1[F1(tc0(X) | X)] = 1 − ε. Next, we show that tc0(·) is the unique minimum point of the

primal problem

min
t

∫
t(x)f0(x)dµ(x) s.t.

∫
F1(t(x) | x)f1(x)dµ(x) ≥ 1− ε. (S2)

If t̃(·) is a minimum point of the problem (S2), then
∫
t̃(x)f0(x)dµ(x) ≤

∫
tc0(x)f0(x)dµ(x)

and
∫
F1(t̃(x) | x)f1(x)dµ(x) ≥

∫
F1(tc0(x) | x)f1(x)dµ(x) = 1− ε. Thus∫

t̃(x)f0(x)dµ(x)− 1

c0

∫
F1(t̃(x) | x)f1(x)dµ(x)

≤
∫
tc0(x)f0(x)dµ(x)− 1

c0

∫
F1(tc0(x) | x)f1(x)dµ(x).

This implies t̃(·) is a minimum point of problem (S1) and hence t̃(·) = tc0(·) with probability

one since tc0(·) is the unique minimum point of problem (S1). This proves that tc0(·) is the

unique minimum point of problem (S2) and hence problem (1) in the main part of this paper.
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2. Convergence rate

2.1 Conditions and results

Condition 1: f0(x) is bounded away from zero and f1(y | x), f1(x), f0(x) are bounded

from above.

Condition 2: There are some δ, M1, M2, M3 > 0 such that (i) ∀x ∈ X , −M1 ≤ f ′1(y |

x)f1(x)/f0(x) ≤ −M2; (ii) c0 + M2δ ≤ c∗; (iii) and f1(y | x) ≥ M3 for all y ∈ (tc0(x) −

δ, tc0(x) + δ).

Let e1n = supx |f̂1(x)− f1(x)|, e2n = supx |f̂0(x)− f0(x)|, e3n = supy,x |f̂1(y | x)− f1(y | x)|

and e4n = supy,x |F̂1(y | x) − F1(y | x)|. The convergence rates of ejn, j = 1, 2, 3, 4, are

available in many statistic literatures (Hansen, 2008; van der Vaart, 1998). We establish

the relationship among these convergence rates and the convergence rate of the resultant

estimated optimal quarantine rule in the next theorem.

Theorem 1: Suppose that max{e1n, e2n, e3n, e4n, n−1/2} = OP (rn) where rn is a sequence

of positive numbers that converges to zero, under the conditions of Theorem 1 and Conditions

1 and 2, we have

sup
x
|t̂opt(x)− tc0(x)| = OP (rn).

The convergence rates of ejn, for j = 1, 2, 3, 4, are often slower than or of the same order as

n−1/2. In these cases, the result of Theorem 1 demonstrate that the uniform convergence rate

among t̂opt(x) is the same as the slowest convergence rate of e1n, e2n, e3n and e4n. Thus in

order to get an accurate estimation of the optimal quarantine rule, we only need to estimate

f1(x), f0(x), f1(y | x) and F1(y | x) accurately.
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2.2 Proof of Theorem 1

Proof. First, note that∣∣∣∣∣ f̂1(y | x)f̂1(x)

f̂0(x)
− f1(y | x)f1(x)

f0(x)

∣∣∣∣∣
≤ f̂1(y | x)

∣∣∣∣∣ f̂1(x)

f̂0(x)
− f1(x)

f0(x)

∣∣∣∣∣+
f1(x)

f0(x)
|f̂1(y | x)− f1(y | x)|

≤ f̂1(y | x)
1

f̂0(x)f0(x)
(f̂1(x)|f̂0(x)− f0(x)|+ f0(x)|f̂1(x)− f1(x)|)

+
f1(x)

f0(x)
|f̂1(y | x)− f1(y | x)|.

By Condition 1 and the convergence rate of ejn for j = 1, 2, 3, 4, we have

sup
x,y

∣∣∣∣∣ f̂1(y | x)f̂1(x)

f̂0(x)
− f1(y | x)f1(x)

f0(x)

∣∣∣∣∣ = OP (rn).

By Condition 2 (i) and (ii),

1

M1

(c− c′) ≤ tc(x)− tc′(x) ≤ 1

M2

(c− c′) (1)

for any c, c′ ∈ (c0 −M2δ, c0 +M2δ) such that c > c′. Then for any c ∈ (c0 −M2δ, c0 +M2δ)

f̂1(tc(x) + anrn | x)f̂1(x)

f̂0(x)
≤f1(tc(x) + anrn | x)

f0(x)
+ sup

y,x

∣∣∣∣∣ f̂1(y | x)f̂1(x)

f̂0(x)
− f1(y | x)f1(x)

f0(x)

∣∣∣∣∣
≤c−M2anrn +OP (rn)

for sufficiently large n, where {an}∞n=1 is a sequence of positive numbers such that anrn → 0

and the OP is uniform in c. Thus

f̂1(tc(x) + anrn | x)f̂1(x)

f̂0(x)
< c (2)

with probability approaching 1 for any {an}∞n=1 such that an →∞, anrn → 0. Similarly,

f̂1(tc(x)− anrn | x)f̂1(x)

f̂0(x)
≥ c+ c2anrn +OP (rn).

for the same {an}∞n=1 and

f̂1(tc(x)− anrn | x)f̂1(x)

f̂0(x)
> c
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with probability approaching 1. Hence

sup
c∈(c0−M2δ,c0+M2δ)

∣∣∣∣t̂c(x)− tc(x)

∣∣∣∣ ≤ anrn

with probability approaching 1 for any an converging to infinity slowly. Thus

sup
c∈(c0−M2δ,c0+M2δ)

∣∣∣∣t̂c(x)− tc(x)

∣∣∣∣ = OP (rn).

Note that according to Condition 1

sup
c∈(c0−M2δ,c0+M2δ)

∣∣∣∣∣ 1

n1

∑
Ii=1

F1(t̂c(Xi) | Xi)−
1

n1

∑
Ii=1

F1(tc(Xi) | Xi)

∣∣∣∣∣
≤ L sup

c∈(c0−M2δ,c0+M2δ)

∣∣∣∣t̂c(x)− tc(x)

∣∣∣∣ = OP (rn),

(3)

where L = supx,y f1(y | x) < ∞. According to Example 19.11 in van der Vaart (1998), the

function class {F1(tc(·) | · ) : c ∈ (c0 −M2δ, c0 +M2δ)} is a Donsker class. Thus

sup
c∈(c0−M2δ,c0+M2δ)

∣∣∣∣∣ 1

n1

∑
Ii=1

F1(tc(Xi) | Xi)− E1F1(tc(X) | X)

∣∣∣∣∣ = OP

(
1√
n

)
. (4)

Note that

sup
c∈(c0−M2δ,c0+M2δ

∣∣∣∣∣ 1

n1

∑
Ii=1

F̂1(t̂c(Xi) | Xi)−
1

n1

∑
Ii=1

F1(t̂c(Xi) | Xi)

∣∣∣∣∣ ≤ e4n = OP (rn).

Then combining this with (3) and (4), we have

sup
c∈(c0−M2δ,c0+M2δ)

∣∣∣∣∣ 1

n1

∑
Ii=1

F̂1(t̂c(Xi) | Xi)− E1F1(tc(X) | X)

∣∣∣∣∣ = OP (rn).

Because 1− E1F1(tc0(X) | X) = ε, according to Conditions 2 (iii) and (1), we have

|1− E1F1(tc(X) | X)− ε| = |E1F1(tc(X) | X)− E1F1(tc0(X) | X)| ≥ M3

M1

|c− c0|.

Then with the same arguments we used to show (2), we get

1− 1

n1

∑
Ii=1

F̂1(t̂c0+anrn(Xi) | Xi) < ε

and

1− 1

n1

∑
Ii=1

F̂1(t̂c0−anrn(Xi) | Xi) > ε
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with probability approaching 1. By monotonicity of 1− 1
n1

∑
Ii=1 F̂1(t̂c(Xi) | Xi) with respect

to c, we have |ĉ0 − c0| < anrn with probability approaching 1. Hence |ĉ0 − c0| = OP (rn).

Again by (1),

sup
x
|t̂opt(x)− tc0(x)| = OP (rn).

3. Simulation results with ε = 0.01

In this section we provide some simulation results with the choice ε = 0.01. Here we consider

the same data generation processes as in Section 3 in the main text. Quarantine durations for

people with different feature values obtained by the proposed method and the two quantile

methods under the four scenarios are plotted in Fig. 1. All the results are averaged over 200

simulation datasets.

[Figure 1 about here.]

The average quarantine duration (AQD) of uninfected people and the escape probability

(EP) are summarized in the following table. Because non-integer quarantine duration is not

practical, the quarantine duration is rounded to the nearest integer in calculation. All the

results are averaged over 200 simulation datasets.

[Table 1 about here.]

Table 1 shows that the proposed optimal quarantine rule still performs well with the choice

ε = 0.01.

4. Evaluation of the Weibull model

In this section, we assess how well the Weibull conditional density model that assumed in

Section 4.1 fits the data. A parametric model is useful as long as it can approximate the true
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data generation process well, even though it may not be correct. Hence, instead of performing

a goodness of fit test, we estimate the following distance between the true distribution and

our assumed model with least false parameters

D =

∫∫
(F1(y | x)− F1(y | x, α∗, γ∗))2dF1(x)dG1(y)

where α∗, γ∗ are least false parameters that our estimators converge to, F1(y | x, α, γ) =

1−exp(−(y/γTv(x))α), and F1(x), G1(y) are the marginal distribution functions of X and Y

conditional on I = 1, respectively. Remind that F1(y | x) is the true distribution function of

Y conditional on X = x and I = 1. Thus D is a metric ranging from 0 to 1 that can describe

how well our model can approximate the true distribution. We estimate F1(y | x) by kernel

method with a Gaussian associate kernel, estimate F1(y | x, α∗, γ∗) by F1(y | x, α̂, γ̂) and

estimate F1(x) and G1(y) by their empirical version, respectively. Then by plugging in these

estimations we get an estimate of D. The estimate is 0.0006, which is extremely small. Thus

the assumed Weibull conditional density model can approximate the true data generation

process well, and we can expect it to work well in practice.

5. Countries at different risk levels

[Table 2 about here.]
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(d) Scenario 4.

Figure 1: Quarantine duration for people with different feature values: 0.99 quantile, red
dashed line; 0.99 conditional quantile, green dashes dotted line; optimal duration, blue dotted
line; theoretical optimal duration, black solid line.
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Table 1: Average quarantine duration of uninfected people and escape probability associated
with the three quarantine rules under different scenarios with ε = 0.01

Scenario Method AQD EP

1
0.95 quantile 19.76 1.2%
0.95 conditional quantile 13.90 1.1%
optimal quarantine rule 12.97 1.1%

2
0.95 quantile 18.91 1.2%
0.95 conditional quantile 17.88 1.1%
optimal quarantine rule 16.54 1.1%

3
0.95 quantile 24.47 1.2%
0.95 conditional quantile 17.88 2.1%
optimal quarantine rule 16.38 1.8%

4
0.95 quantile 17.28 1.1%
0.95 conditional quantile 16.83 0.6%
optimal quarantine rule 15.80 0.5%
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Table 2: Countries at different risk levels

risk group countries

high risk
Amenria, Belgium, Brazil, Cabo Verde, Canada, Chile, Gabon, Kuwait,
Panama, Peru, Qatar, Singapore, Spain, United Arab Emirates

medium risk

Afghanistan, Algeria, Argentina, Azerbaijan, Bulgaria, Colombia,
Equatorial Guinea, Eswatini, Finland, France, Germany, Guinea,
Mexico, Netherlands, North Macedonia, Oakistan, Paraguay, Portugal,
Romania, Senegal, Serbia, South Africa, Switzerland, United States

low risk

Angola, Austrilia, Bahamas, Benin, Burkina Faso, Cameroon,
Central African Republic, China, Cuba, Estonia, Ethiopia, Gambia,
Greece, Guatemala, India, Japan, Lebanon, Liberia, Lithuania,
Madagascar, Mali, Mauritania, Mozambique, Nepal, Phillippines,
Rwanda, Slovakia, Sri Lanka, Sudan, Thailand, Togo, Tunisia, Uganda


