Supporting Information

Effect of pH on the catalytic degradation of Rhodamine B by the

synthesized CDs/g-C₃N₄/Cu_xO composites

Yulian Guo, Chunsun Zhou, Lijuan Fang, Zhongda Liu, Wen Li, Miao Yang* School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China

Corresponding Author: M. Yang, <u>yangmiao@whut.edu.cn</u>

Figure S1. FT-IR spectra of g-C₃N₄, CD₃/g-C₃N₄, and CDs/g-C₃N₄/Cu_xO composite.

Figure S2. XRD patterns of Cu₂O, g-C₃N₄, CD₃/g-C₃N₄ and CDs/g-C₃N₄/Cu_xO composite.

	Binding	Chemical		Binding	Chemical
	energy/eV	bonds		energy/eV	bonds
C 1s	284.94	C=C	N 1s	398.53	C-N=C
	287.90	С-ОН		399.05	N-C ₃
	288.31	N-C=N		400.73	С–N–Н
Cu 2p	933.10/952.95	$Cu^+ \text{ or } Cu^0$	Cu LMM	570.89	Cu^+
	935.02/955.13	Cu^{2+}		576.42	Cu^{2+}
	943.09/963.11	Cu ²⁺ satellite			
		peaks			

Table S1. XPS results of the $CDs/g-C_3N_4/Cu_xO$ composite.

Figure S3. XPS spectra of CDs/g-C₃N₄/Cu_xO composite

Figure S4. High-resolution XPS spectra of O1s

Figure S5. N₂ adsorption/desorption isotherm and the pore size distribution of $g-C_3N_4$, $CD_3/g-C_3N_4$, $CD_5/g-C_3N_4/Cu_xO$.

Figure S6. [Rh B]/[Rh B]₀ as a function of time with the different H_2O_2 concentrations in the presence of 2 g/L CDs/g-C₃N₄/Cu_xO composite with initial concentration of [Rh B]₀=0.064 mM, and V=100 mL.

[H ₂ O ₂] ₀ (mM)	1	2	3	5	8	10
Degradation ratios (%)	52.6	67.4	81.1	85.4	92.8	95.2
Utilization (%)	4.1	3.1	2.1	3.3	2.1	2.5

Table S2. Utilization of H_2O_2 in the different H_2O_2 concentrations

Figure S7. (a) [Rh B]/[Rh B]₀ as a function of time in stock CDs/g-C₃N₄/Cu_xO (2 g/L) suspensions and filtrates obtained at selected time intervals with initial concentration of [Rh B]₀=0.064 mM, $[H_2O_2]_0=5$ mM and V=100 mL. (b) Degradation of RhB in heterogeneous catalytic reaction and filtered solution in 1 min reacting over a longer period of time.

Figure S8. Variation of Rh B wavelength at different pH;

Figure S9. (a) Recycling performance for 5 mM H_2O_2 decomposition in the presence of 2 g/L CDs/g-C₃N₄/Cu_xO composite at pH 11 in 25 minutes per cycle, and V=100 mL; (b) Recycling performance of the 2 g/L CDs/g-C₃N₄/Cu_xO composite for Rh B (0.064 mM) degradation in the

presence of 5 mM H₂O₂ at pH 11 in 30 minutes per cycle.

Figure S10. [Rh B]/[Rh B]₀ as a function of time in the presence of the 2 g/L CDs/g-C₃N₄/Cu_xO composite for Rh B (0.064 mM) degradation in the presence of 10 mM H₂O₂ at pH 11.

Figure S11. (a) H_2O_2 consumed in cycling reactions by the 2 g/L CDs/g-C₃N₄/Cu_xO composite for Rh B (0.064 mM) degradation in the presence of 5 mM H_2O_2 at pH 4.6 (Unadjusted pH; V=100 mL); (b) The recycling degradation of the Rh B (0.064 mM) was conducted by 2 g/L CDs/g-C₃N₄/Cu_xO composite in the presence of 5 mM H_2O_2 at pH 4.6 (unadjusted pH; V=100 mL).

Figure S12. [Rh B]/[Rh B]₀ (a) and $[H_2O_2]/[H_2O_2]_0$ (b) as a function of time in the presence of different quenchers by the 2 g/L CDs/g-C₃N₄/Cu_xO composite for Rh B (0.064 mM) degradation in the presence of 5 mM H₂O₂. (c) Parameters of the pseudo-first-order kinetic models of different quenchers by the 2 g/L CDs/g-C₃N₄/Cu_xO composite for Rh B (0.064 mM) degradation in the presence of 5 mM H₂O₂. (d) [Rh B]/[Rh B]₀ as a function of time in the presence of different quenchers by the 2 g/L CDs/g-C₃N₄/Cu_xO composite for Rh B (0.064 mM) degradation in the presence of 5 mM H₂O₂. (d) [Rh B]/[Rh B]₀ as a function of time in the presence of different quenchers by the 2 g/L CDs/g-C₃N₄/Cu_xO composite for Rh B (0.064 mM) degradation in the presence of 5 mM H₂O₂.

Fenton-like Catalysts	Catalysts mg/mL	Pollutants	Cyclic degradation	The application range of pH	Ref.
CuNiFeLa-LDH	0.25	Antibiotics	4 times	natural pH	58
		10 mg/L	96.8%-96.5%		
Cu-MP NCs	1	Rh B	6 times	2.62-10.42	59
		10 mg/L	99%-90%		
Mn ₃ O ₄ .CuO	1.9	p-nitrophenol	5 times	6-10	60
		10 mg/L	98%-78%		
Cu/MnO ₂	0.5	benzotriazole	5 times	3.4-10.57	61
		5.96 mg/L	90%-39%		
CDs/g-C ₃ N ₄ /Cu _x O	2.0	RhB	8 times	3-11	This
		30 mg/L	99%-95%		work

Table S3. Comparison of the catalytic performance of $CDs/g-C_3N_4/Cu_xO$ and several reported relative studies.

Table S4. Reaction formulas and reaction rate constants of possible reactions in radical trapping. 51, 53, 62

Reaction formula	Reaction rate constant	Mark
•OH+BQ →BQ-•OH	$k = 6.6 \times 10^9 \text{ M}^{-1} \text{ s}^{-1}$	R_1
•O ₂ ⁻ +BQ→BQ-•O ₂ ⁻	$k = 0.9\text{-}1.0 \times 10^9 \ M^{-1} \ s^{-1}$	R_2
•OH+ IPA→IPA-•OH	$k = 1.9 \times 10^9 \text{ M}{-1 \text{ s}{-1}}$	R_3
$\bullet OH + \bullet OH \rightarrow H_2 O_2$	$k = 5-8 \times 10^9 \ M^{-1} \ s^{-1}$	R_4
$\bullet \mathrm{OH} + \mathrm{H}_2\mathrm{O}_2 \rightarrow \bullet \mathrm{O}_2\mathrm{H}$	$k = 1.7\text{-}4.5 \times 10^7 \text{ M}^{-1} \text{ s}^{-1}$	R_5
$\bullet O_2H + \bullet O_2H \twoheadrightarrow H_2O_2 + O_2$	$k = 0.8\text{-}2.2 \times 10^6 \ M^{-1} \ s^{-1}$	R_6
$\bullet OH + \bullet O_2 H \rightarrow H_2 O + O_2$	$k = \! 1.4 \times 10^{10} \ M^{-1} \ s^{-1}$	R_7

Table S5. The initial mass ratio of Cu₂O to CDs/g-C₃N₄ for CDs/g-C₃N₄/Cu_xO composites.

S.NO	Sample code	wt% of Cu ₂ O
0.5	C1	1.3
1	C2	2.8
2	C3	5.4
3	C4	7.9
4	C5	10.0
5	C6	12.5