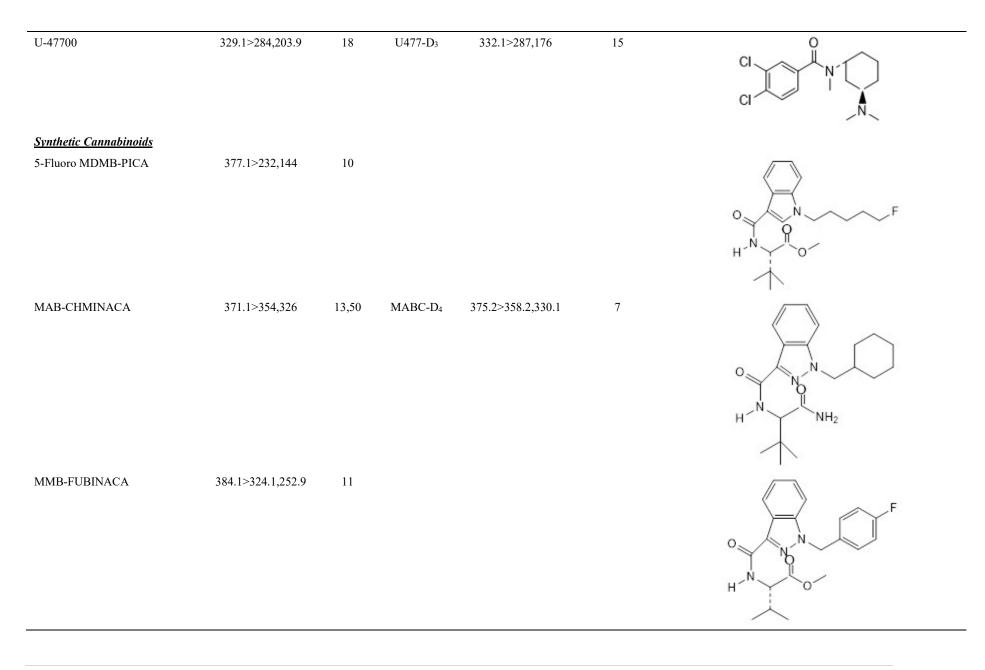
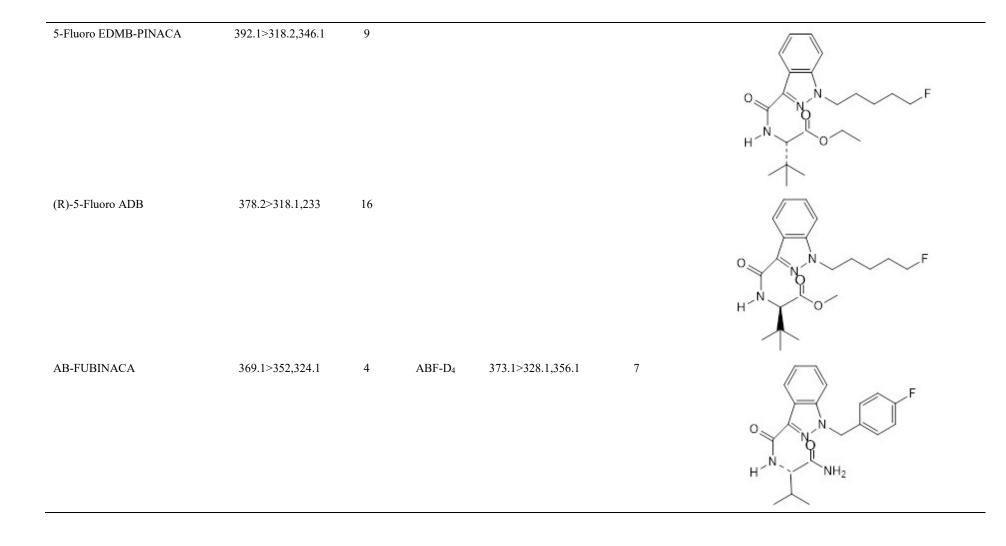
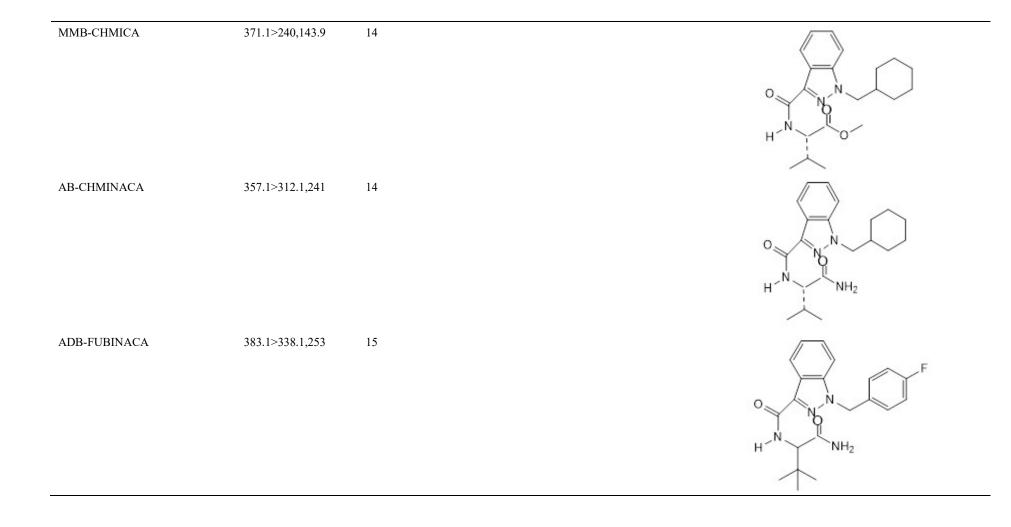
1 2	Occurrence and Mass Loading of Synthetic Opioids, Synthetic Cathinones, and Synthetic Cannabinoids in Wastewater Treatment Plants in Four U.S. Communities
3	
4	Catherine E. O'Rourke and Bikram Subedi [*]
5 6 7	Department of Chemistry, Murray State University, 1201 Jesse D. Jones Hall, Murray, KY 42071-3300, USA
8 9 10 11 12 13 14 15 16	*Corresponding author: B. Subedi Department of Chemistry, Murray State University 1201 Jesse D. Jones Hall, Murray, KY 42071 Tel: 1-270-809-6542 Fax: 1-270-809-6474 E-mail: bsubedi@murraystate.edu
17 18	Table of Contents
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41	 Table S1. HPLC mobile phase compositions and programming for sample analysis (Flow rate = 0.300 mL/min)
42 43 44	
45	

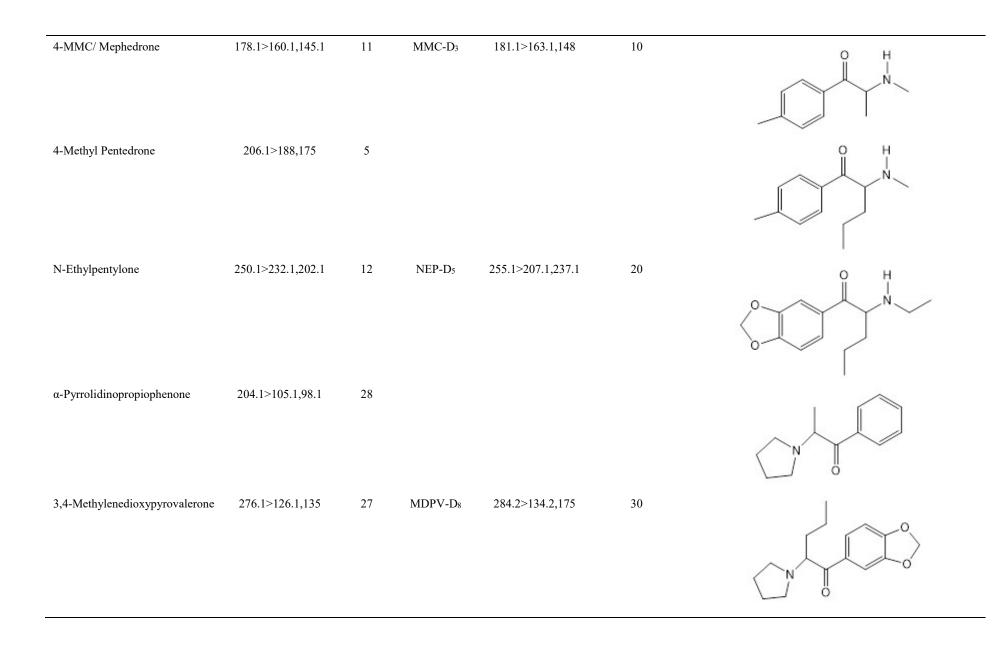
Table S1. HPLC mobile phase compositions and programming for sample analysis (Flow rate = 0.300 mL/min)

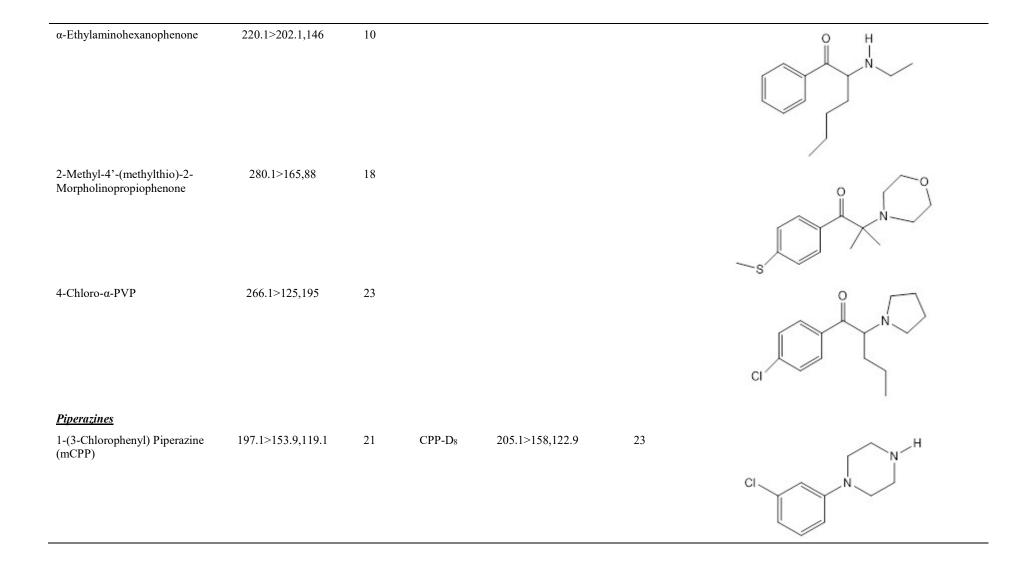

Time	0.1% Formic acid (aq.) (%)	Methanol (%)
0.00	95.0	5.0
2.00	95.0	5.0
3.00	90.0	10.0
5.50	70.0	30.0
6.00	60.0	40.0
7.50	50.0	50.0
9.00	50.0	50.0
9.30	48.0	52.0
10.00	48.0	52.0
10.30	45.0	55.0
11.50	45.0	55.0
12.00	40.0	60.0
12.50	40.0	60.0
13.00	35.0	65.0
16.00	20.0	80.0
18.00	20.0	80.0
23.00	10.0	90.0
25.00	5.0	95.0
26.00	95.0	5.0


Analytes	MS/MS Transitions	Collision Energy	Internal Standards	MS/MS Transitions	Collision Energy	Chemical Structures
Synthetic Fentanyls						
Carfentanil	395.1>335,105	15,50	CAF-D₅	400.2>340.2,246	16	
Furanyl Fentanyl	375.2>188.1,105	26	FUF-D₅	380.2>188,105	20	
Valeryl Fentanyl	365.2>188.1,105	24	VAF-D5	370.2>188.1,105	25	
Butyryl Fentanyl	351.2>188.1,105	25	BUF-D₅	356.2>188.1,105	22	


Table S2. Optimized MS/MS trans	sitions and collision ene	ergies for all targe	t drugs and their corre	sponding internal standards.

Acetyl Fentanyl323.2>188,10522ACF-13C6329.2>188.1,10520 $0 \leftarrow \downarrow \leftarrow \downarrow $							
Benzyl Fentanyl $323.2>174.1,91$ 22 $0 \leftarrow + \leftarrow $	Acetyl Fentanyl	323.2>188,105	22	ACF-13C ₆	329.2>188.1,105	20	
3'-Methyl Fentanyl 351.2>202.1,119 24	Cyclopropyl Fentanyl	349.2>188.1,105	26	CPF-D5	354.2>188.1,105	25	
	Benzyl Fentanyl	323.2>174.1,91	22				
4'-Methyl Acetyl Fentanyl 337.2>202.1,119 22 MAF-Ds 342.2>202.1,119 24	3'-Methyl Fentanyl	351.2>202.1,119	24				
	4'-Methyl Acetyl Fentanyl	337.2>202.1,119	22	MAF-Ds	342.2>202.1,119	24	


4-Fluro-Isobutyryl Fentanyl	369.2>188.1,105	26	FIBF-D7	376.2>188.1,105	26	0
						F
para-Fluorobutyryl Fentanyl	369.2>188,104.9	26				
						F N
Methoxyacetyl Fentanyl	353.2>188.1,104.9	22	MOAF-D5	358.2>188.1,105	22	0,0-
4-ANPP	281.1>188.1,105	14	ANPP-D ₅	286.2>188,105.1	15	μ
U-48800	343>298,217.8	15	U488-D3	346.1>298,217.9	15	
				,		
						ci~~ 0 ~



5-Fluoro AMB	364.1>233,304.1	22				
NM2201	376.1>232,143.9	5,43				
Synthetic Cathinones						
Methcathinone	164.1>146.1,131.1	12	MC-D3	167.1>149.1,130.9	10	O H N
Ethylone	222.1>174.1,203.9	16	ETO-Ds	227.1>179.1,209.1	15	

MT-45	349.2>181.1,169.1	22	MT45-D11	360.3>181,166	22	\frown
						N N
						Ň,
Indole						
5-IT	175.1>158,130	10				NH2
						N I I
						н
<u>Amphetamine</u>	150 15 105 122 1	17				NH I
4-methylamphetamine	150.1>105,133.1	17				NH ₂
<u>Anticonvulsants</u>						
Gabapentin	172.1>154.1,137.1	13	GBP-D ₁₀	182.2>164,147.2	12	H ₂ N COOH
						\sim
						\bigcirc
Clonazepam	315.9>269.9,241	27	CZP-D4	320>274,217.8	24	н
						N/O
						O ₂ N N
						CI

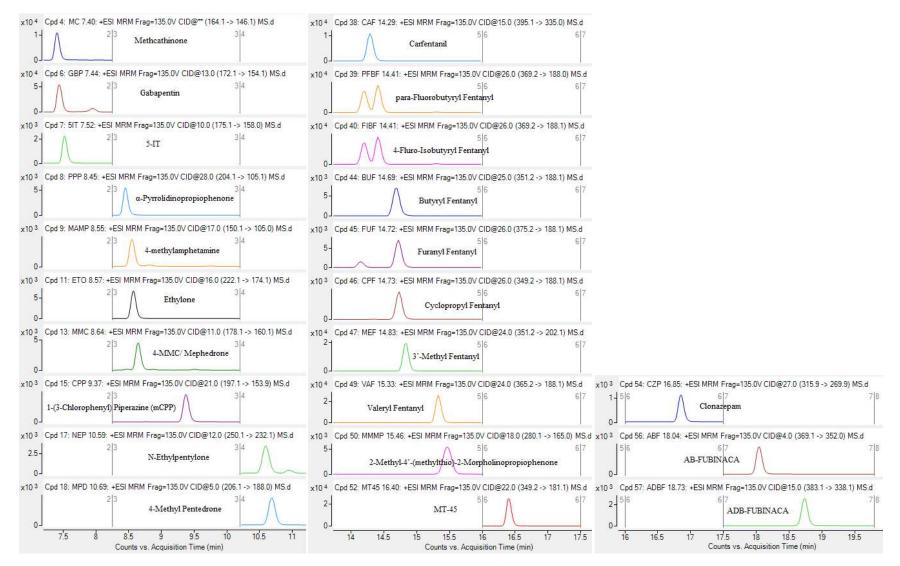


Figure S1. Schematic diagram showing the chromatographic separation of select drugs in a drug-spiked (50 or 100 ng) wastewater extract. All other target drug's chromatograms are presented in Figure 1.

56 **Optimization of Extraction Efficiency.** For the simultaneous extraction of cannabinoids, cathinones, and synthetic opioids, the three most frequently used extraction cartridges (HLB, 57 MCX, and WCX) were examined for their optimum extraction efficiency. It is important to note 58 that the recoveries reported herein are absolute recoveries. In real sample analysis, deuterated 59 analogs (internal standards) were spiked prior to extraction that corrected the loss of target NPSs. 60 At 2 or 4 ppb spiking level, the spiking recoveries of target NPSs using HLB and HLB-A ranged 61 from 50.6 ± 1.5 % (MAMP) to 115 ± 3.4 % (MABC) and 50.6 ± 4.0 % (MAMP) to 132 ± 2.5 % 62 (CPF), respectively (Figure 2A). Similarly, spiking recoveries of target NPSs using MCX and 63 WCX ranged from 51.8 ± 0.34 % (MAMP) to 132 ± 3.2 % (MABC) and 48.0 ± 1.5 % (MAMP) 64 to 128 ± 0.90 % (CPF), respectively. However, the spiking recoveries of some NPSs including 65 BUF, FUF, and MEF were >150% with all cartridges whereas the spiking recoveries of U477 66 67 could not be determined using HLB and HLB-A cartridges.

At 50 or 100 ppb spiking level, spiking recoveries of target NPSs using HLB and HLB-A 68 ranged from 39.9 ± 1.9 % (PVP) to 174.0 ± 12.1 % (MAMP) and 50.3 ± 3.98 % (PPP) to 128.7 ± 12.1 69 70 3.0 % (ADBF), respectively (Figure 2B). However, the average percentage recoveries were exceptionally high (>200%) for 5-IT and MAMP while exceptionally low (<3%) for NM2201 with 71 HLB and/or HLB-A. Similarly, the spiking recoveries of target NPSs using MCX and WCX at 50 72 or 100 ppb spiking level ranged from 54.2 ± 5.3 % (NM2201) to 127.2 ± 5.8 % (FUF), and $41.3 \pm$ 73 2.4 % (5-IT) to 133.7 \pm 2.5 % (BUF), respectively. Bade et al.²¹ found MCX-extraction more 74 efficient than HLB-extraction for cathinones whereas Fontanals et al.¹ preferred WCX over MCX 75 for cathinones. To the authors' knowledge, there was no report of the optimized extraction of 76 synthetic fentanyls from wastewater. Salguero et al.² used both HLB and MCX cartridges to cover 77 78 the wide range of physio-chemical properties of NPSs including cathinones and cannabinoids.

However, the simultaneous extraction of diverse NPSs using a unique SPE cartridge is always a method of choice owing to the cost, time, and labor associated with the extraction through multiple cartridges. As the triplicate spiking recoveries of target NPSs using MCX extraction cartridge found an optimum; MCX was considered for the extraction of NPSs from the collected wastewater samples to determine their prevalence in communities. Overall, the absolute spiking recoveries of target NPS were satisfactory not only at the mid-point calibration-level but also at the environmentally relevant concentration level.

86

Prevalence of Gabapentin. Gabapentin is a gamma-aminobutyric acid (GABA)-mediated potential 87 drug of abuse. The rate of on- and off-label prescriptions of gabapentin as an alternative to opioids 88 for pain management has been increased recently due to the associated lower cost and its 89 classification as a non-controlled substance in the U.S.³ The co-administration of gabapentin and 90 opioids causes the drug-induced respiratory depression and increase the opioid-related deaths.⁴ The 91 gabapentin overdose cases are alarming along with opioid epidemic in the Midwest and Southeast 92 regions including Illinois and Kentucky. Kentucky designated gabapentin as a schedule V drug while 93 Illinois initiated prescription monitoring program to track gabapentin prescriptions. In this study, 94 Gabapentin was quantified in all wastewater samples and the average concentrations in communities 95 C1, C2, C3, and C4 were $131 \pm 7.6 \ \mu g/L$, $58.6 \pm 5.1 \ \mu g/L$, $25.5 \pm 1.2 \ \mu g/L$, and $12.1 \pm 1.4 \ \mu g/L$, 96 respectively. The average concentration of gabapentin in wastewater influent from five WWTP in 97 Germany was ranged from 3.67 to 11.88 µg/L.⁵ In the U.S., gabapentin was not only quantified in 98 wastewater (up to 3.3 µg/L) in Minnesota⁶ but also detected in wastewater infiltrated surface water 99 collected from four national parks in the Midwest U.S.A. including Mississippi National River and 100 101 Recreation Area (up to 1.08 μ g/L) and Indiana Dunes National Lakeshore (up to 2.79 μ g/L), respectively.⁷ The prevalence of gabapentin in target four rural communities in Illinois was also determined based on the residual gabapentin in wastewater, 90% excretion rate,⁸ 10% loss (in-sewer degradation, the degradation in wastewater during sample collection, and the degradation prior sample extraction),⁹ and a single daily dose of 1050 mg by an individual in the WWTP catchment. The estimated daily doses of gabapentin in C1, C2, C3, and C4 communities were 40.6 ± 1.1, 21.0 ± 2.2 , 18.5 ± 0.58 , and 8.32 ± 0.87 per 1000 people, respectively.

108

109 **References**

- 110 1. Fontanals, N.; Marcé, R. M.; Borrull, F. Solid-phase extraction followed by liquid
- 111 chromatography-high resolution mass spectrometry to determine synthetic cathinones
- indifferent types of environmental water samples. J. Chromatogr. A 2017, 1524, 66–73.
- Salgueiro-González, N.; Castiglioni, S.; Gracia-Lor, E.; Bijlsma, L.; Celma, A.; Bagnati, R.;
 Hernández, F.; Zuccato, E. Flexible high resolution-mass spectrometry approach for screening
 new psychoactive substances in urban wastewater. *Sci. Total Environ.* 2019, *689*, 679–690.
- 116 3. Evoy, K. E.; Covvey, J. R.; Peckham, A. M.; Ochs, L.; Hultgren, K. E. Reports of gabapentin
 and pregabalin abuse, misuse, dependence, or overdose: An analysis of the food and drug
 administration adverse events reporting system (FAERS). *Res. Social Admin. Pharm.* 2019, 15,
 953-958.
- 4. Gomes, T.; Juurlink, D. N.; Antoniou, T.; Mamdani, M. M.; Paterson, J. M.; van den Brink, W.
 Gabapentin, opioids, and the risk of opioid related death: A population-based nested case –
- 122 control study. *PLoS Med.* **2017**, *14*, e1002396.
- 5. Oertel, R.; Baldauf, J.; Rossmann, J. Development and validation of a hydrophilic interaction
 liquid chromatography-tandem mass spectrometry method for the quantification of the
 antidiabetic drug metformin and six others pharmaceuticals in wastewater. J. Chromatogr. A
 2018, 1556, 73-80.
- Writer, J. H.; Ferrer, E.; Barber, L. B.; Thurman, E. M. Widespread occurrence of neuro-active pharmaceuticals and metabolites in 24 Minnesota rivers and wastewaters. *Sci. Total Environ.*2013, 461-462, 519–527.
- 130 7. Elliott, S. M.; VanderMeulen, D. D. A regional assessment of chemicals of concern in surface
 waters of four Midwestern United States national parks. *Sci. Total Environ.* 2017, *579*, 1726–
 1735.
- 133 8. Baselt, R.C. Disposition of Toxic Drugs and Chemicals in Man. Eleventh Edition, 2017.
- 134 9. O'Brian, J. W.; Banks, A. P. W.; Novic, A. J.; Mueller, J. F.; Jiang, G.; Ort, C.; Eagelsham, G.;
- 135 Yuan, Z.; Thai, P. K. Impact of in-Sewer Degradation of Pharmaceutical and Personal Care
- Products (PPCPs) Population Markers on a Population Model. *Environ. Sci. Technol.* 2017, *51*, 3816-3823.
- 138