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1 Supplemental Notes

Supplemental Note 1. Specter tailors landmark-based clustering to the analysis
of single cells

We show results for three variants of Specter in which we either replace the k-means based landmark
selection or the selective sampling approach by standard random sampling, or in which we omit the
clustering ensemble step altogether. Supplemental Figures S5 and S6 demonstrate the effectiveness
of our adoptions and extensions of the original algorithm to the analysis of scRNA-seq data. Across
all 24 simulated data sets, Specter achieved a higher ARI (mean ARI 0.89) than LSC (mean ARI
0.59) (Supplemental Figure S5). In fact, even without the benefit of a clustering ensemble, further
algorithmic adjustments implemented in Specter such as a modified bandwidth of the Gaussian
kernel yielded an improvement over LSC on 19 out of 24 data sets. When disabling the clustering
ensemble approach in Specter, however, its performance decreased consistently, on several data sets
the decrease in ARI was substantial. Similarly, on 21 out of 24 data sets the selective sampling in
Specter was more effective in terms of ARI than random sampling. On two instances with unbal-
anced cell type compositions (pbmc), the score more than doubled. Coupled with random sampling
(instead of selective sampling), the consensus clustering obtained from a clustering ensemble was
often even less accurate than a single clustering. The hybrid k-means based landmark selection led
to an improvement in ARI on all but one data sets (Supplemental Figure S6). In many cases this im-
provement was substantial, especially on difficult instances with unbalanced cell type compositions
(pbme, Gneq).

Supplemental Note 2. Specter benefits from a small number of ensemble mem-
bers and is robust to choice of parameter v

In Supplemental Figure S7 we further addressed the dependence of Specter’s accuracy on the number
of ensemble members from which Specter computes a consensus clustering. Consistent with our
observation in Supplemental Figure S5, the clustering ensemble approach yielded on average more
accurate results on the 24 simulated data sets than relying on a single clustering for each data set.
Even a small number of ensemble members (e.g. 10) improved clustering accuracy substantially,
while only minor improvements were achieved when increasing their number further to more than
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20 ensemble members. Nevertheless, a clustering ensemble of size 200 yielded highest mean ARI
with lowest score variance.

Finally, we demonstrate robustness of Specter to the choice of parameter v that controls the
bandwidth of the Gaussian kernel that is set differently in Specter compared to LSC (Methods).
Even though this parameter is randomly selected from interval [0.1,0.2] consistently across all 45
data sets in this benchmark, Supplemental Figure S8 shows that with very few exceptions choosing
~ from different intervals would yield nearly identical results.

2 Supplemental Tables

Supplemental Table S1: Overview of the real data sets used in this study. Names listed in the
left-most column are used throughout the text. A line separates data sets in which cell type labels
were inferred from scRNA-seq measurements from data set were labels are based on cell phenotypes

defined independently of scRNA-seq.

Data set # Cells # Populations Description Reference

grun 1502 2 mouse stem cells Griin et al. 2016
xin 1600 8 human islet cells Xin et al. 2016
baron 1886 13 human and mouse pancreas Baron et al. 2016
biase 56 4 mouse embryo devel Biase et al. 2014
deng-1 268 6 mouse embryo devel (RPKMs)  Deng et al. 2014
deng-2 268 6 mouse embryo devel (Reads) Deng et al. 2014
goolam 114 5 mouse embryo Goolam et al. 2016
muraro 2126 10 human pancreas Muraro et al. 2016
patel 430 ) human glioblastoma Patel et al. 2014
pollen 301 11 human developing cortex Pollen et al. 2014
klein 2717 4 mouse embryo stem cells Klein et al. 2015
zeisel 3005 9 mouse cortex and hippocampus Zeisel et al. 2015
chen 14,437 45 mouse brain Chen et al. 2017
CNS 465,281 7 mouse central nervous system Zeisel et al. 2018
saunders 665,858 11 adult mouse brain Saunders et al. 2018
trapnell 2,058,652 38 mouse organogenesis cell atlas Cao et al. 2019
Koh 531 9 human embryonic stem cells Koh et al. 2016
Kumar 246 3 mouse embryonic stem cells Kumar et al. 2014
Zhengmixeq 3,994 4 mixture of purified PBMCs Zheng et al. 2017
Zhengmix4uneq 6,498 4 mixture of purified PBMCs Zheng et al. 2017
Zhengmix8eq 3,994 8 mixture of purified PBMCs Zheng et al. 2017




Supplemental Table S2: Overview of the simulated data sets used in this study. Names listed in the
left-most column are used throughout the text. Data sets were simulated using Splatter (Zappia
et al. 2017) and vary in number of cells (#Cells), number of genes (# Genes), number of clusters (k),
the probability with which a given gene is differentially expressed in one of the cell types (marker
genes), and the relative abundance of cell types that were either equal, unequal, or based on cell
type abundances among peripheral blood mononuclear cells (PBMCs) in healthy individuals.

Nam # Cells # Genes K Probabilities Relative
ame (N) (D) of gene DE abundances (G)
DE1GeqN1k 1,000 1,000 5
DE1GegN2k 2,000 1,000 5 0 0(10'81610'8101> 0 50'(2)’20'3’2>
DE1GeqgN5k 5,000 1,000 5 7T o
DEneqGneqN1k 1,000 1,000 5
DEneqGneqN2k 2,000 1,000 5 0 0(20'81620’8105) 0({)40%’2%5’5)
DEneqGneqN5k 5,000 1,000 5 7T o
DEneqGneqN1kD10k 1,000 10,000 5
DEneqGneqN2kD10k 2,000 10,000 5 0 0(20'81620'8105) 0(104010’ ??%5’5)
DEneqGneqN5kD10k 5,000 10,000 5 T A
DE1GnegN1k 1,000 1,000 5
DE1GneqN2k 2,000 1000 5 0(10'81610'8101) 0(&010’ :,?'%5’5)
DE1GnegN5k 5,000 1,000 5 7T o
DE1GnegN1kD10k 1,000 10,000 5
DE1GnegN2kD10k 2,000 10,000 5 0 0(10'81610'8101) 0(&010’ ??%5:,))
DE1CneqN5kD10k 5000 10,000 5 o UPH i 09y B
DE2GneqN1k 1,000 L0005 (0o 0,02 (.01, 0.05,
DE2GnegN2k 2,000 1,000 5 0.02, 0.02, 0.02) 0.14, 0.3, 0.5)
DE2GnegN5k 5,000 1,000 5 T T o
DE5GnegN1k 1,000 1,000 5 (0.05, 0.05 (0.01, 0.05,
DE5CneqN2k 2,000 L0005 0 005, 0.05) 0.14, 0.3, 05)
DE5GnegN5k 5,000 1,000 5 77T o
DE1GpbmcN1k 1,000 1,000 5 (0.01, 0.01 PBMCs: DC: 0.02,
DE1GpbmcN2k 2,000 1,000 5 0.01 '0 61 '0 01) NK: 0.2, B: 0.1
DE1GpbmcN5k 5,000 1,000 5 T e Mono: 0.08, T: 0.6
RareCellExpl 4,000 1,000 2 (0.01, 0.01) (0.5, 0.5)
RareCellExp2 10,000 1,000 2 (0.01, 0.01) (0.9, 0.1)




Supplemental Table S3: Markers used in the annotation of clusters in the CBMC and PBMC data
sets. P-values indicate significance of differential expression according to a Wilcoxon rank-sum test
between clusters inferred by Specter from the joint analysis of mRNA and surface protein expression.

Cell-type Data set Markers

CD8*CD27~ PBMC  CDSA (p = 3.1e-15), CDSB (p = 4.3¢-6), low CD27 ADT
CD8*TCD27+ PBMC CD8B (p = 3.2e-4), high CD27 ADT

Naive CD4* T PBMC SELL (Haining et al. 2008) (p = 2.6e-9)

CD4*tCD27* PBMC  IL7R (Colpitts et al. 2009) (p = 9.4e-11), high CD27 ADT

)
CD4TCD27-DR* PBMC  IL7R (Colpitts et al. 2009) (p = 4.4e-7), NKG7 (Fonseka et al.
2018)(p = 1.2e-3), GZMA (Fonseka et al. 2018) (p = 2.0e-4)
CD4tCD27-DR~ PBMC IL7R (Colpitts et al. 2009) (p = 1.4e-6), low expression of
NKG7 and GZMA; low CD27 ADT.
CD14* Mono PBMC LYZ (p = 7.5e-34), CST3 (p = 1.4e-32)
FCGR3AT™ Mono PBMC  FCGR3A (p = 1.0e-9)
Megakaryocytes PBMC PF/ (Lambert, Meng, Xiao, et al. 2016) (p = 1.2e-3)

NK PBMC  GNLY (Ogawa et al. 2003) (p = 7.7e-21),
NKG7 (Turman et al. 1993)(p = 1.1e-15)

Dendritic cells CBMC CSTS8 (Hruz et al. 2008) (p = 4.7e-29), CD1C (Collin et al. 2013;
Merad et al. 2013) (p = 1.1e-27), and FCER1A (Hruz et al. 2008)
(p = 1.3e-27)

Megakaryocytes CBMC PF/ (Lambert, Meng, Harper, et al. 2014) (p = 1.6e-25),
PPBP (Sakurai et al. 2016) (p = 5.8e-24)

Supplemental Table S4: Comparison of running times in minutes on simulated data. Data sets of
different size were simulated using Splatter. *Running times exclude preprocessing for all methods
except TSCAN and dropClust, whose implementation did not allow to isolate the core algorithm.
Specter used 20 ensemble members and was run with a single thread (as all other methods). The
last column (Specter+Pre) shows the total running time of Specter and all its preprocessing steps,
including log-transformation, selection of highly variable genes (500), and PCA.

#Cells Specter Seurat dropClust* Geosketch RtsneKmeans TSCAN*  Specter+Pre

1k 0.02 0.04 0.04 0.10 0.14 0.06 0.02
10k 0.1 0.15 0.24 0.02 0.88 0.20 0.1
100k 0.58 1.00 1.01 1.38 17.61 1.23 0.61
200k 1.36 3.27 1.89 1.75 49.31 2.79 1.40
500k 3.15 11.80 3.14 8.81 139.69 7.39 3.25
1m 7.59 23.00 6.83 44.29 655.95 16.61 7.7




Supplemental Table S5: Running times of the MATLAB PCA implementation (Vijayan 2020) used
in Specter and FIt-tSNE (Linderman et al. 2019) on simulated data. Data sets of different size were
simulated using Splatter (same data sets as in Table S4).

Method 1k 10k 100k 200k 500k 1m

PCA 0.04s 0.12s 0.52s 1.59s 3.43s 5.98s
FIt-SNE  41s 1ml7s 1m4s 1mb53s 4m3s 8mlls

Supplemental Table S6: Comparison of running times on three largest real data sets. Running times
of Specter, Seurat, dropClust, the geometric sketching (Gsketch) based Louvain clustering, TSCAN,
and RtsenKmeans are reported in minutes (rounded) on the 3 largest real data sets used in this
study. *Running times exclude preprocessing for all methods except TSCAN and dropClust, whose
implementation did not allow to isolate the core algorithm. Specter used 50 ensemble members
and was run with 20 threads. The last column (Specter+Pre) shows the total running time of
Specter and all its preprocessing steps, including log-transformation, selection of highly variable

genes (2000), and PCA.

Data set ~ #Cells  Specter Seurat dropClust* Gsketch TSCAN* RtsneKmeans Specter+Pre

CNS 464,713 1 11 2 7 3 89 3
saunders 665,385 2 18 3 19 8 193 4
trapnell 2,026,641 15 79 12 400 100 1225 23




3 Supplemental Figures

Real data
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Supplemental Figure S1: Clustering performance measured by homogeneity score of Specter and
competing methods on real and synthetic data. Methods are ordered by mean homogeneity score
across data sets decreasing from top to bottom. In the calculation of mean scores we excluded
for each method the data sets where the method did not run successfully. Synthetic data sets are
ordered from left to right by increasing mean homogeneity score over all methods. SC3 | RCA,
RacelD3, and CIDR failed to run on the three largest data sets CNS, saunders, and trapnell due
to insufficient memory. TSCAN failed to run on data sets chen and skin for unknown reasons.
Geometric sketching refers to the Louvain clustering of 10% of the cells sampled using geometric

sketching.
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Supplemental Figure S2: Clustering performance measured by NMI of Specter and competing meth-
ods on real and synthetic data. Methods are ordered by mean NMI across data sets decreasing from
top to bottom. In the calculation of mean scores we excluded for each method the data sets where
the method did not run successfully. Restricted to the same set of data sets as SC3, Specter20E was
with a mean ARI of 0.87 marginally better than SC3 (mean ARI 0.85). Synthetic data sets are or-
dered from left to right by increasing mean NMI over all methods. SC3 ; RCA, RacelD3, and CIDR
failed to run on the three largest data sets CNS, saunders, and trapnell due to insufficient memory.
TSCAN failed to run on data sets chen and skin for unknown reasons. Geometric sketching refers
to the Louvain clustering of 10% of the cells sampled using geometric sketching.
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Supplemental Figure S3: Accuracy (in ARI) of geometric sketching based Louvain clustering for
varying sketch sizes. For each sketch size, the results of 10 random trials are shown. “Specter %”
uses the same number of cells in the geometric sketch as Specter uses landmarks or cells in the
selective sampling step (see the “Methods” section), whichever one is larger.
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Supplemental Figure S4: t-SNE visualization of single cells of the mouse nervous system (data set
CNS). Cells in the ground truth representation (left) are colored by cell type specified by the legend.
The visualization of Specter (middle) and Seurat (right) clusterings use the same 2D embedding as
the ground truth, but cells are colored according to clusters inferred by the two methods; colors
do not directly reflect cell types specified by the legend. As expected by the higher ARI (0.89 vs
0.67) (and higher homogeneity scores of 0.81 vs 0.71 and NMI of 0.84 vs 0.78), Specter makes fewer
mistakes. In contrast to Specter, Seurat wrongly splits neurons into 2 populations, is not able to
distinguish astrocytes from immune cells, and is similarly not able to distinguish a subpopulation
of vascular cells from astrocytes.
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Supplemental Figure S5: Improvements in Specter over LSC. The clustering accuracy of Specter
using 50 ensemble members (ensemble & selective s.) is compared to the accuracy of the original
implementation of the landmark-based spectral clustering algorithm (LSC) and two variants of
Specter in which we either disable consensus clustering in Specter (no ensemble) or in which we
replace the novel selective sampling in Specter (Algorithm 2) by random sampling. When no
clustering ensemble is used (no ensemble), we set parameters to the median values of intervals
probed by the ensemble scheme (v = 0.15, p = 9k log(k)).
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Supplemental Figure S6: Comarison of landmark selection strategies. The clustering accuracy
of Specter using our hybrid k-means based landmark selection strategy (K-means landmark) is
compared to a variant of Specter in which we select landmarks uniformly at random.
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Supplemental Figure S7: Accuracy of Specter vs. number of ensemble members. For each number of
ensemble members, the box plot shows minimum, maximum, median, and first and third quartiles
of ARI scores achieved by Specter on the 24 simulated data sets described in Table S2.
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Supplemental Figure S9: Sensitivity to rare cell types with equal starting abundances. 4000 cells
from two equal size groups (2000 cells each) were simulated using Splatter. We randomly downsam-
pled one group to comprise 1%, 2.5%, 5%, and 10% of the total number of cells. We repeated this
experiment five times for each group and show the average F} score over the 10 runs. For geometric
sketching, the average F; score was taken over 10 random trials with a sketch size of 10% of the full
data.
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(ARI 0.94), only Specter detects a rare population of megakaryocytes (red).
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Supplemental Figure S15: Comparison of multimodal clusterings of PBM cells as computed by
Specter (top) and CiteFuse (bottom). Despite an overall high agreement between the two clusterings
(ARI 0.86), only Specter detects a rare population of megakaryocytes and can discriminate between
CD27-DR* and CD27- DR~ subpopulations of CD4™ memory T cells.

16



40

20

TSNE_2

40

20

TSNE_2

-20

Specter (sensitive)

CD8+CD27-T

~ o, .
.

FCGR3A+ Mono ¢

Y
id ¢
.4:’_ Y .

CD4+CD27-DR+ T
i

2

Naive CD4+ T

—20 0 20 40
TSNE_1

CiteFuse (sensitive)

- CD8+CD27-T

FCGR3A+Mono  °
e
L

<&

Naive CD4+ T

-20 0 20 40
TSNE_1

Identity

Effector CD8+ T
CD8+CD27+ T
CD4+CD27-DR+ T
CD4+CD27-DR-T
CD14+ Mono
FCGR3A+ Mono
CD8+CD27-T

B

MK

CD4+CD27+ T
Naive CD4+ T

NK

Identity

B

Naive CD4+ T
CD14+ Mono
Nk
CD4+CD27-T
FCGR3A+ Mono
CD8+CD27-T
Effector CD8+ T
CD4+CD27+ T
CD8+CD27+ T

Supplemental Figure S16: Comparison of multimodal clusterings of PBM cells. Here, Specter (top)
and CiteFuse (bottom) use slightly more conservative parameters in the doublet removal (eps = 190,
minPts = 10). Again, only Specter is able to discriminate between CD27-DR™ and CD27 DR~
subpopulations of CD4" memory T cells and detects a rare population of megakaryocytes.
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Supplemental Figure S17: Linear-time complexity of Specter. CPU times in seconds (single
threaded) are shown for the core algorithm of Specter (no ensemble) and Specter using a clus-
tering ensemble of size 20. Different size data set were simulated using Splatter containing 1k, 10k,
100k, 200k, 500k, and 1 million cells.
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Supplemental Figure S18: Linear increase in running time with number of ensemble members. CPU
times in seconds (single threaded) are shown for Specter using an increasing number of ensemble
members on a simulated data set containing 100,000 cells.
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Supplemental Figure S19: Specter speed-up with number of threads. CPU times in seconds are
shown for Specter using an increasing number of threads on a simulated data set containing 100,000
cells. 20 or 50 clustering ensemble members were used.
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Supplemental Figure S20: Increase in running time for fixed number of threads. CPU times in
minutes are shown for Specter using 20 or 50 clustering ensemble members and 1 or 4 threads.
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Supplemental Figure S21: Runtime comparison between methods as a function of sample size.
CPU times are shown in minutes on different numbers of cells sampled from a simulated data set
containing 1 million cells. Seurat was run with a call to the more efficient SCANPY implementation
of the Louvain clustering algorithm. *Running times exclude preprocessing for all methods except
TSCAN and dropClust, whose implementation did not allow to isolate the core algorithm.
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