DOI: 10.1289/EHP7944

Note to readers with disabilities: *EHP* strives to ensure that all journal content is accessible to all readers. However, some figures and Supplemental Material published in *EHP* articles may not conform to 508 standards due to the complexity of the information being presented. If you need assistance accessing journal content, please contact ensuremath.nih.gov. Our staff will work with you to assess and meet your accessibility needs within 3 working days.

Supplemental Material

Ambient Fine Particulate Matter Air Pollution and Risk of Weight Gain and Obesity in United States Veterans: An Observational Cohort Study

Benjamin Bowe, Andrew K. Gibson, Yan Xie, Yan Yan, Aaron van Donkelaar, Randall V. Martin, and Ziyad Al-Aly

Table of Contents

Table S1. Contextual variable definitions and data sources.

Table S2. PM_{2.5} distribution by year of follow-up in a national cohort of United States Veterans selected from July 1, 2010 through June 31, 2011 and followed until December 31, 2018 (n=3 902 440).

Table S3. Model parameters of the top three best-fitting models for each outcome based on the Shape Constrained Health Impact Function (SCHIF) in a national cohort of United States Veterans selected from July 1, 2010 through June 31, 2011 and followed until December 31, 2018 (n=3 902 440).

Table S4. Weight gain by cumulative average PM_{2.5} exposure in a national cohort of United States Veterans selected from July 1, 2010 through June 31, 2011 and followed until December 31, 2018 (n=3 902 440).

Table S5. BMI gain by cumulative average PM_{2.5} exposure in a national cohort of United States Veterans selected from July 1, 2010 through June 31, 2011 and followed until December 31, 2018 (n=3 902 440).

Table S6. Additional sensitivity analyses of survival outcomes in a national cohort of United States Veterans selected from July 1, 2010 through June 31, 2011 and followed until December 31, 2018 (n=3 902 440).

Table S7. Analyses of additional survival outcomes in a national cohort of United States Veterans selected from July 1, 2010 through June 31, 2011 and followed until December 31, 2018 (n=3 902 440).

Table S8. Additional sensitivity analyses of intra-individual change in BMI and weight in a national cohort of United States Veterans selected from July 1, 2010 through June 31, 2011 and followed until December 31, 2018 (n=3 902 440).

Figure S1. Cohort construction flowchart of a national cohort of United States Veterans selected from July 1, 2010 through June 31, 2011 and followed until December 31, 2018 (n=3 902 440).

Figure S2. Conceptual framework of the association of PM_{2.5} with obesity and weight gain.

Figure S3. PM_{2.5} distribution by year of follow-up in a national cohort of United States Veterans selected from July 1, 2010 through June 31, 2011 and followed until December 31, 2018 (n=3 902 440). Area indicates the distribution of PM_{2.5} for subjects in the cohort during each year of follow-up. Distributions are weighted by participant time in cohort in that year.

Figure S4. Association of PM_{2.5} exposure with risk of obesity and gain in weight based on the optimal model in a national cohort of United States Veterans selected from July 1, 2010 through June 31, 2011 and followed until December 31, 2018 (n=3 902 440). (A) Obesity, (B) 10 lbs. gain in weight. A Shape Constrained Health Impact Function (SCHIF) modeling approach was used. Models were adjusted for height, weight, and/or BMI, State of residence, age, race, sex, smoking status, Area Deprivation Index, normalized difference vegetation index, county-level % rural residency, population density, % limited access to healthy food, % access to exercise opportunities, and % of adults reporting excessive alcohol consumption. Lines represent the estimated difference in risk associated with a given PM_{2.5} concentration compared to with the reference concentration of 1 μ g/m³ (in consideration of the log-linear form). Bands represent the 95% confidence interval. 2.205 pounds = 1 kilogram. Model parameters of the optimal model are reported in Table S3.

Figure S5. Association of PM_{2.5} exposure with intra-individual change in BMI and weight in a national cohort of United States Veterans selected from July 1, 2010 through June 31, 2011 and followed until December 31, 2018 (n=3 902 440). (A) BMI, (B) weight. Change is reported as change per year. Linear mixed models were used to obtained rates of change in outcomes associated with PM_{2.5}, where PM_{2.5} was treated as a restricted cubic spline. Models were adjusted for height, weight, and/or BMI, State of residence, age, race, sex, Area Deprivation Index, normalized difference vegetation index, county-level % rural residency, population density, % limited access to healthy food, % access to exercise opportunities, % of adults reporting excessive alcohol consumption and smoking status. There was no missing data, so no imputation was used. Bands represent the 95% confidence interval. 2.205 pounds = 1 kilogram. Values were excluded below the 1st and above the 99th percentiles of the PM_{2.5} distribution, and the 1st percentile serves as the reference value.

References