Supporting information for A new and efficient implementation of CC3

Alexander C. Paul,[†] Rolf H. Myhre,[†] and Henrik Koch^{*,†,‡}

†Department of Chemistry, Norwegian University of Science and Technology, NTNU, 7491 Trondheim, Norway

‡Scuola Normale Superiore, Piazza dei Cavaleri 7, 56126 Pisa, Italy

E-mail: henrik.koch@sns.it

Supporting Information Available

Here we report equations and pseudocode for the Jacobian transformations and the transition densities. For a concise notation, we define

$$\bar{R}^{ab}_{ij} = (1 + \delta_{ij}\delta_{ab})R^{ab}_{ij}.$$
(1)

Algorithms to calculate Jacobian transformations

The equations and the algorithm to compute the Jacobian transformation of a trial vector \boldsymbol{R} are reported in Algorithm 1. The transformed vector is denoted by $\boldsymbol{\rho}$ and the indices are chosen such that the triples amplitudes have the indices a, b, c, i, j, k. The intermediates, $\tilde{Z}^{\text{v}}_{abid}$ and $\tilde{Z}^{\text{o}}_{ajil}$, are constructed outside the iterative loop as discussed in the Implementation section of the paper.

The equations and the algorithm for the transpose Jacobian transformation are shown in Algorithm 2 where σ denotes the transformed vector.

Algorithm 1 CC3 Jacobian transformation algorithm. while not converged do $\Upsilon_{kc} \leftarrow \sum_{l} (2g_{kcld} - g_{kdlc}) R_l^d$ for i = 1, n_0 do for j = 1, i do for k = 1, j do $\begin{aligned} \tau_{ijk}^{abc} &\leftarrow -(\varepsilon_{ijk}^{abc})^{-1} P_{ijk}^{abc} \left(\sum_{d} \tau_{ij}^{ad} g_{bdck} - \sum_{l} \tau_{il}^{ab} g_{ljck} \right) \\ \tilde{\tau}_{ijk}^{abc} &\leftarrow 4\tau_{ijk}^{abc} - 2\tau_{ijk}^{acb} - 2\tau_{ijk}^{cba} - 2\tau_{ijk}^{bac} + \tau_{ijk}^{bca} + \tau_{ijk}^{cab} \end{aligned}$ for Permutations of *i*, *j*, *k* do $\tilde{\rho}_{ij}^{ab} += \sum_{c} \tilde{\tau}_{ijk}^{abc} \Upsilon_{kc}$ end for end for end for

end for $\Upsilon_{bdck} \leftarrow \sum_{e} R^{e}_{k} g_{bdce} - \sum_{m} \left(R^{b}_{m} g_{mdck} + R^{c}_{m} g_{bdmk} \right)$ $\Upsilon_{ljck} \leftarrow \sum_{e} \left(R_{i}^{e} g_{leck} + R_{k}^{e} g_{ljce} \right) - \sum_{m} R_{m}^{c} g_{ljmk}$ for $i = 1, n_0 do$ for j = 1, i do for k = 1, j do $R_{ijk}^{abc} \leftarrow (\omega - \varepsilon_{ijk}^{abc})^{-1} P_{ijk}^{abc} \Big(\sum_{d} \bar{R}_{ij}^{ad} g_{bdck} - \sum_{l} \bar{R}_{il}^{ab} g_{ljck} \Big)$ $+ \sum_{d} \tau_{ij}^{ad} \Upsilon_{bdck} - \sum_{l} \tau_{il}^{ab} \Upsilon_{ljck} \Big)$ $\tilde{R}_{ijk}^{abc} \leftarrow 4R_{ijk}^{abc} - 2R_{ijk}^{acb} - 2R_{ijk}^{cba} - 2R_{ijk}^{bca} + R_{ijk}^{cab} + R_{ijk}^{cab}$ for Permutations of i, j, k do $\rho_i^a += \sum_{bc} \tilde{R}_{ijk}^{abc} g_{jbkc}$ $\tilde{\rho}_{ij}^{ab} += \sum_{c} \tilde{R}_{ijk}^{abc} F_{kc}$ $\tilde{\rho}_{il}^{ab} = \sum_{c} \tilde{R}_{ijk}^{abc} g_{jlkc}$ $\tilde{\rho}_{ij}^{ad} += \sum_{bc} \tilde{R}_{ijk}^{abc} g_{dbkc}$ end for end for end for end for $\tilde{\rho}_{il}^{ab} += \sum_{d} \tilde{Z}_{abid}^{v} R_{l}^{d}$ $\tilde{\rho}_{ij}^{ad} = \sum_{l} \tilde{Z}_{ajjl}^{o} R_{l}^{d}$ $\rho_{ij}^{ab} += \frac{1}{3(1+\delta_{ai,bi})} P_{ij}^{ab} (2\tilde{\rho}_{ij}^{ab} + \tilde{\rho}_{ij}^{ba})$

end while

Algorithm 2 CC3 transpose Jacobian transformation algorithm.

while not converged do
for i = 1,
$$n_0$$
 do
for j = 1, i do
 $\tau_{ijk}^{abc} \leftarrow -(\varepsilon_{ijk}^{abc})^{-1} P_{ijk}^{abc} \left(\sum_d \tau_{ij}^{ad} g_{bdck} - \sum_l \tau_{il}^{ab} g_{ljck} \right)$
 $\tau_{ijk}^{abc} \leftarrow 4\tau_{ijk}^{abc} - 2\tau_{ijk}^{abc} - 2\tau_{ijk}^{bac} - 2\tau_{ijk}^{bac} + \tau_{ijk}^{bac} + \tau_{ijk}^{abc}$
for Permutations of *i*, *j*, *k* do
 $Z_{ai} + = \sum_{bc} L_{bk}^{bc} \tilde{\tau}_{ijk}^{abc}$
end for
end for
end for
for i = 1, n_0 do
for k = 1, j do
 $L_{ijk}^{abc} \leftarrow (\omega - \varepsilon_{ijk}^{abc})^{-1} P_{ijk}^{abc} \left(L_i^a g_{jbkc} + L_{ij}^{ab} F_{kc} + \sum_d L_{jk}^{ad} g_{ibcc} - \sum_l L_{lk}^{ab} g_{iljc} \right)$
 $L_{ijk}^{abc} \leftarrow 4L_{ijk}^{abc} - 2L_{ijk}^{abc} - 2L_{ijk}^{bbc} - 2L_{ijk}^{bbc} + L_{ijk}^{abc} + L_{ijk}^{ab}$
for Permutations of *i*, *j*, *k* do
 $\sigma_{ij}^{ad} + \sum_{bc} \tilde{L}_{ijk}^{abc} g_{blck}$
 $\sigma_{il}^{ad} - \sum_{c} \tilde{L}_{ijk}^{abc} g_{blck}$
 $\gamma_{cnjk}^{ad} + \sum_{ab} \tilde{L}_{ijk}^{abc} \tau_{ib}^{abc}$
end for
end for
end for
end for
 $\sigma_l^d + = \sum_{alc} Z_{al}(2g_{iald} - g_{idla}) + \sum_{aj} L_{aj}^{ab} \tilde{L}_{ajb}^{ab} \tilde{L}_{ajd}^{ab} - \sum_{cnk} Y_{cnk}^{ad} g_{mak}$
 $\sigma_l^d + = \sum_{bcc} Y_{bcck}^{ad} g_{mjlk} - \sum_{cnj} Y_{cmjl}^{ad} g_{mjcl} - \sum_{cnk} Y_{cmk}^{ad} g_{mak}$

 $\sigma^{ab}_{ij} \leftarrow P^{ab}_{ij} \sigma^{ab}_{ij}$

end while

Algorithms to construct the transition densities

In the following the CC3 contributions to the transition densities $\boldsymbol{D}^{m,0}$ and $\tilde{\boldsymbol{D}}^{0,m}$ are summarized. The CCSD terms can be found for example in Table II in Ref. 1.

Substituting L_{μ} in the equations for $\boldsymbol{D}^{m,0}$ with λ_{μ} results in the equations for the ground state density, $\boldsymbol{D}^{0,0}$. In this section only the algorithm for $\tilde{\boldsymbol{D}}^{0,m}$ is shown, the algorithm for $\boldsymbol{D}^{m,0}$ can be found in the main paper.

Algorithm 3 Algorithm to compute the CC3 contribution to $\tilde{D}^{0,m}$.

for i = 1, n_0 do for j = 1, i do for k = 1, j do $R_{ijk}^{abc} \leftarrow (\omega - \varepsilon_{ijk}^{abc})^{-1} P_{ijk}^{abc} \left(\sum_d \bar{R}_{ij}^{ad} g_{bdck} - \sum_l \bar{R}_{il}^{ab} g_{ljck} + \sum_d \tau_{ijk}^{ab} \Upsilon_{bdck} - \sum_l \tau_{il}^{ab} \Upsilon_{ljck} \right)$ $\lambda_{ijk}^{abc} \leftarrow -(\varepsilon_{ijk}^{abc})^{-1} P_{ijk}^{abc} \left(\lambda_i^a g_{jbkc} + \lambda_{ij}^{ab} F_{kc} + \sum_d \lambda_{jk}^{ad} g_{ibdc} - \sum_l \lambda_{lk}^{ab} g_{iljc} \right)$ $\lambda_{ijk}^{abc} \leftarrow 4\lambda_{ijk}^{abc} - 2\lambda_{ijk}^{abc} - 2\lambda_{ijk}^{bbc} - 2\lambda_{ijk}^{bbc} + \lambda_{ijk}^{bca} + \lambda_{ijk}^{cab}$ for Permutations of i, j, k do $\tilde{D}_{cd}^{0,m} + = \frac{1}{2} \sum_{ab} \tilde{\lambda}_{ijk}^{abc} R_{ijk}^{abd}$ $\tilde{D}_{ck}^{0,m} + = \sum_{ab} \lambda_{ijk}^{abc} R_{ij}^{ab}$ $\tilde{\Gamma}_{bcjk} + = \sum_a \lambda_{ijk}^{abc} R_i^{ab}$ overlap $+ = \frac{1}{1 + \delta_{i,j} + \delta_{j,k}} \sum_{abc} \tilde{\lambda}_{ijk}^{abc} R_{ijk}^{abc}$ end for end for end for

$$\begin{split} & \text{for } \mathbf{a} = 1, \, n_{\mathrm{V}} \, \mathbf{do} \\ & \text{for } \mathbf{b} = 1, \, \mathbf{a} \, \mathbf{do} \\ & \text{for } \mathbf{c} = 1, \, \mathbf{b} \, \mathbf{do} \\ & R_{ijk}^{abc} \leftarrow (\omega - \varepsilon_{ijk}^{abc})^{-1} P_{ijk}^{abc} \left(\sum_{d} \bar{R}_{ij}^{ad} g_{bdck} - \sum_{l} \bar{R}_{il}^{ab} g_{ljck} \right. \\ & + \sum_{d} \tau_{ij}^{ad} \Upsilon_{bdck} - \sum_{l} \tau_{il}^{ab} \Upsilon_{ljck} \right) \\ & \lambda_{ijk}^{abc} \leftarrow -(\varepsilon_{ijk}^{abc})^{-1} P_{ijk}^{abc} \left(\lambda_{i}^{a} g_{jbkc} + \lambda_{ij}^{ab} F_{kc} + \sum_{d} \lambda_{jk}^{ad} g_{ibdc} - \sum_{l} \lambda_{lk}^{ab} g_{iljc} \right) \\ & \tilde{\lambda}_{ijk}^{abc} \leftarrow 4\lambda_{ijk}^{abc} - 2\lambda_{ijk}^{acb} - 2\lambda_{ijk}^{cba} - 2\lambda_{ijk}^{bca} + \lambda_{ijk}^{bca} + \lambda_{ijk}^{cb} \\ & \text{for Permutations of } a, b, c \, \mathbf{do} \\ & \tilde{D}_{kl}^{0,m} - = \frac{1}{2} \sum_{ij} \tilde{\lambda}_{ijl}^{abc} R_{ijk}^{abc} \\ & \text{end for} \\ & \text{end for} \\ & \text{end for} \\ & \tilde{D}_{pq}^{0,m} + = \sum_{i=1}^{3} R_{\mu_i} \lambda_{\mu_i} \left(2\delta_{pq} \delta_{p,occ} - D_{pq}^{0,0} \right) \end{split}$$

Algorithm 4 Contributions from precalculated intermediates to $\tilde{D}^{0,m}$.

$$\begin{split} \tilde{D}_{lk}^{0,m} & += \sum_{i} Y_{alik}^{o} R_{i}^{a} \equiv -\sum_{ij} \lambda_{ijk}^{abc} \tau_{jl}^{bc} R_{i}^{a} \\ \tilde{D}_{cd}^{0,m} & += \sum_{i} Y_{acdi}^{v} R_{i}^{a} \equiv \sum_{ijk} \lambda_{ijk}^{abc} \tau_{jk}^{bd} R_{i}^{a} \\ \tilde{D}_{ld}^{0,m} & += \frac{1}{2} \sum_{abc} \lambda_{ijk}^{abc} \tau_{ijk}^{abd} R_{l}^{c} - \frac{1}{2} \sum_{abc} \lambda_{ijk}^{abc} \tau_{ijl}^{abc} R_{k}^{d} \\ \tilde{D}_{ld}^{0,m} & += -\sum_{i} \sum_{i} Y_{acdi}^{v} \bar{R}_{il}^{ac} - \sum_{i} Y_{alik}^{o} \bar{\lambda}_{ijk}^{ad} \\ \tilde{D}_{ld}^{0,m} & += -\sum_{i} \sum_{i} Y_{acdi}^{v} \bar{R}_{il}^{ac} - \sum_{i} Y_{alik}^{o} \bar{\lambda}_{ijk}^{ad} \\ \Gamma_{bcjk} & = \frac{1}{3} (2 \tilde{\Gamma}_{bcjk} + \tilde{\Gamma}_{cbjk}) \\ \mathbf{for} & \mathbf{i} = 1, n_{O} \mathbf{do} \\ \mathbf{for} & \mathbf{j} = 1, \mathbf{i} \mathbf{do} \\ \mathbf{for} & \mathbf{k} = 1, \mathbf{j} \mathbf{do} \\ \tau_{ijk}^{abc} \leftarrow -(\varepsilon_{ijk}^{abc})^{-1} P_{ijk}^{abc} \left(\sum_{d} \tau_{ij}^{ad} g_{bdck} - \sum_{l} \tau_{il}^{ab} g_{ljck} \right) \\ \tilde{\tau}_{ijk}^{abc} \leftarrow 4 \tau_{ijk}^{abc} - 2 \tau_{ijk}^{cbc} - 2 \tau_{ijk}^{cbac} - 2 \tau_{ijk}^{bac} + \tau_{ijk}^{cab} \\ \mathbf{for} \text{ Permutations of } i, j, k \mathbf{do} \\ \tilde{D}_{ia}^{0,m} & += \sum_{j} \sum_{j} \tilde{\tau}_{ijk}^{abc} \Gamma_{bcjk} \\ \mathbf{end for} \\ \mathbf{end$$

Geometries

Here we list the geometries of the molecules used in the calculations presented in the application section of the paper.

Atom	Х	У	Z
Ο	0.000000	1.229439	0.000000
Ν	1.158967	-0.727718	0.000000
\mathbf{C}	-1.267042	-0.831610	0.000000
\mathbf{C}	0.000000	0.000000	0.000000
Η	1.173209	-1.735763	0.000000
Η	2.035841	-0.226201	0.000000
Η	-2.121189	-0.156089	0.000000
Η	-1.310647	-1.472742	0.885504
Η	-1.310647	-1.472742	-0.885504

Table 1: Geometry of acetamide in Ångstrom obtained from Ref. 2.

Atom	х	У	Z
Ο	2.1617	-0.9509	-0.1119
Ο	1.5688	1.2164	-0.4953
Ν	-0.7807	0.9314	0.7770
\mathbf{C}	0.0834	-0.2476	0.7251
\mathbf{C}	-0.7235	-1.3171	-0.0031
\mathbf{C}	-1.9888	-0.6106	-0.4752
\mathbf{C}	-1.6499	0.8635	-0.3933
\mathbf{C}	1.3289	0.1149	-0.0235
Η	0.3625	-0.5522	1.7389
Η	-0.9873	-2.1429	0.6671
Η	-0.1919	-1.7411	-0.8624
Η	-2.2798	-0.9157	-1.4848
Η	-2.8187	-0.8485	0.2018
Η	-1.1204	1.1932	-1.2945
Η	-2.5424	1.4831	-0.2694
Η	-0.2509	1.8003	0.8023
Н	2.9837	-0.7341	-0.6014

Table 2: Geometry of L-proline in Ångstrom obtained from Ref. 3.

Table 3: Geometry of fur an in Ångstrom. The geometry was optimized using B3LYP with def2-TZVP basis set as implemented in Orca. $^{4\!-\!7}$

Atom	Х	У	Z
О	0.000 000	0.000 000	1.128606
С	0.000000	0.716455	-0.983624
С	0.000000	-0.716455	-0.983624
С	0.000000	1.094306	0.318066
С	0.000000	-1.094306	0.318066
Η	0.000000	1.370213	-1.839429
Η	0.000000	-1.370213	-1.839429
Η	0.000000	2.048735	0.813913
Η	0.000000	-2.048735	0.813913

References

- Stanton, J. F.; Bartlett, R. J. The equation of motion coupled-cluster method. A systematic biorthogonal approach to molecular excitation energies, transition probabilities, and excited state properties. J. Chem. Phys. 1993, 98, 7029–7039.
- (2) Schreiber, M.; Silva-Junior, M. R.; Sauer, S. P. A.; Thiel, W. Benchmarks for electronically excited states: CASPT2, CC2, CCSD, and CC3. J. Chem. Phys. 2008, 128, 134110.
- (3) National Center for Biotechnology Information, PubChem Database. L-Proline. 2020; https://pubchem.ncbi.nlm.nih.gov/compound/L-Proline, CID=145742.
- (4) Becke, A. D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993, 98, 5648–52.
- (5) Neese, F. The ORCA program system. WIREs Computational Molecular Science 2012, 2, 73–78.
- (6) Neese, F. Software update: the ORCA program system, version 4.0. WIREs Computational Molecular Science 2018, 8, e1327.
- (7) Weigend, F. Accurate Coulomb-fitting basis sets for H to Rn. Phys. Chem. Chem. Phys. 2006, 8, 1057–1065.