
Response to Reviews for “Interpreting blood GLUcose data with R

package iglu”

Thank you for the opportunity to revise our manuscript. We are grateful to the Editor and the
reviewers for the comments and suggestions that helped significantly improve both the manuscript
and the software. Our revisions are detailed below. We use cursive font for your comments, and
standard font for our response.

R.1 Editor’s Comments

1. Please perform a careful copy edit as there are typos and missing references.

Thank you for pointing this out. We have performed additional proofreading and editing to
correct the typos.

2. In fig 2c, if these are 24 hour averages how can the x-axis unit be hours?

We apologize for the confusion. What we meant is the following: for each subject, the daily
profiles are averaged across the same time points, and the plot displays these averaged glucose
values from midnight to midnight. We realize now that our default title for this type of plot
was confusing, so we have changed it from “24 hour averages for all subjects” to “Average
glucose values for all subjects across days”, and modified Figure 2 accordingly.

3. The Shiny interface is an extremely useful step, reducing the need for the user to have pro-
gramming experience. However, the user still needs to get the data into 3 column format,
which is not the format exported by the CGM software. Therefore, this step may require
programming or manual editing of the data, which could introduce error.

This is an excellent point. Our rationale for using .csv is that our original aim in developing
iglu was to assist researchers with the analyses of multi-subject CGM data that often arise as
a result of clinical trials, rather than individual subject data. In our experience, multi-subject
CGM data is typically already processed by the corresponding data curation team from the
original meter-specific format. For example, the data for this study (https://doi.org/10.
1371/journal.pbio.2005143) is available as a supplement in GZ format, whereas the data
for this study (https://zenodo.org/record/1421616#.YAnk7C2ZNm8) when extracted from
.tgz has individual .csv files for each of the 9 subjects. In fact, based on our experience collect-
ing publicly available CGM data (https://github.com/irinagain/Awesome-CGM), most of
such data is stored as .csv. We do, however, completely agree that adding more data formats,
and in particular meter-specific formats, will strengthen the package and the Shiny App, and
is definitely a current limitation in functionality. Some existing R packages for CGM have
such functionality (e.g. cgmanalysis), but quite a substantial effort is required for seamless
integration with Shiny interface, especially since the proprietary formats change from one
meter to another, and new CGM meters continue to be developed. We do, however, hope
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to be able to address this limitation in future work, and acknowledge this limitation in the
conclusion:

There are several limitations to our comparison of iglu with existing CGM software.
First, the R interface assumes that the CGM data is already loaded into R as a data
frame, which requires users to have sufficient R knowledge for data processing. The
Shiny app currently only allows to load CGM data in .csv format, and thus it also
requires initial pre-processing by the user, albeit not necessarily in R. This is not
the case for CGManalyzer or cgmanalysis, which can work directly with specialized
data formats from many popular CGMs. Continuous development of new CGM
meters coupled with varying data formats across meters present definite challenges
for any CGM software. We hope to contribute to addressing these challenges by
leveraging complimentary functionality of existing open-source CGM software and
our own updates to iglu in the future.

R.2 Response to Reviewer 1

The authors present the R package “iglu” and accompanying Shiny app for visualization and analysis
of continuous glucose monitor (CGM) data. The software calculates CGM metrics and generates
figures not available in other packages, and is accessible to users with little programming experience.
It is an excellent piece of software that will significantly ease the burden of analysis for many
researchers.

Thank you for the positive feedback.

Minor revisions for the paper:

1. There are a couple of small typos, so the paper could do with one more round of copy editing

Thank you for pointing this out. We have performed additional proofreading and editing to
correct the typos.

2. In the interest of fairness, it would be worth including in Table 2 metrics calculated by CG-
Manalyzer and cgmanalysis that are not included in iglu.

Thank you for your suggestion. We agree, and we have expanded Table 2 accordingly based
on the documentation provided for each software package.

The summary of main changes in Table 2 compared to the previous version is as follows:

• Added “Multiscale entropy” which is implemented in CGManalyzer, but not in cgmanal-
ysis or iglu

• Added newly implemented in iglu COGI and MAG metrics, their implementation has
been suggested by another reviewer

• Added “Time in range” separately from “Percent in range”

• Added “Excursions count” which is implemented in cgmanalysis but not in CGManalyzer
or iglu

• Added “Day/night metrics (SD, min, max, AUC)” which are implemented in cgmanalysis
but not in CGManalyzer or iglu
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Figure R.1: Unsorted lasagna plots for Subject 2 using different values of the inter gap parameter
for linear interpolation in ‘blue-red’ color scheme: from left to right the values of 10 min, 45 min
(default), and 150 min (2 hours, 30 min) are used, correspondingly.

To simplify the comparisons and to follow your suggestion, we have only focused our com-
parison on various metrics rather than other functionality (e.g. visualization capabilities or
the type of accepted data). We have, however, added some discussion of limitations of our
package in that regard to the Conclusions section (see also our response to your point 6
below).

3. Please add a little bit more detail on how the package handles missing values. Does the
CGMS2DayByDay() function automatically fill in missing data using linear interpolation? Or
does it fill in with NA values? Also, the caption of Figure 1 claims that metric calculations are
not affected by missing glucose values, but this cannot be true for all metrics so clarification
is needed.

Thank you for your comments. The CGMS2DayByDay() function only fills in missing values
that are less than inter gap minutes apart, the values that are more than inter gap minutes
apart are replaced with NAs. By default, the function uses inter gap = 45 minutes, however
this value can be adjusted by the user. Our rationale for the inter gap parameter is as follows.
Suppose the meter frequency is 5 minutes, and we observe values 100, NA, 150 at time points
0, 5 and 10 minutes. Given that glucose values cannot biologically change too abruptly, we
believe it is reasonable in this case to interpolate the NA value at 5 min, and replace that
NA value with 125. On the other hand, for Subject 2 (see Figure R.2) there is a large gap
of measurements due to missing values for several days, and we believe it’s impossible to
accurately impute those values. Thus, applying CGMS2DayByDay() function to Subject 2
data will leave that large gap as NA. To better illustrate the effect of the inter gap parameter,
Figure R.1 shows lasagna plots for Subject 2 with various values for inter gap. Observe that
the large interval of missing data consistently remains NA, whereas the smaller intervals get
filled in as the value of inter gap grows.
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We have added additional clarifications on CGMS2DayByDay() in the manuscript which now
reads as follows:

The calculations of these variability metrics require evenly spaced glucose measure-
ments across time; however, this is not always the case in practice due to missing
values and misalignment of CGM measurement times across subjects (e.g. mea-
surement at 17:30 for Subject 1, but at 17:31 for Subject 2). In order to create
a uniform evenly spaced grid of glucose measurements, iglu provides the function
CGMS2DayByDay. This function is automatically called for metrics requiring the
evenly spaced grid across days, however the user can also access the function di-
rectly. The function works on a single subject’s data, and has three outputs.

str(CGMS2DayByDay(example_data_1_subject))

List of 3

$ gd2d : num [1:14, 1:288] NA 112.2 92 90.1 143.1 ...

$ actual_dates: Date[1:14], format: "2015-06-06" "2015-06-07" ...

$ dt0 : num 5

The first part of the output, gd2d, is the interpolated grid of values. Each row corre-
sponds to one day of measurements, and the columns correspond to an equi-distant
time grid covering a 24 hour time span. The grid is chosen to match the frequency
of the sensor (5 minutes in this example leading to (24 ∗ 60)/5 = 288 columns),
which is returned as dt0. The linear interpolation is only performed between ob-
served CGM values that are less than inter gap minutes apart, otherwise missing
values are inserted. By default, the function uses inter gap = 45 minutes, however
this value can be adjusted by the user. The returned actual dates allows one to
map the rows in gd2d back to the original dates. The achieved alignment of glucose
measurement times across the days enables both the calculation of corresponding
metrics, and the creation of lasagna plots discussed in the next section.

Regarding your point on missing values affecting metrics calculations, we have revised Figure 1
following your suggestions below, and eliminated confusing language. What we meant is that
the previously present linear interpolation artifact on Figure 1 did not represent glucose values
that were used for calculations. Now that the artifact is no longer present, Figure 1 provides
an accurate representation of the data that is actually being used. Furthermore, most metrics
do not use linear interpolation/imputation via CGMS2DayByDay() at all. For example, any
time-independent metric from Table 1 is calculated solely based on all the available not NA
measurements for the given subject. The active percent() function can be used to validate %
of time the CGM is active (proportion of not NA values) within the observed period, and is
also acting on the original (not interpolated) measurements. Secondly, even when the linear
interpolation is necessary via CGMS2DayByDay() (for example, to compute average across
days at exactly the same time point), this linear interpolation is only performed within the
inter gap interval (see Figure R.1), missing values are inserted between any two measurements
that are more than inter gap minutes apart. Thus, the functions in iglu allow one to work
with missing data with reasonable safeguards against “dangerous” imputation, and provide
the user with the ability to assess the reliability of estimates due to missing data via the
active percent. This last point is now reflected in the manuscript as follows:

Finally, iglu also allows one to assess the reliability of estimated CGM metrics by
providing information on the number of days of data collection together with %
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of time the CGM device was active during those days (% of non-missing measure-
ments). This information is automatically provided as part of the standardized
AGP output discussed in the next section, and can also be obtained directly by
calling the function active percent.

active_percent(example_data_5_subject)

# A tibble: 5 x 5

id active_percent ndays start_date end_date

<fct> <dbl> <drtn> <dttm> <dttm>

1 Subject 1 79.8 12.7 days 2015-06-06 16:50:27 2015-06-19 08:59:36

2 Subject 2 58.9 16.7 days 2015-02-24 17:31:29 2015-03-13 09:38:01

3 Subject 3 92.1 5.8 days 2015-03-10 15:36:26 2015-03-16 10:11:05

4 Subject 4 98.7 12.9 days 2015-03-13 12:44:09 2015-03-26 10:01:58

5 Subject 5 95.8 10.6 days 2015-02-28 17:40:06 2015-03-11 08:04:28

According to [17] (Riddlesworth et al., 2018), 10-14 days of CGM measurements
are generally sufficient for assessing outcomes in clinical trials, and for determin-
ing potential adjustments to diabetes management based on retrospective review.
Given these recommendations, the estimates of CGM parameters for Subject 3 are
less reliable than the estimates for other subjects in the example dataset.

4. Figure 4 and the section on “relationship between metrics,” while interesting, seem beyond
the scope of this manuscript. The hierarchical-clustering tool does not appear to be available
in the Shiny app (although adding it could be extremely useful), which makes the inclusion of
this clustered heatmap slightly confusing.

Thank you for your comment. The general comparison across metrics is beyond the scope
of this manuscript. However, in the process of writing this manuscript, we realized that the
readers who are new to CGM literature (in particular, statisticians who are new to this type
of data) may feel overwhelmed by the sheer amount of available metrics and confused by their
names, and thus may benefit from at least some guidance on the metrics concordance with
each other. So our goal here is a simple illustration of metrics “closeness” on the example
dataset, and we believe it is a very useful starting point for such new users.

We indeed have not added hierarchical-clustering tool to the Shiny app as it’s part of another
R package (pheatmap) rather than iglu itself, and is in general not specifically designed for
CGM metrics or CGM data. We are, however, inspired by your comments, and as a result
would like to further investigate potential usefulness of metrics hierarchical clustering for
CGM data interpretation and analysis. We believe such investigation will require a larger
scale application of the approach (e.g. using data from subjects with both Type I and Type
II diabetes across several CGM meters with larger sample sizes), and we hope to pursue it in
future work.

5. Please add some brief comparisons to demonstrate how closely this software agrees with other
packages. This does not need to be an in-depth statistical analysis, as that would also be beyond
the scope of the paper. However, the primary concern for many readers will be the accuracy
of the calculations, so brief side-by-side comparisons between packages would be reassuring.

We agree that it would be good to have a close comparison with other packages; however, we
argue that this is a very substantial and difficult undertaking on a large scale (for all metrics)
given the differences in required file formats, differences in default values used for some metrics
and differences in algorithms used for metrics calculation. Furthermore, comparison with
other software does not necessarily represent a comparison with gold standard. In fact, we
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believe it will be of great value to the community if a separate work is conducted on this
very topic by providing a gold standard using publicly available CGM data against which
various packages and algorithms can be compared (public data will make it easier for others
to attest to those standards). Some of the difficulties associated with testing metric values
across packages are also summarised in Vigers et al. (2019).

On our end, each function was tested by at least two different people from the team to make
sure that the implementation agrees with the prescribed formulas of each respective algorithm,
and in fact, we were even able to identify some typos in some published formulas early on in
this process that were reported here:

• Gaynanova, I., Urbanek, J., Punjabi, N. M. (2018). Corrections of Equations on Glycemic
Variability and Quality of Glycemic Control. Diabetes technology therapeutics, 20(4),
317-317.

Following your suggestion, we also used the example data from 5 subjects to cross-compare
some selected metrics across the packages (we selected the most common metrics for which
either there are no parameters, or we are confident in agreement of both the underlying
parameters, and the utilized algorithm). We found that Summary Statistics (min, max, mean,
quantiles) and overall SD are in perfect agreement between iglu, CGManalyzer and cgmanalysis
for all 5 subjects. Additionally, we found that iglu and cgmanalysis have perfect concordance
in the values of GMI, eA1C, CV, % of glucose values in various ranges and J-index. There is a
slight (less than 1%) disagreement in % of time CGM is active between iglu and cgmanalysis,
which we suspect is due to different rounding schemes being used. There is also a slight
disagreement in CONGA values (using 1 hour) between all CGManalyzer, cgmanalysis and iglu
which we believe is likely due to differences in treatment of missing values and interpolation
schemes, however the disagreement is quite minor. The selected comparisons are in Table R.1,
which is now included in the main manuscript with brief summary.

We also outlined the aforementioned limitations of our comparison in the Conclusion section
(see also our response to your point 6).

6. Please add some limitations to the conclusion section.

We agree that there are limitations to our software, and we have added the following paragraph
to the conclusion:

There are several limitations to our comparison of iglu with existing CGM software.
First, the R interface assumes that the CGM data is already loaded into R as a
data frame, which requires users to have sufficient R knowledge for data processing.
The Shiny app currently only allows one to load CGM data in .csv format, and
thus it also requires initial pre-processing by the user, albeit not necessarily in
R. This is not the case for CGManalyzer or cgmanalysis, which can work directly
with specialized data formats from many popular CGMs. Nevertheless, continuous
development of new CGM meters coupled with varying data formats across meters
present definite challenges for any CGM software. Secondly, while the list of metrics
implemented in iglu is more comprehensive compared to other R packages on CGM
(Table 2), it still lacks some functionality that may be desired as part of the AGP
output (Danne et al. 2017), specifically the count of hypoglycemia/hyperglycemia
excursions, and separation of metrics into sleep/wake time periods. Thirdly, while
the agreement of metrics values across software packages is encouraging, it does
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Table R.1: Comparison of selected metrics across R packages using example data
Metric name Subject id CGManalyzer cgmanalysis iglu
Mean Subject 1 123.7 123.7 123.7

Subject 2 218.5 218.5 218.5
Subject 3 154.0 154.0 154.0
Subject 4 129.7 129.7 129.7
Subject 5 174.6 174.6 174.6

SD Subject 1 33.3 33.3 33.3
Subject 2 52.4 52.4 52.4
Subject 3 44.8 44.8 44.8
Subject 4 29.1 29.1 29.1
Subject 5 55.6 55.6 55.6

% CGM is Active Subject 1 × 79.0 79.8
Subject 2 × 58.0 58.9
Subject 3 × 92.0 92.1
Subject 4 × 98.0 98.7
Subject 5 × 95.0 95.8

GMI Subject 1 × 6.3 6.3
Subject 2 × 8.5 8.5
Subject 3 × 7.0 7.0
Subject 4 × 6.4 6.4
Subject 5 × 7.5 7.5

J-index Subject 1 × 24.6 24.6
Subject 2 × 73.3 73.4
Subject 3 × 39.5 39.5
Subject 4 × 25.2 25.2
Subject 5 × 54.4 54.4

CONGA (n = 1 hour) Subject 1 24.7 25.7 25.9
Subject 2 19.9 25.1 25.7
Subject 3 38.2 41.0 39.5
Subject 4 23.2 22.6 23.3
Subject 5 49.0 50.0 49.3

not necessarily signify the agreement with gold standard (see also the discussion
in [4](Vigers et al., 2019)). Furthermore, a comprehensive cross-comparison across
packages is quite difficult as it requires a careful adjustment for potential differences
in default parameters used in metrics calculations, in handling of missing values,
and in underlying algorithms used. However, we believe that the explicit metric
values provided in Table R.1 coupled with public availability of our example dataset
will serve as a useful preliminary step towards this endeavor. We hope to address
some of these limitations in the future by leveraging complimentary existing open-
source CGM software and our own updates to iglu.

Minor suggestions for the software:

1. Although the graphing artifact (Figure 1, subject 2) is obvious in this example data, smaller
artifacts may be less obvious in real-life data. Missing values should be blank space in the
plots to avoid confusion.

Thank you for your comments. We followed the suggestion and modified the plot glu function
to prevent automatic linear interpolation in the plots over the values that are more than
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inter gap minutes apart (with the default inter gap = 45 minutes). Figure R.2 shows updated
Figure 1 in the manuscript. Note that we also have changed the default target range to
[70, 180] mg/dL as has been suggested by another reviewer.
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Figure R.2: Time series plots for five subjects. Selected target range is [70, 180] mg/dL.

2. After loading the 5 subject example data in R, writing to .csv, and loading into the Shiny app,
the active percent() function produces Error: unused arguments (180, 200, 250).

Thank you for alerting us to this bug in the Shiny app which we have missed. It has been
fixed.

3. The visualizations are generally excellent as they are, but one suggestion would be to look into
making the plots interactive using the plotly graphing library in R. This is not necessary for
publication, but perhaps a recommendation for future updates.

Thank you very much for the great suggestion. We agree that it would be nice to have
interactive plots. One design challenge, however, is that the interactive plots cannot be easily
exported (our current static plots could be exported with one click into pdf, png or eps from
the Shiny App). So ideally, we would like the users to have the ability to both export the
plots, and be able to interact with the plots, and in future updates we hope to find a solution
that will allow both.

4. Many researchers use packages like this to generate metrics for further analysis, so it might be
nice to have the option to download all the metrics at once rather than manually combining
results from multiple functions. Again, this is not a necessary change for publication, but
simply a recommendation for the future.

Thank you for your suggestion. We have added a new function called all metrics that imple-
ments all current metrics in the package using their default parameter values. The function-
ality can also be accessed from the Shiny App by scrolling down to the end of Metrics List
for “All Metrics”.
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R.3 Response to Reviewer 2

1. The paper is well written. This work goes beyond previous methods/software for analysis of
CGM data. There is a need for such open source software. This software includes several
metrics that were not included in previous software. The work is done well technically.

Thank you for the positive feedback.

2. The introduction of Lasagna plots is new and novel. That approach is closely related to the
use of stacked bar charts as introduced by Rodbard in 2009, and now included in nearly all
outputs for CGM data. It remains to be see to what extent the Lasagna plot is superior to use
of the stacked bar chart.

Thank you very much for the reference, we were not aware of this manuscript. Indeed, upon
closer inspection, we can confirm that our ‘timesorted’ lasagna plot for 1 subject is very closely
related to a specific type of stacked bar chart discussed in Rodbard (2009), that is the stacked
bar chart of glucose distributions as a function of time during the 24hour period (Figure 2(B)
in Rodbard (2009)). Similarly, our ‘daysorted’ lasagna plot for 1 subject is closely related to
the stacked bar chart of glucose distributions by date (Figure 2(D) in Rodbard). Nevertheless,
there are several important differences.

First, the main difference is that the stacked bar charts by definition split the glucose values
into a fixed number of categories, where the same color is used within each category regardless
of the value. For example, if green is used for in-range [70, 180] mg/dL, then the stacked bar
chart will have the same green color for values close to 70, and values close to 180. In contrast,
the lasagna plots use a gradient fill, that is while a certain color is assigned to the category, the
gradient of that color changes continuously with the change in glucose values. Our rationale
for using a gradient fill is to soften the transition on the cutoffs, e.g. values of 179 mg/dL and
181 mg/dL are only 2 mg/dL apart. While the fixed categorical colors will change abruptly
between the two, the gradient fill emphasizes that those values are indeed quite close despite
being on the different sides of the cutoff. We believe this provides more detailed information
on the subject’s glucose profile. As an example, consider the lasagna plot for Subject 1 in
the newly added red-orange color scheme in Figure R.3. On 2015-06-12, the subject had a
spike in glucose values around 9am as evident by the yellow band in that time frame. Note,
however, that the surrounding green is a mix between green and yellow rather than solid
green, which indicates that there was a raise in glucose values that culminated in that yellow
peak, followed by some decline. It is, however, possible to modify our current functionality to
allow for fixed categorical colors rather than the gradient fill (which will then allow to match
exactly the type of display in Figure 2(B) in Rodbard), and we hope to add this functionality
in the future.

The second difference is that the stacked bar charts in Rodbard (2009) are by definition
created for one subject at a time, and are always sorted (that is they show the distribution of
glucose values within the specified time range). Our lasagna plots have extended functionality
in comparison. For one subject, the lasagna plots also allow the display of original glucose
values by color by day without sorting (thus providing an alternative to the daily time-series
plot) (Figure R.3). We believe this is useful for visual assessment of day to day variability
in glucose profiles. Secondly, our package allows one to display lasagna plots for multiple
subjects simultaneously, which in turn allows one to compare the average (across days) 24
hours subject profiles, or assess population-level trends across study groups. As an example,
creating a lasagna plot for 5 subjects from the example dataset with ‘average’ datatype,

9



2015−06−06

2015−06−07

2015−06−08

2015−06−09

2015−06−10

2015−06−11

2015−06−12

2015−06−13

2015−06−14

2015−06−15

2015−06−16

2015−06−17

2015−06−18

2015−06−19

0 5 10 15 20 25
Hour

D
ay

100
200
300
400
500

glucose

Subject 1

Figure R.3: Unsorted lasagna plot for Subject 1 in ’red-orange’ color-scheme.

and ‘subjectsorted’ visually shows that Subject 2 has the highest levels of hyperglycemia,
whereas Subjects 1 and 4 have the lowest levels of hyperglycemia (Figure R.4 (A)). Using
the same lasagna type with ‘timesorted’ option instead shows that among these 5 subjects,
hyperglycemia is most common in the later afternoon/evening, with the times around 4pm
(16:00) and 9pm (21:00) showing the highest picks (Figure R.4 (B)). Of course, the latter
conclusion is limited as it is only based on 5 subjects, however we believe creating such plots
for larger subgroups may help illuminate population-level trends.

Finally, while Rodbard (2009) discussed several different types of stacked bar charts, we found
that only the simplest one (a stacked bar chart for 1 subject across all times and days) is
consistently used in AGP. Our new extended functionality allows one to generate such a
stacked bar chart as part of the newly added AGP report (see Figure R.5 and our response
to your point 4 below), or as a separate output using the function plot ranges.

Given the discussed differences and similarities between lasagna plots and stacked bar charts,
the revised manuscript provides a brief summary of this comparison:

While lasagna plots are very similar to stacked bar charts introduced in [26] (Rod-
bard, 2009), there are two main differences. First, the stacked bar charts split the
glucose values into a fixed number of categories (based on specified glucose cutoffs),
where the same color is used within each category. In contrast, the lasagna plots use
gradient fill, thus the gradient of the color changes continuously with the change in
glucose values. We believe this provides more detailed information on the subject’s
glucose profile. Secondly, the stacked bar charts in [26](Rodbard, 2009) are created
for one subject at a time. In contrast, iglu allows one to create lasagna plots for mul-
tiple subjects at once. Using datatype=‘average with lasagnatype = ‘subjectsorted’
facilitates direct cross-comparison of glucose distributions across subjects, whereas
lasagnatype = ‘timesorted’ facilitates assessment of population-level trends. Fig R.4
shows both types of plots. Fig R.4 A shows that Subject 2 has the highest levels of
hyperglycemia, whereas Subjects 1 and 4 have the lowest levels of hyperglycemia.
Fig R.4 B shows that among the 5 subjects, hyperglycemia is most common in the
later afternoon, with the times around 4pm (16:00) and 9pm (21:00) showing the
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Figure R.4: Lasagna plots for 5 subjects in example dataset with ‘average’ datatype in ’red-orange’
color-scheme. (A): sorted within each subject; (B): sorted within each time point across subjects.

highest glucose values.

3. The authors note that they might add additional metrics in the future. New metrics continue
to be developed. See for instance Leelarathna et al, re COGI, published in 2020 in Diabetes
Technology and Therapeutics.

Thank you for alerting us to this new metric. The expanded package functionality now
includes COGI both within R interface, and as part of the Shiny app. We updated Tables 1
and 2 accordingly.

4. The authors do not include an AGP in their outputs. This is perhaps the most popular
component of nearly all displays of CGM data at the present time – along with the stacked
bar chart. See Mazze et al, Diabetes Care 1987 and also 2008 2009 and multiple other papers,
and subsequent papers from Bergenstal et al. See a recent review from Rodbard in press and
online at DTT.

Thank you for the suggestion, and the references. Indeed, the existing package functionality
allowed one to calculate all standard metrics included in AGP, however we did not present
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them as a separate standardized output. We have expanded the functionality of the package
and the Shiny App correspondingly, both now allow the user to produce AGP output very
similar to the commercial software (in line with Figure 1 in Johnson et al. 2019).

• Johnson, M. L., Martens, T. W., Criego, A. B., Carlson, A. L., Simonson, G. D., Bergen-
stal, R. M. (2019). Utilizing the ambulatory glucose profile to standardize and implement
continuous glucose monitoring in clinical practice. Diabetes technology & therapeutics,
21(S2), S2-17.

The example AGP output from iglu is shown in Figure R.5. The output can be obtained by
calling the agp function in the iglu package, or by using the new AGP tab in the Shiny App.
We have added the agp function to the summary of iglu visualization capabilities in Table 3
together with the following paragraph:

Finally, iglu allows one to generate an Ambulatory Glucose Profile (AGP) report in
accordance with recommendations in [23] (Johnson et al., 2019). Figure R.5 shows
an example report for Subject 1, which includes information on data collection
period, time spent in standardized glycemic ranges (cutoffs of 54, 70, 180 and 250
mg/dL) displayed as a stacked bar chart [26] (Rodbard, 2009), glucose variability
as measured by %CV, and visualization of quantiles of the glucose profile across
days together with daily glucose views.

We have also carefully read the recommendations for improvements described in the recent
review by Rodbard in DTT, and hope to implement some of these recommendations in the
future (in particular adjustment of time scale to different 24 hour periods, and merging CGM
data with actigraphy data).

5. Most endocrinologists and other diabetes specialists use 70 and 180 as the cutoffs for in range.
The present authors use 70 and 140. The graphs will look more familiar and appropriate to
many readers if you use 70 and 180, or even 54 70 180 and 250. See Battelino et al, 2019,
Diabetes Care. (63 and 140 are used or proposed for pregnancy).

Thank you for your comments and feedback, and for pointing us to Battelino et al., 2019. We
have changed the default range in plot glu function to [70, 180] mg/dL, and have updated Fig-
ure 1 and the manuscript accordingly. We also changed the default ranges in in range percent
function to [70, 180] and [63, 140], and added corresponding references to Battelino et al.
(2019). The functions above percent and below percent by default produce output for 140,
180, 250 mg/dL and 54, 70 mg/dL, correspondingly.

6. It is reasonable for the authors to use their own nomenclature for their own variables in their
program. However, for clarity, the authors might use the nomenclature as established in the
literature for a number of variables, e.g. the subclassification of SD, i.e. SDT SDw SDb
SDhh:mm SDdm SDb//dm and some others. e.g., bottom of page 4/9

Thank you for the suggestion. In iglu software documentation files for each function and in
text, we try to adhere as much as possible to the established nomenclature. We have also
edited the names of the metrics displayed in the heatmap (current Figure 5), and followed
the suggested nomenclature for the subclassification of SD.

However, it is harder to control nomenclature with R specific outputs as there are restrictions
on the possible variable names and column names in R. Thus, the output of sd measures uses
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Figure R.5: Ambulatory Glucose Profile (AGP) for Subject 1 generated by iglu.
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our own somewhat modified nomenclature (in particular we avoid the use of special symbols
like space ‘ ‘, ‘:‘ and ‘\\‘). Nevertheless, we made slight adjustments to R outputs during
revisions to hopefully better match the established notations from the literature.

Old output:

sd_measures(example_data_5_subject)

# A tibble: 1 x 7

id SdW SdHHMM SdWSH SdDM SdB SdBDM

<fct> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

1 Subject 1 26.4 19.6 6.54 16.7 27.9 24.0

2 Subject 2 36.7 22.8 7.62 52.0 48.0 35.9

3 Subject 3 42.9 14.4 9.51 12.4 42.8 42.5

4 Subject 4 24.5 12.9 6.72 16.9 25.5 22.0

5 Subject 5 50.0 29.6 12.8 23.3 50.3 45.9

New revised output:

sd_measures(example_data_5_subject)

# A tibble: 5 x 7

id SDw SDhhmm SDwsh SDdm SDb SDbdm

<fct> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

1 Subject 1 26.4 19.6 6.54 16.7 27.9 24.0

2 Subject 2 36.7 22.8 7.62 52.0 48.0 35.9

3 Subject 3 42.9 14.4 9.51 12.4 42.8 42.5

4 Subject 4 24.5 12.9 6.72 16.9 25.5 22.0

5 Subject 5 50.0 29.6 12.8 23.3 50.3 45.9

The sd measures documentation accessible from R console by typing ?sd measures after loading
iglu now also clarifies that for example SDhhmm is known as SDhh:mm and SDbdm is known
as SDb // dm. We hope that these changes improved the clarity.

7. Several of the metrics have ‘parameters’, i.e. TIR, TBR TAR MR CONGAn IGC (with
a,b,c,d, LLTR ULTR). Please specify what default parameters you are using, and whether or
not the end user can adjust those parameters. Cf top of page 4/9. Also SDwsh – what are
the parameters for h? and is this for the entire series with all possible starting points, or for
particular starting points?

Thank you for your comment. Indeed, most of the parameters can be adjusted by the user,
and the detailed description of each parameter together with their default values is provided
within R package iglu documentation associated with each function. This documentation
can be accessed directly from the R console by using help as with all other R packages,
e.g. ?igc provides a description of the meaning of a, b, c, d, LLTR, ULTR in IGC metric
calculations, together with all the corresponding default parameters. We acknowledge that
the Shiny app is more limited in this regard as its development is a little bit behind the full
R package functionality due to the difficulties associated with connecting built-in R package
documentation to the app. For IGC metric, the Shiny App currently only works with default
values of a, b, c, d, LLTR, ULTR (currently set as a = 1.1, b = 2, c = d = 30, LLTR
= 80, ULTR = 140 matching the values suggested in Rodbard(2009)), however this gap will
be eliminated in future updates. The full documentation for each function can be accessed
from the package website https://irinagain.github.io/iglu/reference/index.html which does
not require R use. As these detailed and sometimes quite technical descriptions of metric
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calculations are already part of mandatory R package documentation, we have opted out of
including full details in the manuscript, and instead focus on the general package overview.

In the revised version, we have made several changes to make this documentation more ac-
cessible. First, we made changes to the Shiny app so that instead of the previous generic
message ”Specify parameter”, metric-specific parameter information is now displayed. Sec-
ondly, we clarified that the full technical details of each metric implementation together with
the description of user-adjustable parameters is available in accompanied documentation, and
can also be accessed directly from the website. The revised manuscript now reads

Table 1 summarizes all the metrics implemented in the package, which can be di-
vided into two categories: time-independent and time-dependent. All the functions
assume that the glucose value are given in mg/dL units. Each function has detailed
documentation that describes all the input parameters (and their default values) as
well as the specific algorithm used for metric calculation. Full documentation can
be accessed from the R console after loading iglu package (e.g. ? active percent) or
from the accompanying website (https://irinagain.github.io/iglu/).

We hope this makes it more clear how to use the package.

Finally, regarding your question on SDwsh, we use all possible starting points. That is, we
calculate it by taking the hour-long intervals starting at every point in the interpolated grid
from CGM2DayByDay (the grid matches CGM frequency, e.g. 5 min for Dexcom), computing
the standard deviation of the points in each hour-long interval, and then finding the mean
of those standard deviations. That is, for n time points in the grid, we compute SD1...SDn,
where SDi is the standard deviation of glucose values [Xi, Xi+1, ...Xi+k], with the value of k
(number of measurements in an hour long interval) being dependent on the meter frequency.
The final number is obtained by averaging all this standard deviations, that is by taking
1/n ∗

∑
[(SDi)]. This description of the implemented algorithm is available from iglu package

documentation as described above.

8. Throughout - this reviewer prefers use of ‘allows one to map’ rather than ‘allow to map’
(several other instances for the word allows)

Thank you for the suggestion. We have revised accordingly.

9. Page 5/9: under visualizations, line 5: reference to Section (the number of the section is
not currently specified)

Thank you for pointing out these inconsistencies. This was an artifact of using a different
latex template with numbered sections. We have revised the manuscript to omit the need for
section numbers.

10. The color scheme used by the authors is perfectly acceptable – but most of the commercial
software for CGM data analysis uses a different color scheme. Authors might to well to build
in flexibility and allow the end user to select their own color scheme.

Thank you for the suggestion. The newly included AGP output (see Figure R.5 and our
response to your point 4) uses the same color scheme as the commercial software. We also
added a new color scheme parameter to lasagna plots, which allows the user to switch from
the default ’blue-red’ colors to the more commonly used ’red-orange’ colors in stacked bar
charts. Figure R.6 shows the same lasagna plot for subject 1 in both color schemes. The
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Figure R.6: Lasagna plot for Subject 1 generated by iglu with two different color schemes.

Shiny app has also been updated accordingly, where now the user has a choice between the
two color schemes for lasagna plots with a clickable interface.

11. Consider the possible option to include a logarithmic scale for glucose (Rodbard 2009 .. sep-
arate article than the ones cited).

Thank you for the suggestion. We have followed it, and included a new parameter log to
the plot glu function. By default, log=FALSE, leading to a linear scale. Changing log=TRUE
leads to a semilogarithmic scale mimicking Figure 1(C) in Rodbard (2009):

• Rodbard D (2009). A semilogarithmic scale for glucose provides a balanced view of
hyperglycemia and hypoglycemia. J Diabetes Sci Technol. 3(6), 1395-401.

Figure R.7 shows the glucose profile for Subject 1 from example data generated by iglu with
log=TRUE. Here the glucose values are displayed in original mg/dL units, but the spacing of
the values on y axis follows log10 transformation. The Shiny app has corresponding updates
as well, where the user can now select the transformation type (none or log10) for plotting.

12. Page 6/9: Authors discuss “worse glucose control” at at least two locations in the paper. But
worse has several dimensions – can be in terms of TIR TBR TAR SD CV etc. So authors
should be careful in using the term “worse” – it is “worse” in only 1 dimension.

Thank you for your comment. We have edited the writing to clarify what we mean. Specifi-
cally, we clarified that Subject 2 has the worst hyperglycemia (highest values for CGM-metrics
in hyperglycemia group (2) based on hierarchical clustering in Figure 5), and Subject 5 has
the worst glucose variability (highest values for CGM-metrics that measure glucose variability,
group (6) based on hierarchical clustering in Figure 5).

13. Authors seem unaware of two articles by Fabris C et al (with Breton or Cobelli or Kovatchev)
using principal components analysis and the high degree of correlation of many of the metrics.
These probably should be cited, vis a vis the hierarchical analysis used by the present authors.
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Figure R.7: Time series plot for Subject 1 using a logarithmic scale for glucose (log=TRUE in
plot glu). Selected target range is [70, 180] mg/dL.

Thank you for the references, we indeed were not aware of these articles. However, investi-
gating the general relationship between the metrics is not our main goal in this work, and is
beyond the scope of this manuscript. The reason we added this section is because in the pro-
cess of writing this manuscript, we realized that the readers who are new to CGM literature
(in particular, statisticians who are new to this type of data) may feel overwhelmed by the
sheer amount of available metrics and confused by their names, and thus may benefit from at
least some guidance on the metrics concordance with each other. So our goal here is a simple
illustration of metrics “closeness” on the example dataset, and we believe it is a very useful
starting point for such new users.

We do, however, have an interest in further investigating the relationship between the metrics
based on hierarchical clustering on a larger scale (e.g. using data from subjects with both Type
I and Type II diabetes across several CGM meters with larger sample sizes), and comparing
our approach and conclusions with the work of Fabris C et al. In particular, the latter have
specifically focused on glucose variability metrics (in contrast to all the metrics), and in Fabris
et al. (2016) the authors indeed indicate that it would be of interest to expand their metrics
list. From the statistical standpoint, the work of Fabris et al. is also quite different in that
they focus more on a new composite measures (via SPCA) based on a selected set of variables,
whereas we focus on exploratory analysis by clustering all metrics into interpretable groups.
That is, we do not aim to select a smaller set of metrics, rather we aim to give some guidance
on which metrics could be grouped together in a data-driven fashion. We added the references
with the following contrast in the manuscript:

The relationship between a reduced list of metrics has also been studied in [29,30]
(Fabris et al., 2014, 2015) using sparse principal component analysis. While [29,30]
focus on selection of a few key metrics to describe glucose variability, our goal here
is exploratory analysis to illustrate differences and similarities between all metrics
on a given dataset.

Indeed, we are very thankful for pointing out this work, and we are very much inspired to
investigate the relationship between the metrics further and expand on the work of Fabris
et al. We aim to pursue these questions in future work as it’s outside of the scope of this
manuscript.
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14. What algorithm are the authors using for MAGE (please use MAGE in all caps – all upper-
case). Peter Baghurst has an algorithm (DTT) written in R. Are you using that one? That
has been ‘validated’ or at least tested – see Sechterberger et al.

Our original reference for all the CGM metrics is Rodbard (2009), thus in calculating MAGE
we followed the description provided there. Specifically, we take the mean of absolute differ-
ences (between each glucose value and the glucose mean) that are greater than one standard
deviation (an optional sd multiplier parameter can be used to adjust e.g. two standard de-
viations instead of one). These details of MAGE calculation are part of iglu software docu-
mentation, and can be obtained from CRAN (https://cran.rstudio.com/web/packages/
iglu/iglu.pdf), the package website (https://irinagain.github.io/iglu/reference/
mage.html) or by accessing help for the corresponding function from the R console (? mage).
In figures, Shiny App, in text and in documentation we always refer to MAGE as all caps.
However, for consistency of R function names for metrics and R coding style, we prefer to
keep all metric function names lower case.

We agree that the currently used MAGE algorithm is likely not the most accurate as it does
not identify peaks and nadirs. We are familiar with Baghurst’s work in DTT, however we
were not able to find an original R implementation of their algorithm. We found that cgm-
analysis package in R calculates MAGE based on Baghurst’s algorithm, however some choices
in implementation are still somewhat subjective (e.g. the use of peak/nadir identification
algorithm after smoothing). In fact, while we were researching various algorithms for MAGE
calculation in the literature to determine which one to adopt for iglu, we have developed our
own algorithm for MAGE that we believe to be more accurate based on cross-comparison of
automatic (via algorithm) and manual MAGE calculations (as per Service) of multiple CGM
profiles. This work is not yet complete as we are in the process of finalizing the algorithm’s
validation and the corresponding manuscript, but once the work is complete, we plan to
include this new algorithm in iglu.

15. CVsd is an entirely new metric—what does it mean? What is it correlated with? Any place
where the authors believe it might be helpful?

The main goals of this work are to provide researchers with (i) comprehensive software for
evaluation of various CGM metrics that is (ii) easy to use. Thus, it is not our goal here to
give recommendations on which metrics should be used in practice for assessment of various
clinical outcomes, nor do we aim to make any claims on one metric’s superiority over the
other. While we agree that CVsd is not as clearly defined in the literature as some other
metrics, there is undeniably a lot of interest in measuring both within-day (intra-day) and
between-day (inter-day) glucose variability. It is our opinion, however, that the literature
(e.g. Umpierrez at al., 2018, Am J Med Sci) tends to be vague on how exactly one may do
so if using CV as a measure rather than SD.

With this in mind, our rationale for implementing CVsd was two-fold.

First, we wanted to implement a glucose varaibility measure based on CV that differenti-
ates within-day (intra-day) and day-to-day (inter-day) variations. While CVmean can be
interpreted as a measure of average intra-day variation, CVsd allows one to measure
inter-day variations in glucose variability itself. Our hierarchical clustering results do
indeed indicate that while CVsd is correlated with other variability metrics (e.g. CV and
CVmean) more so than it is with average metrics (e.g. Mean and Median), CVsd is also
quite different due to its focus on inter-day variations in glucose variability rather than
variability itself, although of course this analysis is limited to 5 subjects. In the example
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dataset, CVsd is largest for Subject 3 (recall that Subject 2 has the highest proportion of
time above 180 mg/dL, and Subject 5 has the highest glucose variability as measured by
SD). The reason CVsd is highest for Subject 3 is because that subject has highest variability
changes from day to day, that is on some days its CV is quite low, and on some days its CV
is very high. In contrast, Subject 5 has consistently high variability (its CV remains high on
all days leading to higher CVmean but lower CVsd).

cv_measures(example_data_5_subject)

# A tibble: 5 x 3

id CVmean CVsd

<fct> <dbl> <dbl>

1 Subject 1 21.1 7.80

2 Subject 2 17.0 6.41

3 Subject 3 27.1 9.40

4 Subject 4 18.4 5.70

5 Subject 5 29.0 7.56

There could be several explanations for this, perhaps Subject 3 has larger inconsistencies
across days (e.g. in terms of meal composition and exercise), but we refrain from further
analyses here as this is not our main goal.

Our 2nd reason for implementing CVsd is for convenience of follow-up statistical analyses.
Specially, CVsd allows one to assess uncertainty in the values of CVmean for each subject
(by e.g. allowing one to construct confidence intervals for average intra-day CV based on
CVmean, CVsd and # of available days as returned by active percent function). We focus on
returning this measure for CV specifically rather than all variability metrics as we found CV
to be the most commonly reported metric.

We are thankful for you framing these questions on clinical utility of CVsd as they inspired
us to have a follow up work on this topic.

16. In your function CGMS2DaybyDay, what is the nature of your smoothing function? Any
particular reason why it was selected or what its advantages might be relative to some alter-
natives? Any indication that it performs better than others.

Thank you for your comment. The purpose of CGMS2DayByDay is not to perform smoothing
per se, but rather to put the glucose values on a uniform time grid within a 24 hour period
across days and subjects. We found this necessary to be able to efficiently calculate multiple
glucose variability metrics (e.g. CONGA and subtypes of standard deviation from Rodbard
(2009) that work on equidistant time grid), and we wanted to ensure that the same grid is
used across all subjects. Suppose the original measurements are collected at 15:31, 15:36,
15:41, 15:46, etc for Subject 1, and at 15:33, 15:38, 15:43, 15:48 for Subject 2. Then the
function returns values at 15:30, 15:35, 15:40, 15:45 for both subjects, which are obtained by
linearly interpolating their respective glucose values at neighboring time points. Visually, we
found such a linearly interpolated CGM profile indistinguishable from the original profile.

While not the original goal, such linear interpolation does allow us to perform some smoothing
by replacing missing values with interpolated values between observed measurements that are
less than inter gap minutes (by default we use a gap of 45 minutes, but this can be adjusted
by the user). Our rationale for the inter gap parameter is as follows. Suppose the meter
frequency is 5 minutes, and we observe values 100, NA, 150 at time points 0, 5 and 10
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Figure R.8: Unsorted lasagna plots for Subject 2 using different values of inter gap parameter for
linear interpolation: from left to right the values of 10 min, 45 min (default), and 150 min (2 hours,
30 min) are used, correspondingly.

minutes. Given that glucose values cannot biologically change too abruptly, we believe it is
reasonable in this case to interpolate the NA value at 5 min, and replace that NA value with
125. On the other hand, for Subject 2 (see Figure R.2) there is a large gap of measurements
due to missing values for several days, and we believe it’s impossible to accurately impute
those values. Thus, applying the CGMS2DayByDay() function to Subject 2 data will leave
that large gap as NA. To better illustrate the effect of the inter gap parameter, Figure R.8
shows lasagna plots for Subject 2 with various values for inter gap. Observe that the large
interval of missing data consistently remains NA, whereas the smaller intervals get filled in
as the value of inter gap grows.

We have added additional clarifications on CGMS2DayByDay() in the manuscript which now
reads as follows:

The calculations of these variability metrics require evenly spaced glucose measure-
ments across time; however, this is not always the case in practice due to missing
values and misalignment of CGM measurement times across subjects (e.g. mea-
surement at 17:30 for Subject 1, but at 17:31 for Subject 2). In order to create
a uniform evenly spaced grid of glucose measurements, iglu provides the function
CGMS2DayByDay. This function is automatically called for metrics requiring the
evenly spaced grid across days, however the user can also access the function di-
rectly. The function works on a single subject’s data, and has three outputs.

str(CGMS2DayByDay(example_data_1_subject))

List of 3

$ gd2d : num [1:14, 1:288] NA 112.2 92 90.1 143.1 ...

$ actual_dates: Date[1:14], format: "2015-06-06" "2015-06-07" ...

$ dt0 : num 5
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The first part of the output, gd2d, is the interpolated grid of values. Each row corre-
sponds to one day of measurements, and the columns correspond to an equi-distant
time grid covering a 24 hour time span. The grid is chosen to match the frequency
of the sensor (5 minutes in this example leading to (24 ∗ 60)/5 = 288 columns),
which is returned as dt0. The linear interpolation is only performed between ob-
served CGM values that are less than inter gap minutes apart, otherwise missing
values are inserted. By default, the function uses inter gap = 45 minutes, however
this value can be adjusted by the user. The returned actual dates allows one to
map the rows in gd2d back to the original dates. The achieved alignment of glucose
measurement times across the days enables both the calculation of corresponding
metrics, and the creation of lasagna plots discussed in the next section.

We do, however, think it is worthwhile to investigate smoothing on its own to reduce mea-
surement error, and to have a more principled interpolation approach. It is, however, not
clear to us yet what is the best smoothing method to utilize for CGM data, and how
much it will affect the reliability of resulting estimates. Thus, for simplicity, currently iglu
works with non-smoothed original CGM measurements. While the linear interpolation in
CGMS2DayByDay() does some alteration of original data, we argue that it is both quite minor
given visually indistinguishable profiles, and is an easy processing step to explain to a wide
audience (compared to, say, smoothing via functional principal component analysis which
we did for average CGM trajectories during sleep in Gaynanova I, Punjabi N, Crainiceanu
C. Modeling continuous glucose monitoring (CGM) data during sleep. Biostatistics. DOI:
https://doi.org/10.1093/biostatistics/kxaa023).

We plan to investigate various smoothing options in future work, and hope to add such
additional smoothing capabilities to iglu in the future.

17. You do not seem to include MAG (DeVries, Hermanides ?) also also see distance traveled
(DT from Marling). A recent study from Moscada (?) and Nick Oliver indicates that MAG
has the highest value for Discriminant Ratio, a criterion they propose as a basis to select
among alternative metrics for various aspects of CGM.

Thank you for the suggestion. We have updated the functionality of both the package and
the Shiny app to include MAG. Tables 1 and 2 have also been updated accordingly. We have
not included distance traveled (DT) at this time, but hope to include it in the future.

18. Various consensus papers (Bergenstal, Danne, Maahs, Battelino) have discussed the statistics
that the consensus groups believed should be presented together with the AGP (and other
analyses of the CGM data). Please be sure that you have computed and provide the ones that
are currently or recently in vogue.

Thank you very much for the suggestion and references. Indeed, almost all of the metrics from
consensus papers (e.g. time in ranges, LBGI/HBGI, AUC, mean, SD, CV, estimated A1C,
GMI) can be calculated with iglu, however they were not presented as part of the standardized
output. In the revised version, iglu is now able to produce a standardized AGP output in line
with recent recommendations in Johnson et al., 2019 as shown in Figure R.5 (see also our
response to your point 4). This includes information on data collection (date range, % of time
CGM is active), average glucose value (as measured by mean), estimated A1C (as measured
by GMI), glucose variability (as measured by % CV), % of time spent in pre-specified cutoff
ranges (54, 70, 180, 250 mg/dL) displayed in a stacked bar chart, quantiles corresponding to
a specific time of day, and daily profiles with shaded areas for values < 70 mg/dL (shaded in
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red), and > 180 mg/dL (shaded in yellow). After studying the consensus papers carefully, we
found that the only missing functionalities are (i) separation of output into wake and sleep
periods based on pre-determined time ranges; (ii) count of the number of hypoglycemia and
hyperglycemia episodes; (iii) glucose stability as measured by the mean hourly change from
the median curve (Bergenstal et al., 2013). We hope to expand the functionality even further
in the future to add these metrics.

19. Several authors have investigated how much data must be available to obtain reliable estimates
of the parameters. These include Xing et al, Riddlesworth et al, and Nick Oliver or others
from his group (may be in press or online at the present time, in DTT).

Thank you for the comment. We are indeed aware of Xing et al and Riddlesworth et al
recommendations of 10-14 days of CGM measurements, however the prior functionality of
iglu did not produce a clear output for the user on data availability. In the revised version,
this information is included in the new standardized AGP report (see Figure R.5 and our
response to your point 4), and can also be obtained by calling the active percent function
from within R, or choosing the “Active Percent” metric from the Shiny app. We have added
explicit description of the active percent function to the manuscript together with a summary
of recommendations from Riddleswoth et al. 2018 based on their conclusions.

Finally, iglu also allows one to assess the reliability of estimated CGM metrics by
providing information on the number of days of data collection together with %
of time the CGM device was active during those days (% of non-missing measure-
ments). This information is automatically provided as part of the standardized
AGP output discussed in the next section, and can also be obtained directly by
calling the function active percent.

active_percent(example_data_5_subject)

# A tibble: 5 x 5

id active_percent ndays start_date end_date

<fct> <dbl> <drtn> <dttm> <dttm>

1 Subject 1 79.8 12.7 days 2015-06-06 16:50:27 2015-06-19 08:59:36

2 Subject 2 58.9 16.7 days 2015-02-24 17:31:29 2015-03-13 09:38:01

3 Subject 3 92.1 5.8 days 2015-03-10 15:36:26 2015-03-16 10:11:05

4 Subject 4 98.7 12.9 days 2015-03-13 12:44:09 2015-03-26 10:01:58

5 Subject 5 95.8 10.6 days 2015-02-28 17:40:06 2015-03-11 08:04:28

According to [17] (Riddlesworth et al., 2018), 10-14 days of CGM measurements
are generally sufficient for assessing outcomes in clinical trials, and for determin-
ing potential adjustments to diabetes management based on retrospective review.
Given these recommendations, the estimates of CGM parameters for Subject 3 are
less reliable than the estimates for other subjects in the example dataset.

20. There are two major sets of applications for CGM data: The first is for the care of the
individual patient. For this, one does not need or want all possible parameters. . . there is
now a consensus that TIR TAR TBR Mean or median, %CV, and perhaps a very few other
parameters are sufficient – in any event they are usually more than either the physician, health
care practitioner, patient or patient’s family can digest. So, there is very little demand for
new metrics – most unfamiliar, and most highly redundant or at least highly correlated with
the few mentioned here.

We agree that for clinical practice, the availability of additional CGM measures that are likely
to be correlated with other commonly available measures (e.g., TIR, TAR, etc.) will not have
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significant utility in day to day practice. We, however, respectfully disagree that, in the con-
text of research, these new measures are of potential value. CGM measures provide dynamic
characterization of glucose trajectories which can be of immense value when considering the
potential impact of conditions that are associated with acute temporal changes in pathophys-
iological mechanisms that can impact glucose homeostasis. For example, sleep apnea is a
common condition that affects 9% of women and 25% of men in the general population. It is
well known that sleep apnea is associated with nocturnal repetitive increases in sympathetic
activity due to cyclical hypoxemia and recurrent arousals from sleep. Thus, to determine
whether these acute changes which are known to increase sympathetic nervous system activ-
ity can influence glucose homeostasis, measures that capture the dynamic nature of glucose
trajectories are needed. Even in clinical scenarios where acute pathophysiological changes
are not present, metrics that help probe the temporal nature of glucose are of value. For ex-
ample, obesity is associated with metabolic flexibility. Having detailed CGM measures that
help define the various rates of change (increase and decrease in glucose levels) can provide
insight into how conditions, such as obesity and polycystic ovary syndrome, alter the diurnal
nature of glucose profiles. We have modified the conclusions section of the manuscript to
acknowledge both the limited utility of the full list of available metrics for individual patient
care as well as potential value of metrics that measure dynamic nature of glucose trajectories.

21. The other major application of CGM data is in the context of clinical trials. Here one is
interested in significance testing for superiority or non-inferiority for one or the other treat-
ment, using randomized parallel studies or crossover studies. These often involve multivariate
corrections e.g. for baseline A1C, or baseline mean glucose, and for clinical sites, and other
subsets of the data. This is what a pharmaceutical laboratory would need. The present article,
and program, despite all of its strengths, does not really fulfil the needs to these two major
potential groups of users (in my opinion). The current study and paper is still valuable, and
publishable, but this reviewer would suggest that the authors try to address or at least ac-
knowledge these two major use-cases, and either try to address them in the present paper, or
address them in future studies and manuscripts. Perhaps the lack of the ability of the present
study and code to address these important use-cases should be included as a limitation of the
study. However, the present code should be useful to others trying to address those cases.

We appreciate the reviewer’s comments that CGM data are of value in the context of clinical
trials (and thus significant testing). In fact, the work presented in the current manuscript
under review was motivated by a recently completed clinical trial on the effects of sleep
apnea treatment with positive airway pressure on CGM profiles. Given the detailed nature of
CGM data and the increasing use of acquiring such data, we believe that convenient methods
for analyzing CGM data are desperately needed to facilitate use of CGM methodology by
investigators in observational studies and randomized clinical trials. We have modified the
conclusions section of the manuscript accordingly.

22. Hill and Oliver et al have recently published (or have online) a new version of their EZ GV
method (still in Excel, I believe) that might be helpful.

Thank you for the reference, we added it to the manuscript in the Introduction.

EasyGV is a free CGM software in the form of a macro-enabled Excel workbook
(Hill et al., 2011), and thus is more accessible compared to CGManalyzer and cg-
manalysis. However, it only allows calculation of 10 metrics. Furthermore, unlike
R, Excel is not a script-based programming language, which makes it less desirable
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for those users who want to create reproducible scripts for all data processing and
metric calculation steps. Thus, there remains a need for open-source software that
(i) computes most of the CGM metrics available from the literature, and (ii) meets
the needs of researchers with varying levels of programming experience.

23. Some of the references cited in my comments above: Some of these might be helpful to the
authors in the context of the present paper; others may be helpful in the future, to enable them
to better coordinate with the “clinical diabetes” side of the relevant literature.

Thank you very much for these references. We are very grateful, and it’s extremely helpful.
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