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MODELS AND METHODS

The polymer model

To model all polymer systems considered in this work, we resort to the computational framework considered in
previous works on entangled polymer solutions [1–5]. It consists of a variant of the well known Kremer and Grest
polymer model [6]. Excluded volume interactions between beads (including consecutive ones along the contour of the
chains) are described by the shifted and truncated Lennard-Jones (LJ) potential:

ULJ(r) =

{
4ε
[(
σ
r

)12 −
(
σ
r

)6
+ 1

4

]
r ≤ rc

0 r > rc
, (1)

where r denotes the separation between the bead centers. The cutoff distance rc = 21/6σ is chosen so that only the
repulsive part of the Lennard-Jones is used. The energy scale is set by ε = κBT and the length scale by σ, both of
which are set to unity in our simulations. Consistent with that, in this work all quantities are reported in reduced LJ
units.

Nearest-neighbour monomers along the contour of the chains are connected by the finitely extensible nonlinear
elastic (FENE) potential, given by:

UFENE(r) =

{
−0.5kR2

0 ln
(
1− (r/R0)2

)
r ≤ R0

∞ r > R0
, (2)

where k = 30ε/σ2 is the spring constant and R0 = 1.5σ is the maximum extension of the elastic FENE bond.
In order to maximize mutual chain interpenetration at relatively moderate chain length [7] and hence reduce the

computational effort, we introduce an additional bending energy penalty between consecutive triplets of neighbouring
beads along the chains in order to control polymer stiffness:

Ubend(θ) = kθ
(
1− cos θ

)
. (3)

Here, θ is the angle formed between adjacent bonds, i.e. ti · ti+1/|ti||ti+1| with ti the tangent at i, and kθ = 5κBT
is the bending constant. With this choice, the polymer is equivalent to a worm-like chain [8] with Kuhn length
`K = 10σ [9].

Simulation details

We take polymer solutions consisting of M polymer chains, each polymer chain is made of N monomers and
we consider chains with linear, circular or “tadpole” architecture, see Table SI for details. The total volume of
the simulation box is fixed to V = M×N

ρ where the monomer number density ρσ3 = 0.1 as in previous works [1–
5]. Since tadpoles C = 250, L = 250 in dilute conditions have gyration radius R2

g(dilute) ' 620σ2, we find that
c∗ = 3N/4πR3

g ' 0.01σ−3, and hence we are working at about 10 times the overlap concentration.
The static and kinetic properties of the systems are studied using fixed-volume and constant-temperature Molecular

Dynamics (MD) simulations with implicit solvent and periodic boundary conditions. MD simulations are performed
using the LAMMPS package [11]. The equations of motion are integrated using a velocity Verlet algorithm, in which all
beads are weakly coupled to a Langevin heat bath with a local damping constant Γ = 0.5τ−1

MD where τMD = σ(m/ε)1/2

is the Lennard-Jones time andm = 1 is the conventional mass unit. The integration time step is set to ∆t = 0.012τMD.

Systems preparation, equilibration and productions runs

Preparation of the initial configurations

Linear polymers – Setting the stage for linear chains in solution is straightforward. Linear chains conformations
were initially taken in the form of ordinary random walks and located at random positions within the simulation box.
In order to remove unphysical overlaps between chain monomers, a short (of the order of a few τMD’s) Molecular
Dynamics run with capped, soft (i.e. non-diverging) repulsive interactions between monomers was employed.
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Chain topology N = C + L M Equilibration time [×107τMD] 〈R2
g〉[σ2] D[10−4σ2/τMD] η0[kBT/σ

3τMD]

Linear (C = 0, L = 67) 67 600 0.12 78.48± 0.05 97.1± 0.3 2.13± 0.02(∗)

Linear (C = 0, L = 500) 500 80 1.2 717.2± 15.4 1.4± 10−2 428.1± 28.6

Ring (C = 500, L = 0) 500 80 1.2 237.6± 1.1 6.2± 10−2 13.5± 0.7

Tadpole (C = 100, L = 100) 200 80 2.5 177.4± 0.7 10.7± 0.1 13.6± 0.4

Tadpole (C = 100, L = 250) 350 80 2.5 431.5± 6.2 1.06± 0.05 236.5± 29.0

Tadpole (C = 100, L = 400) 500 80 2.5 669.8± 24.9 0.278± 0.005 1477.4± 290.6

Tadpole (C = 250, L = 100) 350 120 2.4 222.3± 0.94 5.0± 0.005 22.4± 0.4

Tadpole (C = 250, L = 250) 500 80 2.5 459.1± 11.7 0.3± 0.005 516.0± 95.8

Tadpole (C = 250, L = 400) 650 70 6.0 763.6± 39.4 0.76± 0.005 3797.3± 987.6

Tadpole (C = 400, L = 100) 500 80 2.5 272.4± 1.7 2.7± 0.05 37.6± 2.5

Tadpole (C = 400, L = 250) 650 70 6.0 476.6± 12.2 0.15± 0.005 554.9± 25.7

Tadpole (C = 400, L = 400) 800 56 6.0 791.4± 36.7 0.04± 0.001 3998.9± 804.0

Table S I. Summary of the polymer systems considered in this work. Chain topology: total number of monomers in the head
(C) and the tail (L) of the chain. N = C + L: total mass of the chain in number of monomers. M : total number of chains of
the system. Equilibration time: length of the run to let the system to equilibrate after initial preparation of the sample (see
section “Equilibration” for details). 〈R2

g〉: single chain mean-square gyration radius and corresponding error bars. D: single
chain diffusion coefficient (defined assuming the asymptotic relationship g3(τ) ≡ 6Dτ for large τ ’s) and corresponding error
bars. η0: zero-shear viscosity and corresponding error bars (see section “Comparison with experiments” for details). (∗)The
value for linear chains (C = 0, L = 67) is used to normalize the numerical values of η0 of the other systems, the number of
entanglement lengths per chain (L/Le ≈ 1.67) having been chosen to match the shortest chains studied in the experimental
work by Doi et al. [10].

Ring and “tadpole” polymers – For polymers displaying closed topology, i.e. ring or tadpole-shaped, we initialise
the configurations in a very large box, i.e. at very dilute conditions, to prevent linking between the rings or the heads
of the tadpoles. Next, we perform a short warm-up to gently displace overlapping atoms as done for linear chains.
Following this short run, we turn on the FENE and LJ interactions which together prevent chain crossing [6] and we
attain the correct monomer density of ρσ3 = 0.1 by performing a slow compression of the simulation box. At the end
of this procedure, the pair-wise linking between rings and heads of tadpoles is checked once more.

Equilibration

Each system was let to equilibrate on a very long MD simulation of several tens of millions of τMD (see Table SI
for the exact values) during which each chain moves a spatial distance several times its own gyration radius Rg, see
Fig. S1 illustrating a typical example.

Production runs

After equilibration, we have performed long runs of 2.5 × 109∆t = 3 × 107τMD for all systems, excepting
(C,L) = (250, 400), (400, 250) and (400, 400) for which longer runs up to 12.5 × 109∆t = 1.5 × 108τMD were carried
on. These runs have been used then for measuring the properties of the systems reported in this work. Single-chain
properties (mean-square gyration radius, 〈R2

g〉, and diffusion coefficient, D) for the considered polymer solutions are
summarized in Table SI.

Linear and Ring Polymers

To directly compare tadpoles with linear and ring polymers we have run new simulations of these architectures
with N = 500 beads long (see Table SI). In addition, we report data from published ring [3] and unpublished linear
polymers with contour lengths 256, 512 and 1024 performed with slightly different values of friction coefficient and
integration time-step. In particular we have used Γ = τ−1

MD and ∆t = 0.01. Since we do not expect these parameters to
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Fig. S 1. Equilibration run for tadpoles (C = 250, L = 250) showing that their centre of mass travels, on average, several times
their size, Rg.

affect the scaling of statistical and dynamical quantities, we rescale the actual values of diffusion coefficient measured
for N = 512 in order to match the one simulated here for N = 500. These data are shown in Fig. 2 of the main text
and are employed to show the different scaling assumed by systems of tadpoles.

MEAN-SQUARE DISPLACEMENT AND DIFFUSION COEFFICIENT

We compute the mean-square displacement (MSD) of the tadpoles as

g3(t) =

〈
1

T − t

∫ T−t

0

[r(t+ t0)− r(t0)]
2
dt0

〉
(4)

with T the total observation time T � t and r(t) the position of the centre of mass of the single chain at time t. The
angular brackets indicate average over the system of M chains. In the main text we show the curves in units of σ2

while here (Fig. S2A) we show them scaled by the mean-square chain size 〈R2
g〉. In Figs. S2B we report the values of

the diffusion coefficient plotted against head length (in the main text we show against tail and total lengths).
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Fig. S 2. Dynamics. A Single-chain time MSD rescaled by tadpole mean-square size 〈R2
g〉. B Diffusion coefficient as a function

of tail length for fixed head. Solid and dashed lines are guide for the eye. C Dynamical exponent α as a function of lagtime t.
Dotted lines identify the region α = 1± 0.1 within with the fit of the MSD is performed.

The diffusion coefficient shown in Fig. S2B and main text is computed by fitting the large-time range of the MSD’s
with the function f(t) = 6Dtα, where α is constrained to be = 1 and D is the only free parameter. We validate if the
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dynamical exponent α(t) becomes close to unity at large times by computing

α(t) =
d log g3

d log t
, (5)

which is reported in Fig. S2C. As one can notice, at large times almost all the datasets fall within the range α = 1±0.1
apart from C = 400, L = 400 for which we then interpret D as an upper bound value.

MINIMAL SURFACES

The construction of the minimal surface allows us to compute the minimal area A, which is expected to scale as
A ∼ C in the limit of large contour length C [12]. In Fig. S3A we show that this scaling is well recapitulated by the
tadpoles simulated here.

OTHER STATISTICS OF THREADINGS

A priori, each threading can be made of a number of “piercings”; each piercing defined as a single intersection of a
tail with another tadpole’s head. We can compute the statistics of piercings from the construction of minimal surfaces
and in Fig. S3B we show that the distribution is exponential with a mean that is about 1 for all systems, meaning
that irrespectively of tail length and head size, each threading is most of the times made up by a single piercing. As
we show in the main text, this single intersection is roughly uniformly distributed along the tail and therefore the
distribution of threading length is roughly constant. Some deviations from this trend is observed near the ends of the
tail (see Fig 3D in the main text). In Fig. S3 we also report the average number of threadings per tadpole head i, i.e.
φi(t) =

∑N
j=1(6=i) Tij(t) averaged over tadpoles and over time 〈φ〉 = 1/T

∑T
t=1

(
1/N

∑N
i=1 φi(t)

)
.
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Fig. S 3. Threading Statistics. A The area of the minimal surface spanning the head of a tadpole scales roughly linearly
with its head length C. Dashed line is a guide for the eye that scales linearly with length. B The distribution of piercings per
threading is exponential with mean of about 1 piercing per threading for all systems. Solid and dashed lines are guides for the
eye with mean 0.8 an 1.3 respectively. C-E Total number of threadings per head as a function of (C) tail length, (D) head
length and (E) total contour length. The solid line in E is a guide for the eye and it scales linearly with the total contour
length.
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MSD OF THE TAIL-HEAD INTERSECTION

Through the minimal surface construction we can also quantify the dynamics of the bond intersecting the head-
spanning surface, i.e. the dynamics of the each piercing. In practice, this is done by associating the piercing with the
index of the closest bead along the tail. This index can be updated in time and it yields a mean-square displacement
along the tail. As shown in Fig. S4, this dynamics is a subdiffusive walk, with an exponent compatible with Rouse
dynamics, i.e. α ' 0.4− 0.6.
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Fig. S 4. MSD of piercings. The MSD of each tail-head intersection displays a subdiffusive behaviour with α ' 0.4 − 0.6
(dashed and solid lines respectively). Notice that the curves for L = 100 display an apparently slow dynamics because a piercing
disappears on time scale comparable to the shortest lagtime probed (1200τLJ) and a new one can appear nearby.

HEAD-HEAD THREADING PLAYS A MINOR CONTRIBUTION

The distribution of first unthreading times are broadly unaffected by inter-head threadings. We directly compare
the two ways of calculating Θ(t), with and without head-head threading, in Fig. S5.

THREADING RELAXATION AS POLYDISPERSE PROBLEM

The relaxation of threadings can be recast in the problem of finding the global relaxation time in a system of
polydisperse chains. This is due to the fact that the threadings involve fractions of the tails which do not have the
same length, and we find that they are distributed uniformly (see main text) rather than exponentially as expected in
a system of classic polydisperse polymers [13]. Hence one must solve a polydisperse relaxation problem with uniformly
distributed polymer lengths. Considering only the largest relaxation mode we may compute

χ̃(t) =
1

L

∫ L

0

exp

[
−
(

t

τ0lδ

)]
dl , (6)

where the threading relaxation depends on the length of the threading l as T (l) = τ0l
δ. We numerically integrate

Eq. (6) for fixed τ0, δ and L, find a theoretical function χ̃(t), fit it to the curves χ(t) computed from the simulations
and find the best fitting values of τ0 and δ for fixed L and C. The behaviour of δ is reported in the main text and
grows continuously with L. We stress that for a system of classic linear polymers one would find that δ is constant
and equal to 2 for Rouse dynamics and 3 for reptation [13]. At the same time, we expect a roughly constant value of
τ0, being this a microscopic relaxation time. This is reported in Fig. S6 and it is indeed roughly constant in L.
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Fig. S 5. Comparison of first unthreading distribution. Direct comparison of the distribution of first unthreading time
Θ(t) as reported in the main text (Fig. 3) with (grey) and without (black) accounting for head-head threadings for all systems.
The designs (values of C and L) are reported at the top of each panel. As one can notice the deviation is small for most of the
systems.
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CORRELATION BETWEEN NUMBER OF THREADINGS AND DYNAMICS

In this section we report plots to show how the dynamics of the system, e.g. diffusion coefficient D, depends on
threading statistics. We find that it is difficult to unambiguously understand the role played by threadings on the
behaviour of D versus 〈φ〉, because both depend (differently) on the total contour length and on the size of ring and
linear architectures (see Fig. S7). This figure further testifies that the impact of threadings on the dynamics is highly
non-trivial.
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Fig. S 7. Correlation between diffusion coefficient and threadings. (left) Diffusion coefficient versus Tχ roughly following
a power law decay T−1

χ . The solid line is a guide for the eye. (centre) Diffusion coefficient versus average number of threadings
per tadpole in log-log plot. (right) Same as central plot, this time in a semi-log plot. An exponential and power law (with
exponent −4) decays are shown as guides for the eye.

PERCOLATING NETWORK

In Fig. 4B of the main text we show that the average number of threadings per tadpole 〈φ〉 is always larger than
unity, also for the shortest chains. This strongly suggests that the threadings create a network among tadpoles that is
percolating. To confirm this conjecture, we have now analysed the structure of the threading network in the following
way. We consider two tadpoles to belong to the same threading cluster if at least one of them threads the other one.
When we look at all possible threadings, we observe that all tadpoles belong to one cluster, for all the studied systems
i.e. the network is percolating and the largest connected component Mmax nearly equals the total number of tadpoles
M (Fig. S8A).

However, our method allows us also to discriminate the threadings based on their length, i.e. the contour length
of tail from its tip to the last intersection (closest to the head) with the minimal surface (or the only one in the case
of only one piercing). Therefore, we can also decide to consider two rings to belong to the same cluster if they are
threading with a threading length at most some chosen lcutoff . We can thus compute the number of tadpoles in the
largest connected component of the threaded network (Mmax/M) while varying lcutoff (Fig. S8A).

As can be seen from the figure, if lcutoff is small enough only a few threadings are taken into account and the
threading network is not percolating, i.e. the number of tadpoles belonging to the largest connected componentMmax

is not comparable with the total number of tadpoles M . For larger lcutoff (and indeed when we consider threadings of
any length (lcutoff = L) the network is percolating, i.e. Mmax ∼M . [Note that here we are showing that percolation is
occurring on an abstract graph where tadpoles are nodes rather than spatial percolation across the physical simulation
box.]

An interesting observation is that the transition (say at Mmax/M = 0.5) is at small lcutoff ' 0.1L for the larger
tadpoles, while at ' 0.5L for the tadpoles with short tail (L = 100) and small head (C = 100). This has a nice
explanation in terms of our previous results: since the distribution of threading lengths is roughly uniform (Fig. 3D),
the 〈φ〉 threadings (on average) through any one tadpole (Fig. 4B) will uniformly populate the lengths [0 : L]. At
the same time, by choosing a cutoff length we are effectively considering only a fraction of the total threadings per
tadpole, i.e. Nt(l) = l〈φ〉/L (this equality holds because they are uniformly distributed in lengths). Now, we recall
that for a network to be percolating one requires that the average number of connections (threadings in this case)
is larger than some critical value Nt(l) ≥ nc. Hence, one arrives at the conclusion that the cutoff on the threading
length that must be imposed to “destroy” the percolating network is Nt(lcutoff) = nc or lcutoff/L = nc/〈φ〉.

Another way to define percolation is by fixing an arbitrary threshold on Mmax/M = m and by finding the value of
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lcutoff/L that meets this threshold. Since we don’t know the details of the underlying network, we cannot unambigu-
ously fix values for nc or m for which the network is unambiguously percolating. Nonetheless, we find that for any
choice of nc . 1 there exist a corresponding value of m for which lcutoff/L is matching the former and that is robust
across all systems. For instance, in Fig. 8B we show the case nc = 1, m = 0.8 and plot lcutoff/L = 1/〈φ〉 in the same
plot together with the root of Mmax/M(lcutoff/L) = 0.8. One can notice that the agreement is excellent. Different
choices of m and nc yield similar plots.

Finally, we highlight that Fig. 8 shows two different “branches” (or groups of curves): one for small heads and one
for large ones and that nicely mirror their dynamics as described in the main paper.

COMPARISON WITH EXPERIMENTS

In this section we discuss the comparison with the experiments performed by Doi and colleagues on tadpole-shaped
polystyrene polymers [10]. In their work they consider one fixed head size (about 3.3 entanglement lengths) and
variable tail length 1.6, 3.9 and 6.6 entanglement lengths. They measure the loss and storage moduli G′(w) and
G′′(w) and from these, the zero-shear viscosity

η0 = lim
w→0

G′′(w)

w
. (7)

They find a very slow relaxation of the tadpoles that is comparable with that of stars polymers, i.e. η0 increases
exponentially with tail length. To compare their results with ours, we compute the stress relaxation modulus G(t) as

Gαβ(t) = V 〈σαβ(t)σαβ(0)〉/kBT (8)

where

σαβ(t) =
∑
k,l

Fαkl(t)r
β
kl(t) (9)

is the pre-averaged stress tensor [14, 15]. Latin indexes run over monomers in the system, Greek ones over components,
r is the distance between beads k and l and F the force between these beads. G(t) curves are reported in Fig. S9.
Then, from G(t) we compute the zero-shear viscosity η0 ≡

∫∞
0
G(t)dt [8] by estimating numerically the integral

employing a finite upper bound

η0 ≈
∫ τd

0

G(t)dt , (10)

which is defined as the time for the chain to diffuse over a distance equal to its own size, g3(τd) ≡ 〈R2
g〉. Error bars

were estimated by taking the mean-square deviation of xy−, xz− and yz− contributions to η0 (Eq. (8)) from the
corresponding average. The values of η0 for the different systems considered in this work are summarized in Table SI
and represented in Fig. S10 together with the experimental values from Ref. [10].
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Fig. S 9. Stress Relaxation Curves. Stress relaxation computed as per Eq. (8) for different tadpole designs. The scaling at
early times is compatible with that of ring polymers [16], i.e. G(t) ∼ t−2/5.
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Fig. S 10. Comparison with Experimental Data – Dependence on Tail Length. The zero shear viscosity is plotted
against tail length (normalised by entanglement length in experiments (18 kg/mol [10] and simulations Ne = 40σ [1]) in log-log
(left) and semilog (right) plot. To compare with experiments in the same plot, we rescale the value of η0 for that measured in
the case of shortest tails (η0(L0)). This rescaling is completely arbitrary, nevertheless it does not affect the functional behaviour
of the data. Fits corresponding to exponentials and power laws are shown as dashed and solid lines respectively. The χ2 test
is in both cases (experiments vs simulations) smaller using power law functions f(x) = axb. The best fit is obtained with
exponents b = 4.64(1) for experiments and b = 4.24(1) for simulations.

To make a meaningful comparison, we show the lengths normalised by the entanglement length in the respective
systems and the zero shear viscosity normalised by that attained by the system with smallest value of tail length
(denoted as L0 in the plots). We note that both sets of data are compatible with power law and exponential behaviour
as a function of tail length and it appears that the range of values considered by us and by Doi and colleagues sit
within a crossover region. We perform a fit of both data sets with power law and exponential function and we find
that the χ2 test returns smaller values when considering power laws in both cases. The exponent that we find for the
simulated systems is very close to the one fitting experimental data, i.e. about 4.5 (see Fig. S10).

Instead of arbitrarily normalising the value of η0 by that attained by the system with shortest tails (for a fixed head),
we can also normalise it by the value of η0 displayed by a system of linear polymers 1.67 entanglement lengths, as this
value is provided in Ref. [10]. By performing this normalisation we find that our simulations are in fair quantitative
agreement with experiments on linear chains (see top panel of Fig. S11). We then use the same value of viscosities
to normalise the tadpoles data and find that our dataset is again in fair agreement with the only data point available
for symmetric tadpoles from Ref. [10] (see bottom panel of Fig. S11).
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Fig. S 11. Comparison with Experimental Data – Dependence on Total Length. The zero shear viscosity is plotted
against the total polymer contour length, N , normalised by the entanglement length Ne (Ne = 40σ in simulations and Ne = 18
kg/mol in experiments [10]). The value of η0 is here normalised by that measured for systems of linear chains C = 0 with
length L = 1.67Ne in both experiments and simulations. Results from our simulations are shown in red squares while the
values from experiments are shown in blue circles. (Top) Case C = 0, i.e. linear polymers; (bottom) C = L, i.e. symmetric
tadpoles. Notice the larger exponent found in simulations of tadpoles which would be interesting to test in experiments.

DYNAMICS OF TADPOLES IN DILUTE CONDITIONS

In this section we report simulations of tadpoles with different designs performed in dilute conditions. Specifically
we consider N = 5 tadpoles, M = 500 beads each at monomer density ρ = NM/L3 = 0.001σ−3, 100 times smaller
than considered up to now. We perform 10 independent simulations of this system and calculate the time and ensemble
averaged MSD of the centre of mass, which is reported in Fig. S12. As one can notice there is no dependence of the
MSD on the tadpole design, proving that the effects observed in dense solutions (main text) are genuinely arising
from collective interactions. This result was to be expected as our simulations do not take into account hydrodynamic
interactions as these are strongly suppressed in entangled solutions, the regime on which we focus on in this work.
We note that in Ref. [17] the authors account for hydrodynamic interactions in dilute conditions and report different
dynamics depending on the design of “topological polymers”, e.g. tadpoles, theta, etc.
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Fig. S 12. The slowing down is due to collective interactions. MSD of tadpoles with fixed total length N = 500 and in
dilute conditions do not display a dependence on the design.
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