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Appendix A: FBAT sufficient statistic approach 

The FBAT methodology can analyze general pedigrees with missing parental genotype 

information while maintaining the robustness against population stratification and admixture. 

The methodology is based on the seminal work by Laird and Rabinowitz [1], describing the 

computation of the sufficient statistic 𝑆𝑖. The sufficient statistic 𝑆𝑖 is a function of the observed 

genotypes within a nuclear family, which can include offspring genotypes and parental 

genotypes. The intuition is that the approach identifies a set of potential offspring genotype 

configurations such that the corresponding conditional probability of offspring genotypes 

does not depend on any population parameters. For an example, we recall the example B from 

[2]: We consider a nuclear family where genotype data for two bi-allelic variants is observed 

for three offspring and the father. Denote the two alleles for the first variant by A and a, and 

by B and b for the second variant. The observed unphased genotype of the father is (A/a, B/b), 

whereas the observed offspring genotype is  (A/A, B/B), (A/a, B/b), and (A/a, B/b). Following 

the algorithmic steps described by Horvath et al., the FBAT haplotype algorithm identifies the 

following conditional distribution. Let 𝑔1= (A/A, B/B) and 𝑔2= (A/a, B/b). Then, the conditional 

distribution gives equal weight of 1/3 to the three possible ordered offspring genotype 

distributions (𝑔1, 𝑔2, 𝑔2), (𝑔2, 𝑔1, 𝑔2), and (𝑔2, 𝑔2, 𝑔1). For more technical details, we refer to 

previous publications [1–3].  

Appendix B: estimating empirical p-values and adaptive stopping rules 

As described in the example above, the FBAT haplotype distribution provides a conditional 

offspring genotype distribution that does not depend on any unknown parameters. After 

computing the test statistic of interest based on observed offspring genotype and phenotype 

data, it is straightforward to draw new offspring genotype configurations for each nuclear 



family, according to the corresponding conditional distribution. In the example above, this 

would correspond to draw one of the three possible genotype configurations with equal 

weight of 1/3. Based on this simulated offspring genotype data, test statistics are re-evaluated 

using the observed phenotype data. By comparison between the observed test statistic and 

simulated test statistics based on a sufficiently large number of simulations, empirical p-values 

are estimated as the proportion of simulations where the re-evaluated test statistics attained 

a more extreme value. 

 

Appendix C: powerful tests for sparse signals 

We consider the scenario of an affected offspring trio.  Both parental genotypes are observed 

along the 𝑝 variants in the analysis region. As noted in Chen et al. [4], if there is no variant for 

which all three observed genotypes (mother, father, offspring) are heterozygous, the phase 

information can be recaptured from the observed unphased genotype data. However, as 

described in Hecker et al. [5], treating inferred haplotypes as observed haplotypes can lead to 

misspecification.  

Nevertheless, more specifically, if there is no variant for which both parental genotypes are 

heterozygous, haplotypes can be phased, and the resulting conditional genotype distribution 

obtained by the FBAT haplotype algorithm equals the conditional distribution where we treat 

the haplotypes as observed. If we restrict the genetic data to rare variants, this is true for most 

nuclear families.  

Let us denote the phased parental mating type for such a trio by 𝐺 = (ℎ1
𝑀, ℎ2

𝑀) 𝑥 (ℎ1
𝐹, ℎ2

𝐹). The 

possible offspring genotypes are denoted by 𝑋1 = (ℎ1
𝑀 + ℎ1

𝐹),  𝑋2 = (ℎ1
𝑀 + ℎ2

𝐹), 𝑋3 =

(ℎ2
𝑀 + ℎ1

𝐹) and 𝑋4 = (ℎ2
𝑀 + ℎ2

𝐹). We assume the following, commonly used, disease model 

that describes the conditional offspring genotype distribution 



𝑃(𝑋𝑖|𝑇 = 1, 𝐺) =
exp(𝛽𝑇𝑋𝑖) 

∑ exp(𝛽𝑇𝑋𝑗)4
𝑗=1

 

where the 𝑝 dimensional vector 𝛽 describes the genetic effects of the variants in the region. 

If we denote the inherited offspring haplotypes by (ℎ𝑀, ℎ𝐹), this model factors into the 

product of the two likelihoods  

𝑃(ℎ𝑔 = ℎ𝑗
𝑔

|𝑇 = 1, 𝐺) =
exp (𝛽𝑇ℎ𝑗

𝑔
)

exp(𝛽𝑇ℎ1
𝑔

) + exp (𝛽𝑇ℎ2
𝑔

)
,    𝑗 = 1,2, 𝑔 = 𝑀, 𝐹 

In the likely case that all minor alleles of a parent are located on the same haplotype, this 

matches the scenario of Weakly Correlated Designs that is described in the paper by 

Mukherjee et al. [6] about sparse binary regression (Definition 4.1). They showed that in the 

sparse regime, the higher criticism and the maximum statistic can identify sparse 

alternatives efficiently (see Theorem 7.4).  

We note that this derivation only motivates the application to affected offspring trios, the 

statistics can be applied in all FBAT scenarios and none of the assumptions described here 

must be satisfied to obtain a valid test. The Type I error is preserved because we utilize a 

simulation-based approach. 

 

 

 

 

 

 

 

 



Appendix D: Tables simulation study 

 

 

Table S1. Power estimates at a significance level of 5% for the FBAT, gTDT and RV-GDT statistics. We considered 
seven scenarios, separately for 𝑝 = 30 and 𝑝 = 50 variants. All results based on 1,000 replicates. 

  FBAT     gTDT RV-GDT 

  ACAT Burden HC MAX SKAT gTDT-AD gTDT-CH gTDT-DOM RV-GDT 

𝒑 = 𝟑𝟎 1 84.2% 32.2% 80.4% 77.6% 87.8% 32.7% 17.2% 39.7% 45.7% 

 2 80.6% 18.7% 78.2% 75.1% 85.2% 19.7% 10.7% 21.5% 27.5% 

 3 78.7% 20.5% 73.4% 72.3% 83.8% 21.9% 11.0% 27.0% 32.7% 

 4 48.2% 7.2% 50.8% 48.3% 48.1% 7.7% 5.3% 8.7% 0.16% 

 5 29.6% 11.4% 39.7% 32.9% 11.8% 11.6% 7.5% 13.7% 18.5% 

 6 85.3% 66.0% 80.2% 71.9% 82.6% 67.5% 13.4% 29.1% 77.2% 

 7 84.1% 65.6% 78.9% 70.3% 81.0% 66.2% 11.4% 29.3% 77.9% 

𝒑 = 𝟓𝟎 1 87.7% 50.5% 81.6% 77.6% 90.6% 51.3% 17.9% 31.8% 65.6% 

 2 82.5% 23.7% 76.7% 73.7% 88.1% 25.2% 9.9% 12.1% 36.3% 

 3 78.6% 32.8% 71.4% 68.6% 83.5% 33.4% 11.7% 18.9% 47.8% 

 4 46.1% 8.0% 47.0% 43.1% 50.1% 8.7% 6.4% 4.9% 0.8% 

 5 24.7% 8.3% 30.5% 27.4% 10.9% 8.6%  7.6% 9.0% 13.8% 

 6 87.5% 72.8% 79.7% 69.1% 84.8% 73.7% 13.5% 21.9% 83.4% 

 7 84.3% 65.6% 75.4% 65.4% 82.7% 66.9% 13.1% 19.3% 76.9% 

 

 

 

 

 

 



 

Table S2. Type 1 error and power estimates at significance levels of 1% and 5%, all results based on 1,000 
replicates. Scenario 1 and 2 are based on 1,000 trios, scenario 3 and 4 are based on 10,000 trios. 

  FBAT     gTDT RV-TDT 

 scenario ACAT Burden HC MAX SKAT gTDT-AD gTDT-

CH 

gTDT-DOM RV-TDT BRV 

𝛼 = 0.05 null 5.1% 5.2% 5.0% 3.9% 4.5% 5.2% 5.9% 2.5% 5.5% 

 1 66.3% 5.6% 45.0% 81.2% 14.5% 5.6% 4.1%  1.7% 8.0% 

 2 91.0% 5.6% 80.8% 94.9% 85.0% 5.6% 6% 1.5% 2.1% 

 3 77.7% 43.8% 82.3% 67.4% 14.2% 43.8% 5.2% 3.3% 56.2% 

 4 48.3% 7.1% 60.4% 51.9% 6.3% 7.1% 4.1% 2.8% 12.0% 

𝛼 = 0.01 null 1.0% 1.3% 1.2% 0.7% 1.5% 1.3% 1.1% 0.4% 1.3% 

 1 46.2% 1.3% 39.9% 61.2% 3.4% 1.3% 0.8% 0.2% 2.3% 

 2 81.8% 0.9% 77.7% 87.5% 54.6% 0.9% 1.3% 0.2% 0.5% 

 3 43.3% 23.0% 48.3% 39.2% 2.7% 23.0% 1.3% 0.5% 32.2% 

 4 21.4% 1.8% 31.9% 27.3% 0.9% 1.8% 0.8% 0.5% 3.1% 

 

 

 

 

 

 

 

 

 

 

 



Table S3. Type 1 errors at a significance level of 0.5% for the FBAT, gTDT and RV-GDT statistics. We considered 
four scenarios, separately for 𝑝 = 30 and 𝑝 = 50 variants. All results based on 10,000 replicates. 

  FBAT     gTDT   RV-GDT 

  ACAT Burden HC MAX SKAT gTDT-AD gTDT-CH gTDT-DOM RV-GDT 

𝒑 = 𝟑𝟎 null 0.53% 0.49% 0.43% 0.42% 0.51% 0.51% 0.35% 0.65% 0.49% 

 adm1 0.5% 0.53% 0.34% 0.33% 0.55% 0.57% 0.56% 0.53% 0.53% 

 adm2 0.32% 0.41% 0.36% 0.39% 0.50% 0.51% 0.50% 0.49% 0.00% 

 adm3 0.5% 0.47% 0.45% 0.44% 0.52% 0.54% 0.43% 0.37% 96.58% 

𝒑 = 𝟓𝟎 null 0.58% 0.46% 0.47% 0.47% 0.57% 0.47% 0.36% 0.44% 0.54% 

 adm1 0.49% 0.53% 0.53% 0.53% 0.43% 0.57% 0.51% 0.48% 0.57% 

 adm2 0.58% 0.4% 0.55% 0.54% 0.63% 0.44% 0.45% 0.61% 0.0% 

 adm3 0.41% 0.5% 0.42% 0.44% 0.35% 0.53% 0.47% 0.45% 9.67% 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Appendix E: Supplementary Figures 

 

Figure S1. Power results in six different scenarios for genetic regions consisting of 50 variants at a significance 
level of 𝛼 = 0.05. All results based on 1,000 replicates. 
 

 

 

 

 

 

 

 

 

 



 

 

Figure S2. Quantile-quantile plot for Burden, SKAT, MAX, HC, and ACAT test statistics based on approximately 
547,000 windows of 50 consecutive rare variants in the analysis of 897 asthmatic trios from Costa Rica.  
 

 

 

 

 

 

 

 

 

 

 



 

Figure S3: Comparison between the association p-values for FBAT Burden and FBAT-SKAT based on the 

approximately 547,000 regions in the analysis of the 897 asthmatic WGS offspring trios from Costa Rica. 

 

 

 



 

Figure S4: Comparison between the association p-values for FBAT Burden and gTDT-AD based on the 

approximately 547,000 regions in the analysis of the 897 asthmatic WGS offspring trios from Costa Rica. 

 

 

 

 

 

 

 

 

 



Appendix F: whole-genome sequencing data 

DNA samples were sequenced as part of the Trans‐Omics for Precision Medicine (TOPMed) 

whole-genome sequencing (WGS) program [7]. WGS was performed at the Northwest 

Genomics Center. Details on DNA sample handling, quality control, library construction, 

clustering and sequencing, read processing, and sequence data quality control are described 

on the TOPMed website (https://www.nhlbiwgs.org/methods). Variant calls were obtained 

from TOPMed data freeze 7 variant call format files aligned to the GRCh38 genome reference. 

In our analyses, we included only biallelic SNPs with a minimal depth of coverage of 10 reads 

that were marked as PASS in the VCF FILTER column. 
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