Supplementary information for improved protein model quality assessment by integrating sequential and pairwise features using deep learning

Xiaoyang Jing, Jinbo Xu

Toyota Technological Institute at Chicago, Chicago, IL 60637, USA

Dataset	Data Source	#Targets		#Decoys		
	CASP 7-11	495		107060		
Training	CAMEO	1011	13916	38444	335468	
	CATH	12410		189964		
	CASP 7-11	32		6688		
Validation	CAMEO	53	729	2010	18437	
	CATH	644		9739		
T+	CASP12	64		9423		
rest	CASP13	76		11371		

Table S1. The number of protein targets and decoys of different datasets.

Table S2.	Summary	of input	features
-----------	---------	----------	----------

Туре	Feature	Туре	Shape
	One-hot encoding of sequence	Sequential	L*21
	rPosition	Sequential	L*1
Donirod from	PSSM	Sequential	L*20
Seguence	Predicted SS3	Sequential	L*3
Sequence	Predicted ACC	Sequential	L*3
	Co-evolution	Pairwise	L*L*4
	Predicted distance potential	Pairwise	L*L*14
Derived from	SS3	Sequential	L*3
model	RSA	Sequential	L*1
structure	distance (CaCa, CbCb and NO)	Pairwise	L*L*3
Tatal			Sequential: L*52
rotar			Pairwise: L*L*21

Fig. S1. The training and validation losses of ResNetQA and ResNetQA-R. (a) the training and validation losses of ResNetQA, the mean and standard deviation for the training loss are 0.0527 and 0.0128, and those for the validation loss are 0.0599 and 0.0043, respectively; (b) the training and validation losses of ResNetQA-R, the mean and standard deviation for the training loss are 0.0650 and 0.0151, and those for the validation loss are 0.0681 and 0.0047, respectively. The training loss has a larger standard deviation because we employed minibatch-based training. The gap between the validation and the training loss is also likely incurred by minibatch training. The training loss of one epoch is the averaged loss of all the minibatches in this epoch. The loss of one minibatch is calculated when it is being used to update the model parameters. At each iteration, we minimize the loss on one minibatch and thus, the model parameters are biased towards the proteins in this minibatch. As such, it is not surprising that the loss calculated on this minibatch is usually smaller than the validation loss, which is always calculated on the same set of many more proteins.

		6			(e	<u>`</u>	/ ~		
Detegat	Mathad		Local		Global					
Dataset	Method	PCC	ASE	AUC	PCC	Spearman	Kendall	Diff	Loss	
	ResNetQA ²	0.9650	0.8942	0.8890	0.6529	0.5925	0.6343	0.7620	0.2905	
	ResNetQA-R ³	0.9773	0.8371	0.8687	0.7619	0.6729	0.7288	0.4259	0.4160	
	ProQ3	0.2064	0.0729	0.2397	0.0972	0.1410	0.0665	0.2141	0.4298	
CASP12	ProQ2	0.1571	-0.3423	0.1917	-0.0442	0.0175	-0.0586	-0.0752	0.2943	
Stage 2	Wang4	0.0649	0.0387	0.0622	0.0119	-0.0075	-0.0557	-0.0190	-0.1084	
	VoroMQA	0.0589	-0.2259	0.0568	-0.0694	-0.0618	-0.1359	-0.5319	0.1066	
	SPARKS-X	-0.0534	0.0225	-0.0569	0.1855	0.2426	0.2071	-0.1386	0.2248	
	ResNetQA	0.6380	0.8094	0.5682	0.6317	0.3979	0.3933	0.7656	-0.1158	
	ResNetQA-R	0.7007	0.7330	0.6325	0.7335	0.5695	0.5955	0.4081	0.1211	
CA CD12	ProQ3D	0.3005	0.3126	0.3390	-0.0979	-0.1302	-0.2012	0.4285	0.1229	
CASP13	ProQ3	0.2840	0.2433	0.3737	-0.4067	-0.3973	-0.4546	0.2327	0.0871	
Stage 2	ProQ4	0.2532	-0.3786	0.2671	0.1932	0.1183	0.1561	0.1427	0.0669	
	VoroMQA-A	0.2293	-0.0446	0.2749	-0.1434	-0.2366	-0.3040	-0.1397	0.0326	
	VoroMQA-B	0.2206	-0.0501	0.2623	-0.2758	-0.3162	-0.3786	-0.1659	0.1198	

Table S3. Z-scores1 of single-model methods on local (S-score) and global (GDT TS) QA

1. To calculate the Z-score for each target, we collect the quality estimations of all groups participating in CASP12 and CASP13, evaluate their performances by local and global QA metrics, respectively, and then calculate the mean and standard deviation of the scores of all groups for each metric, which are then used to calculate Z-score. The Z-score of our methods (ResNetQA and ResNetQA-R) are calculated using the same mean and standard deviation as other methods. Note that the CASP assessors may set a Z-score to -2 or 0 if it is smaller than -2 or 0, respectively, but here we do not do that.

2. The model trained using local and global MSE loss.

3. The model trained using local and global MSE loss plus global margin ranking loss.

Table S4. Performances of single-model methods on global QA (lDDT)

Datasat	Mathad		Global								
Dataset	Method	PCC↑	Spearman↑	Kendall↑	Diff↓	Loss↓					
	ResNetQA	0.8298	0.7586	0.5919	0.1035	0.0515					
	ResNetQA-R	0.8527	0.7860	0.6186	0.0712	0.0469					
CACD12	ProQ3	0.7239	0.6760	0.5025	0.1283	0.0382					
CASP12	ProQ2	0.7131	0.6746	0.4999	0.1032	0.0448					
Stage 2	Wang4	0.7130	0.6432	0.4822	0.1672	0.0828					
	VoroMQA	0.6986	0.6501	0.4798	0.1957	0.0530					
	SPARKS-X	0.7754	0.7163	0.5466	0.1691	0.0471					
	ResNetQA	0.8673	0.7918	0.6272	0.1127	0.0707					
	ResNetQA-R	0.8661	0.8096	0.6487	0.0821	0.0541					
C + CP12	ProQ3D	0.7246	0.6849	0.5156	0.1470	0.0675					
CASP13	ProQ3	0.6711	0.6418	0.4761	0.1511	0.0711					
Stage 2	ProQ4	0.8125	0.7636	0.6120	0.1309	0.0597					
	VoroMQA-A	0.6968	0.6560	0.4909	0.1929	0.0838					
	VoroMQA-B	0.6676	0.6315	0.4687	0.1945	0.0796					

Datasat	Mathad		Local		Global				
Dataset	Method	PCC↑	ASE↑	AUC↑	PCC↑	Spearman↑	Kendall↑	Diff↓	Loss↓
CASD12	ResNetQA-IDDT ¹	0.7178	0.9032	0.8709	0.8632	0.7972	0.6402	0.0645	0.0484
CASP12	ResNetQA-R-IDDT ²	0.7235	0.9039	0.8747	0.8935	0.8265	0.6688	0.0726	0.0393
Stage 2	ProQ4	0.5899	0.8844	0.8051	0.8350	0.7822	0.6085	0.0764	0.0308
CASD12	ResNetQA-IDDT	0.7186	0.8994	0.8859	0.8434	0.8011	0.6471	0.0698	0.0641
CASP13	ResNetQA-R-IDDT	0.7318	0.9012	0.8913	0.8719	0.8267	0.6722	0.0719	0.0693
Stage 2	ProQ4	0.6038	0.8799	0.8222	0.8266	0.7902	0.6207	0.0818	0.0536

Table S5. Performances of single-model methods on local and global QA (IDDT)

1. The model trained using local and global MSE (mean-squared error) loss based on IDDT.

2. The model trained using local and global MSE loss plus global margin ranking loss based on lDDT.

Table S6. Z-scores of single-model methods on CASP12&13 FM targets (S-score and GDT_TS)

Deterret	Matha d		Local				Global		
Dataset	Method	PCC	ASE	AUC	PCC	Spearman	Kendall	Diff	Loss
	ResNetQA	1.3887	1.2560	1.2853	0.8417	0.9632	1.0463	0.7803	0.4747
	ResNetQA-R	1.4393	1.1927	1.2708	1.0490	1.0936	1.2041	0.2849	0.5350
G + GD 10	ProQ3	0.1910	-0.0364	0.1698	0.1536	0.1278	0.0720	0.2546	0.6030
CASP12	ProQ2	0.2323	-0.5391	0.1909	0.0936	0.0791	0.0366	-0.3403	0.2560
Stage 2	Wang4	0.1222	0.2101	0.0707	0.2330	0.3010	0.2819	0.5007	0.1269
	VoroMQA	0.1570	-0.2644	0.0920	-0.0413	-0.1599	-0.2139	0.3391	0.0168
	SPARKS-X	-0.0195	0.6476	-0.0758	0.3237	0.4362	0.4200	0.4192	0.2335
	ResNetQA	0.7084	1.0135	0.5505	0.9249	0.7465	0.7526	0.8024	0.1904
	ResNetQA-R	0.8612	0.9589	0.7229	1.1230	1.0214	1.0852	0.1785	0.3093
G + 6010	ProQ3D	0.2075	0.3199	0.2987	-0.1303	-0.2248	-0.2529	0.5391	-0.1015
CASP13	ProQ3	0.2205	0.2413	0.3568	-0.4350	-0.5446	-0.5481	0.2366	-0.1511
Stage 2	ProQ4	0.2492	-0.5419	0.2292	0.1495	0.1027	0.1040	0.1390	0.2304
	VoroMQA-A	0.1772	-0.1309	0.2225	-0.3291	-0.3572	-0.4173	0.3736	0.1182
	VoroMQA-B	0.1608	-0.1259	0.2010	-0.4215	-0.4458	-0.4873	0.3508	0.1982

Dataset	Mathad			Global		
Dataset	Method	PCC↑	Spearman↑	Kendall↑	Diff↓	Loss↓
	ResNetQA	0.7291	0.7390	0.5732	0.1103	0.0434
	ResNetQA-R	0.7827	0.7845	0.6143	0.0589	0.0380
CASD12	ProQ3	0.6405	0.6215	0.4524	0.1149	0.0433
CASP12	ProQ2	0.6781	0.6603	0.4867	0.0941	0.0512
Stage 2	Wang4	0.7016	0.6900	0.5207	0.1242	0.0603
	VoroMQA	0.6399	0.5981	0.4331	0.1082	0.0612
	SPARKS-X	0.7352	0.7225	0.5483	0.1263	0.0478
	ResNetQA	0.8438	0.8175	0.6437	0.1205	0.0625
	ResNetQA-R	0.8599	0.8490	0.6874	0.0587	0.0543
CASD12	ProQ3D	0.6524	0.6410	0.4711	0.1358	0.0994
CASP13	ProQ3	0.5871	0.5772	0.4151	0.1466	0.1036
Stage 2	ProQ4	0.7613	0.7533	0.5964	0.0734	0.0552
	VoroMQA-A	0.5803	0.5728	0.4105	0.1133	0.0908
	VoroMQA-B	0.5637	0.5530	0.3966	0.1151	0.0866

Table S7. Performances of single-model methods on CASP12&13 FM targets (global IDDT)

Table S8. Performances of single-model methods on CASP12&13 FM targets (local and global lDDT)

Dataset			Local			Global				
	Method	PCC↑	ASE↑	AUC↑	PCC↑	Spearman↑	Kendall↑	Diff↓	Loss↓	
CASP12	ResNetQA-IDDT	0.6692	0.9149	0.8333	0.8328	0.8297	0.6711	0.0597	0.0412	
	ResNetQA-R-IDDT	0.6802	0.9154	0.8381	0.8642	0.8544	0.6987	0.0728	0.0285	
Stage 2	ProQ4	0.5020	0.8957	0.7425	0.7708	0.7429	0.5657	0.0566	0.0375	
CASD12	ResNetQA-IDDT	0.6688	0.9051	0.8469	0.8513	0.8618	0.7055	0.0661	0.0432	
Stage 2	ResNetQA-R-IDDT	0.6929	0.9128	0.8548	0.8666	0.8710	0.7228	0.0679	0.0492	
	ProQ4	0.5088	0.8872	0.7506	0.7747	0.7641	0.5883	0.0619	0.0461	

Dataset Method		_	Local				Global		
Dataset	Method	PCC↑	ASE↑	AUC↑	PCC↑	Spearman↑	Kendall↑	Diff↓	Loss↓
	All ²	0.5866	0.8515	0.8058	0.8109	0.7293	0.5606	7.85	6.12
	No Cov ³	0.5874	0.8507	0.8063	0.8011	0.7135	0.5459	7.58	7.30
CASP12	No SS&RSA ⁴	0.5643	0.8302	0.7996	0.7788	0.6876	0.5247	8.77	7.33
Stage 2	No DistPot ⁵	0.5319	0.8243	0.7804	0.7192	0.6233	0.4654	9.57	7.76
	1D-DistPot6	0.2735	0.6965	0.6412	0.4046	0.3510	0.2444	16.46	11.92
	1D ⁷	0.2619	0.6612	0.6347	0.3887	0.3333	0.2322	17.93	14.39
	All	0.5539	0.8373	0.7901	0.8157	0.7396	0.5726	8.61	8.44
	No Cov	0.5474	0.8248	0.7889	0.8020	0.7226	0.5551	8.97	8.29
CASP13	No SS&RSA	0.5416	0.8057	0.7840	0.7771	0.7042	0.5361	9.69	10.68
Stage 2	No DistPot	0.5000	0.7971	0.7749	0.7450	0.6784	0.5071	10.57	9.99
	1D-DistPot	0.2963	0.6981	0.6618	0.5119	0.4694	0.3336	15.24	16.36
	1D	0.2630	0.6711	0.6441	0.5100	0.4595	0.3261	15.74	14.00

Table S9. Performances of deep ResNet built with different features on all targets¹

1. The proteins in the training data for ablation studies are filtered out only by BLAST based on sequence identity.

2. All features are used.

3. Excluding coevolution information including mutual information and the information produced by CCMPred.

4. Excluding predicted and model-derived secondary structures and solvent accessibilities.

5. Excluding predicted distance potentials, but coevolution information is used.

6. Using sequential features plus the marginalized distance potentials predicted by RaptorX.

7. Only sequential features are used.

Table S10. Performances of deep	ResNet built with	different features of	on FM targets
---------------------------------	-------------------	-----------------------	---------------

Datagat	Mathad		Local				Global		
Dataset	Method	PCC↑	ASE↑	AUC↑	PCC↑	Spearman↑	Kendall↑	Diff↓	Loss↓
	All	0.4545	0.8930	0.7487	0.7213	0.7270	0.5535	5.84	5.49
	No Cov	0.4590	0.8868	0.7544	0.7188	0.7221	0.5491	6.28	6.35
CASP12	No SS&RSA	0.4207	0.8647	0.7404	0.6599	0.6857	0.5204	6.87	5.54
Stage 2	No DistPot	0.3633	0.8505	0.7044	0.5636	0.5599	0.4126	8.71	8.99
	1D-DistPot	0.1983	0.6771	0.6005	0.2919	0.2656	0.1818	18.27	13.51
	1D	0.2025	0.6063	0.6095	0.2978	0.2728	0.1858	21.00	15.73
	All	0.4045	0.8718	0.7308	0.7978	0.7871	0.6122	7.22	9.14
	No Cov	0.3997	0.8477	0.7322	0.7766	0.7728	0.5970	8.53	6.91
CASP13	No SS&RSA	0.3790	0.8237	0.7213	0.7580	0.7482	0.5690	8.60	10.45
Stage 2	No DistPot	0.3495	0.8199	0.7156	0.6783	0.6611	0.4911	10.13	8.04
	1D-DistPot	0.1673	0.6563	0.5972	0.3253	0.3371	0.2341	18.42	18.87
	1D	0.1527	0.6059	0.5964	0.3359	0.3445	0.2403	20.04	19.06

Fig. S2. The correlation between the distance prediction quality and the local QA performance on CASP12 and CASP13 protein targets. Contact Precision: the Top L (L is the sequence length) long-range contact precision of the distance prediction by RaptorX-Contact; PCC: the local QA PCC performance of our method when all features used; PCC Improvement: the improvement on local QA PCC resulting from using predicted distance potential as one feature. The data are sorted from low to high according to contact precision. The correlation between the distance prediction quality and the PCC improvement is -0.1081. That is, the improvement is more pronounced on harder targets (which usually have lower contact precision).

Fig. S3. The correlation between the distance prediction quality and the global QA performance on CASP12 and CASP13 protein targets. Contact Precision: the Top L (L is the sequence length) long-range contact precision of the distance prediction by RaptorX-Contact; PCC: the global QA PCC performance of the model using all features; PCC Improvement: the improvement on global QA PCC resulting from using predicted distance potential as one feature. The data are sorted from low to high according to contact precision. The correlation between the distance prediction quality and the PCC improvement is -0.2783. That is, the improvement is more pronounced on harder targets (which usually have lower contact precision).

Dataset	Method	Local			Global				
		PCC↑	ASE↑	AUC↑	PCC↑	Spearman↑	Kendall↑	Diff↓	Loss↓
CASP12 Stage 2	ResNetQA	0.5866	0.8515	0.8058	0.8109	0.7293	0.5606	7.85	6.12
	NoCATH-Pot ¹	0.5450	0.8425	0.7870	0.7520	0.6736	0.5094	9.96	8.93
	NoCATH-PR ²	0.5375	0.8318	0.7886	0.7563	0.6914	0.5259	10.36	7.02
CASP13 Stage 2	ResNetQA	0.5539	0.8373	0.7901	0.8157	0.7396	0.5726	8.61	8.44
	NoCATH-Pot	0.5276	0.8134	0.7890	0.7873	0.7217	0.5518	12.11	9.47
	NoCATH-PR	0.5321	0.8037	0.7862	0.7752	0.7005	0.5318	12.14	9.64

Table S11. Performances of deep models trained with and without the CATH dataset

1. NoCATH-Pot: predicted distance potential is an input feature. NoCATH means that the CATH data is not used in training.

2. NoCATH-PR: predicted distance probability is an input feature.