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1 Details on the EM algorithm

1.1 IMIX-Ind

To infer whether gene i is associated with data type h, we use the posterior

probability

Pr(zik = 1|Xi1, Xi2, Xi3,θ) =
πkfk(Xi1, Xi2, Xi3)∑K
j=1 πjfj(Xi1, Xi2, Xi3)

=
πkfk1(Xi1; θk1)fk2(Xi2; θk2)fk3(Xi3; θk3)

f(Xi1, Xi2, Xi3)
.

Notice that here we assume K = 8. For each scenario, it corresponds as:

K=1: (0,0,0); K=2: (1,0,0); K=3: (0,1,0); K=4: (0,0,1); K=5: (1,1,0); K=6:

(1,0,1); K=7: (0,1,1); K=8: (1,1,1).

∗Correspondence should be addressed to: Peng Wei, PhD, 1400 Pressler St, Unit 1411,
Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston,
TX 77030, USA; Email: pwei2@mdanderson.org
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We assume fkh = φ(.;µkh, σkh), a normal probability density function with

mean µkh and variance σ2
kh, k = 1, · · · , 8;h = 1, 2, 3. Thus we have

f(Xi1, Xi2, Xi3) =

K∑
k=1

πkfk(x1, x2, x3)

=

K∑
k=1

πkfk1(x1; θk1)fk2(x2; θk2)fk3(x3; θk3)

=π1f(x1;µ10, σ10)f(x2;µ20, σ20)f(x3;µ30, σ30)

+π2f(x1;µ11, σ11)f(x2;µ20, σ20)f(x3;µ30, σ30)

+π3f(x1;µ10, σ10)f(x2;µ21, σ21)f(x3;µ30, σ30)

+π4f(x1;µ10, σ10)f(x2;µ20, σ20)f(x3;µ31, σ31)

+π5f(x1;µ11, σ11)f(x2;µ21, σ21)f(x3;µ30, σ30)

+π6f(x1;µ11, σ11)f(x2;µ20, σ20)f(x3;µ31, σ31)

+π7f(x1;µ10, σ10)f(x2;µ21, σ21)f(x3;µ31, σ31)

+π8f(x1;µ11, σ11)f(x2;µ21, σ21)f(x3;µ31, σ31).

µ11 = µ31 = µ41 = µ71
4
= µ10,σ11 = σ31 = σ41 = σ71

4
= σ10

µ12 = µ22 = µ42 = µ62
4
= µ20,σ12 = σ22 = σ42 = σ62

4
= σ20

µ13 = µ23 = µ33 = µ53
4
= µ30,σ13 = σ23 = σ33 = σ43

4
= σ30

µ21 = µ51 = µ61 = µ81
4
= µ11,σ21 = σ51 = σ61 = σ81

4
= σ11

µ32 = µ52 = µ72 = µ82
4
= µ21,σ32 = σ52 = σ72 = σ82

4
= σ21

µ43 = µ63 = µ73 = µ83
4
= µ31,σ43 = σ63 = σ73 = σ83

4
= σ31.
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For the EM algorithm, the complete log-likelihood is

logLc =

N∑
i=1

K∑
k=1

zik log πkfk(Xi1, Xi2, Xi3).

The E-step is to calculate the conditional expectation

Q = E(logLc|data) =

N∑
i=1

K∑
k=1

τ(zik) log πkfk(Xi1, Xi2, Xi3),

where τ(zik) = Pr(zik = 1|Xi1, Xi2, Xi3). The M-step maximized the above Q

with respect to the unknown parameters:

E step: Compute τ(zik) with current parameter θ(m) = {π(m)
k , µ

(m)
kh , σ2

kh
(m)}

at each iteration m:

τ(zik) = Pr(zik = 1|Xi1, Xi2, Xi3) =
π
(m)
k f

(m)
k (Xi1, Xi2, Xi3)∑K

j=1 π
(m)
j f

(m)
j (Xi1, Xi2, Xi3)

,

where f
(m)
k (Xi1, Xi2, Xi3) =

∏3
h=1 φ(Xih;µ

(m)
kh , σ

(m)
kh ).
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M step: Update θ(m) and replace by θ(m+1):

π
(m+1)
k =

∑N
i=1 τ(zik)

N
,

µ
(m+1)
10 =

∑N
i=1Xi1(τ(zi1) + τ(zi3) + τ(zi4) + τ(zi7))∑N

i=1(τ(zi1) + τ(zi3) + τ(zi4) + τ(zi7))
,

µ
(m+1)
20 =

∑N
i=1Xi2(τ(zi1) + τ(zi2) + τ(zi4) + τ(zi6))∑N

i=1(τ(zi1) + τ(zi2) + τ(zi4) + τ(zi6))
,

µ
(m+1)
30 =

∑N
i=1Xi3(τ(zi1) + τ(zi2) + τ(zi3) + τ(zi5))∑N

i=1(τ(zi1) + τ(zi2) + τ(zi3) + τ(zi5))
,

µ
(m+1)
11 =

∑N
i=1Xi1(τ(zi2) + τ(zi5) + τ(zi6) + τ(zi8))∑N

i=1(τ(zi2) + τ(zi5) + τ(zi6) + τ(zi8))
,

µ
(m+1)
21 =

∑N
i=1Xi2(τ(zi3) + τ(zi5) + τ(zi7) + τ(zi8))∑N

i=1(τ(zi3) + τ(zi5) + τ(zi7) + τ(zi8))
,

µ
(m+1)
31 =

∑N
i=1Xi3(τ(zi4) + τ(zi6) + τ(zi7) + τ(zi8))∑N

i=1(τ(zi4) + τ(zi6) + τ(zi7) + τ(zi8))
,

σ2
10

(m+1)
=

∑N
i=1(Xi1 − µ(m+1)

10 )2(τ(zi1) + τ(zi3) + τ(zi4) + τ(zi7))∑N
i=1(τ(zi1) + τ(zi3) + τ(zi4) + τ(zi7))

,

σ2
20

(m+1)
=

∑N
i=1(Xi2 − µ(m+1)

20 )2(τ(zi1) + τ(zi2) + τ(zi4) + τ(zi6))∑N
i=1(τ(zi1) + τ(zi2) + τ(zi4) + τ(zi6))

,

σ2
30

(m+1)
=

∑N
i=1(Xi3 − µ(m+1)

30 )2(τ(zi1) + τ(zi2) + τ(zi3) + τ(zi5))∑N
i=1(τ(zi1) + τ(zi2) + τ(zi3) + τ(zi5))

,

σ2
11

(m+1)
=

∑N
i=1(Xi1 − µ(m+1)

11 )2(τ(zi2) + τ(zi5) + τ(zi6) + τ(zi8))∑N
i=1(τ(zi2) + τ(zi5) + τ(zi6) + τ(zi8))

,

σ2
21

(m+1)
=

∑N
i=1(Xi2 − µ(m+1)

21 )2(τ(zi3) + τ(zi5) + τ(zi7) + τ(zi8))∑N
i=1(τ(zi3) + τ(zi5) + τ(zi7) + τ(zi8))

,

σ2
31

(m+1)
=

∑N
i=1(Xi3 − µ(m+1)

31 )2(τ(zi4) + τ(zi6) + τ(zi7) + τ(zi8))∑N
i=1(τ(zi4) + τ(zi6) + τ(zi7) + τ(zi8))

.

Repeat the above iterations until convergence.
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1.2 IMIX-Cor

We assume that the three data sources can be summarized as (Xi1, Xi2, Xi3)

for each gene i, i = 1, · · · , N , data type h = 1, 2, 3: Xih = Φ−1(pih), pih is the

p-values. We assume that (Xi1, Xi2, Xi3) comes from a mixture distribution

with K mixture components:

f(x1, x2, x3) =

K∑
k=1

πkfk(x1, x2, x3).

To infer whether gene i is associated with data type h, we use the posterior

probability

Pr(zik = 1|Xi1, Xi2, Xi3,θ) =
πkfk(Xi1, Xi2, Xi3)∑K
j=1 πjfj(Xi1, Xi2, Xi3)

.

Notice that here we assume K = 8. For each scenario, it corresponds as:

K=1: (0,0,0); K=2: (1,0,0); K=3: (0,1,0); K=4: (0,0,1); K=5: (1,1,0); K=6:

(1,0,1); K=7: (0,1,1); K=8: (1,1,1).

We assume fk = N(µk,Σk) with mixing proportion πk, k = 1, · · · , 8. Here

we add a constrain on the µk:

µ1 = (µ10, µ20, µ30);µ2 = (µ11, µ20, µ30);

µ3 = (µ10, µ21, µ30);µ4 = (µ10, µ20, µ31);

µ5 = (µ11, µ21, µ30);µ6 = (µ11, µ20, µ31);

µ7 = (µ10, µ21, µ31);µ8 = (µ11, µ21, µ31).
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The complete log-likelihood is

logLc =

N∑
i=1

K∑
k=1

zik log πkfk(Xi1, Xi2, Xi3).

The E-step is to calculate the conditional expectation

Q = E(logLc|data) =

N∑
i=1

K∑
k=1

τ(zik) log πkfk(Xi1, Xi2, Xi3).

where τ(zik) = Pr(zik = 1|Xi1, Xi2, Xi3). The M-step maximized the above Q

with respect to the unknown parameters, for the unconstrained model:

E step: Compute τ(zik) with current parameter θ(m) = {π(m)
k ,µk

(m), Σk
(m)}

at each iteration m:

τ(zik) = Pr(zik = 1|Xi1, Xi2, Xi3) =
π
(m)
k f

(m)
k (Xi1, Xi2, Xi3)∑K

j=1 π
(m)
j f

(m)
j (Xi1, Xi2, Xi3)

,

where f
(m)
k (Xi1, Xi2, Xi3) = N (Xi|µk

(m),Σk
(m)).

M step: Update θ(m) and replace by θ(m+1):

π
(m+1)
k =

∑N
i=1 τ(zik)

N
,

µ
(m+1)
k =

∑N
i=1 τ(zik)Xi∑N
i=1 τ(zik)

,

Σk
(m+1) =

∑N
i=1 τ(zik)(Xi − µ(m+1)

k )T (Xi − µ(m+1)
k )∑N

i=1 τ(zik)
.

Repeat the above iterations until convergence.
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1.3 IMIX-Cor-Restrict

We conduct the EM algorithm similarly to IMIX-Cor with an restriction im-

posed on µk, we define

Σ−1
k =


a
(k)
11 a

(k)
12 a

(k)
13

a
(k)
12 a

(k)
22 a

(k)
23

a
(k)
13 a

(k)
23 a

(k)
33

 , k = 1, · · · , 8.
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then µk can be updated as:

µ
(m+1)
10 =

∑N
i=1Xi1

(
a
(1)
11 τ(zi1) + a

(3)
11 τ(zi3) + a

(4)
11 τ(zi4) + a

(7)
11 τ(zi7)

)
∑N

i=1

(
a
(1)
11 τ(zi1) + a

(3)
11 τ(zi3) + a

(4)
11 τ(zi4) + a

(7)
11 τ(zi7)

)

+

∑N
i=1

(
(Xi2 − µ

(m)
20 )(a

(1)
12 τ(zi1) + a

(4)
12 τ(zi4)) + (Xi2 − µ

(m)
21 )(a

(3)
12 τ(zi3) + a

(7)
12 τ(zi7))

)
∑N

i=1

(
a
(1)
11 τ(zi1) + a

(3)
11 τ(zi3) + a

(4)
11 τ(zi4) + a

(7)
11 τ(zi7)

)

+

∑N
i=1

(
(Xi3 − µ

(m)
30 )(a

(1)
13 τ(zi1) + a

(3)
13 τ(zi3)) + (Xi3 − µ

(m)
31 )(a

(4)
13 τ(zi4) + a

(7)
13 τ(zi7))

)
∑N

i=1

(
a
(1)
11 τ(zi1) + a

(3)
11 τ(zi3) + a

(4)
11 τ(zi4) + a

(7)
11 τ(zi7)

) ,

µ
(m+1)
20 =

∑N
i=1Xi2

(
a
(1)
22 τ(zi1) + a

(2)
22 τ(zi2) + a

(4)
22 τ(zi4) + a

(6)
22 τ(zi6)

)
∑N

i=1

(
a
(1)
22 τ(zi1) + a

(2)
22 τ(zi2) + a

(4)
22 τ(zi4) + a

(6)
22 τ(zi6)

)

+

∑N
i=1

(
(Xi1 − µ

(m)
10 )(a

(1)
12 τ(zi1) + a

(4)
12 τ(zi4)) + (Xi1 − µ

(m)
11 )(a

(2)
12 τ(zi2) + a

(6)
12 τ(zi6))

)
∑N

i=1

(
a
(1)
22 τ(zi1) + a

(2)
22 τ(zi2) + a

(4)
22 τ(zi4) + a

(6)
22 τ(zi6)

)

+

∑N
i=1

(
(Xi3 − µ

(m)
30 )(a

(1)
23 τ(zi1) + a

(2)
23 τ(zi2)) + (Xi3 − µ

(m)
31 )(a

(4)
23 τ(zi4) + a

(6)
23 τ(zi6))

)
∑N

i=1

(
a
(1)
22 τ(zi1) + a

(2)
22 τ(zi2) + a

(4)
22 τ(zi4) + a

(6)
22 τ(zi6)

) ,

µ
(m+1)
30 =

∑N
i=1Xi3

(
a
(1)
33 τ(zi1) + a

(2)
33 τ(zi2) + a

(3)
33 τ(zi3) + a

(5)
33 τ(zi5)

)
∑N

i=1

(
a
(1)
33 τ(zi1) + a

(2)
33 τ(zi2) + a

(3)
33 τ(zi3) + a

(5)
33 τ(zi5)

)

+

∑N
i=1

(
(Xi1 − µ

(m)
10 )(a

(1)
13 τ(zi1) + a

(3)
13 τ(zi3)) + (Xi1 − µ

(m)
11 )(a

(2)
13 τ(zi2) + a

(5)
13 τ(zi5))

)
∑N

i=1

(
a
(1)
33 τ(zi1) + a

(2)
33 τ(zi2) + a

(3)
33 τ(zi3) + a

(5)
33 τ(zi5)

)

+

∑N
i=1

(
(Xi2 − µ

(m)
20 )(a

(1)
23 τ(zi1) + a

(2)
23 τ(zi2)) + (Xi2 − µ

(m)
21 )(a

(3)
23 τ(zi3) + a

(5)
23 τ(zi5))

)
∑N

i=1

(
a
(1)
33 τ(zi1) + a

(2)
33 τ(zi2) + a

(3)
33 τ(zi3) + a

(5)
33 τ(zi5)

) ,

µ
(m+1)
11 =

∑N
i=1Xi1

(
a
(2)
11 τ(zi2) + a

(5)
11 τ(zi5) + a

(6)
11 τ(zi6) + a

(8)
11 τ(zi8)

)
∑N

i=1

(
a
(2)
11 τ(zi2) + a

(5)
11 τ(zi5) + a

(6)
11 τ(zi6) + a

(8)
11 τ(zi8)

)

+

∑N
i=1

(
(Xi2 − µ

(m)
20 )(a

(2)
12 τ(zi2) + a

(6)
12 τ(zi6)) + (Xi2 − µ

(m)
21 )(a

(5)
12 τ(zi5) + a

(8)
12 τ(zi8))

)
∑N

i=1

(
a
(2)
11 τ(zi2) + a

(5)
11 τ(zi5) + a

(6)
11 τ(zi6) + a

(8)
11 τ(zi8)

)

+

∑N
i=1

(
(Xi3 − µ

(m)
30 )(a

(2)
13 τ(zi2) + a

(5)
13 τ(zi5)) + (Xi3 − µ

(m)
31 )(a

(6)
13 τ(zi6) + a

(8)
13 τ(zi8))

)
∑N

i=1

(
a
(2)
11 τ(zi2) + a

(5)
11 τ(zi5) + a

(6)
11 τ(zi6) + a

(8)
11 τ(zi8)

) ,

µ
(m+1)
21 =

∑N
i=1Xi2

(
a
(3)
22 τ(zi3) + a

(5)
22 τ(zi5) + a

(7)
22 τ(zi7) + a

(8)
22 τ(zi8)

)
∑N

i=1

(
a
(3)
22 τ(zi3) + a

(5)
22 τ(zi5) + a

(7)
22 τ(zi7) + a

(8)
22 τ(zi8)

)

+

∑N
i=1

(
(Xi1 − µ

(m)
10 )(a

(3)
12 τ(zi3) + a

(7)
12 τ(zi7)) + (Xi1 − µ

(m)
11 )(a

(5)
12 τ(zi5) + a

(8)
12 τ(zi8))

)
∑N

i=1

(
a
(3)
22 τ(zi3) + a

(5)
22 τ(zi5) + a

(7)
22 τ(zi7) + a

(8)
22 τ(zi8)

)

+

∑N
i=1

(
(Xi3 − µ

(m)
30 )(a

(3)
23 τ(zi3) + a

(5)
23 τ(zi5)) + (Xi3 − µ

(m)
31 )(a

(7)
23 τ(zi7) + a

(8)
23 τ(zi8))

)
∑N

i=1

(
a
(3)
22 τ(zi3) + a

(5)
22 τ(zi5) + a

(7)
22 τ(zi7) + a

(8)
22 τ(zi8)

) ,

µ
(m+1)
31 =

∑N
i=1Xi3

(
a
(4)
33 τ(zi4) + a

(6)
33 τ(zi6) + a

(7)
33 τ(zi7) + a

(8)
33 τ(zi8)

)
∑N

i=1

(
a
(4)
33 τ(zi4) + a

(6)
33 τ(zi6) + a

(7)
33 τ(zi7) + a

(8)
33 τ(zi8)

)

+

∑N
i=1

(
(Xi1 − µ

(m)
10 )(a

(4)
13 τ(zi4) + a

(7)
13 τ(zi7)) + (Xi1 − µ

(m)
11 )(a

(6)
13 τ(zi6) + a

(8)
13 τ(zi8))

)
∑N

i=1

(
a
(4)
33 τ(zi4) + a

(6)
33 τ(zi6) + a

(7)
33 τ(zi7) + a

(8)
33 τ(zi8)

)

+

∑N
i=1

(
(Xi2 − µ

(m)
20 )(a

(4)
23 τ(zi4) + a

(6)
23 τ(zi6)) + (Xi2 − µ

(m)
21 )(a

(7)
23 τ(zi7) + a

(8)
23 τ(zi8))

)
∑N

i=1

(
a
(4)
33 τ(zi4) + a

(6)
33 τ(zi6) + a

(7)
33 τ(zi7) + a

(8)
33 τ(zi8)

) .
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For two data types, we define

Σ−1
k =

 a
(k)
11 a

(k)
12

a
(k)
12 a

(k)
22

 , k = 1, · · · , 4

then µk can be updated as:

µ
(m+1)
10 =

∑N
i=1Xi1

(
a
(1)
11 τ(zi1) + a

(3)
11 τ(zi3)

)
∑N

i=1

(
a
(1)
11 τ(zi1) + a

(3)
11 τ(zi3)

)
+

∑N
i=1

(
(Xi2 − µ(m)

20 )a
(1)
12 τ(zi1) + (Xi2 − µ(m)

21 )a
(3)
12 τ(zi3)

)
∑N

i=1

(
a
(1)
11 τ(zi1) + a

(3)
11 τ(zi3)

)
µ
(m+1)
20 =

∑N
i=1Xi2

(
a
(1)
22 τ(zi1) + a

(2)
22 τ(zi2)

)
∑N

i=1

(
a
(1)
22 τ(zi1) + a

(2)
22 τ(zi2)

)
+

∑N
i=1

(
(Xi1 − µ(m)

10 )a
(1)
12 τ(zi1) + (Xi1 − µ(m)

11 )a
(2)
12 τ(zi2)

)
∑N

i=1

(
a
(1)
22 τ(zi1) + a

(2)
22 τ(zi2)

)
µ
(m+1)
11 =

∑N
i=1Xi1

(
a
(2)
11 τ(zi2) + a

(4)
11 τ(zi4)

)
∑N

i=1

(
a
(2)
11 τ(zi2) + a

(4)
11 τ(zi4)

)
+

∑N
i=1

(
(Xi2 − µ(m)

20 )a
(2)
12 τ(zi2) + (Xi2 − µ(m)

21 )a
(4)
12 τ(zi4)

)
∑N

i=1

(
a
(2)
11 τ(zi2) + a

(4)
11 τ(zi4)

)
µ
(m+1)
21 =

∑N
i=1Xi2

(
a
(3)
22 τ(zi3) + a

(4)
22 τ(zi4)

)
∑N

i=1

(
a
(3)
22 τ(zi3) + a

(4)
22 τ(zi4)

)
+

∑N
i=1

(
(Xi1 − µ(m)

10 )a
(3)
12 τ(zi3) + (Xi1 − µ(m)

11 )a
(4)
12 τ(zi4)

)
∑N

i=1

(
a
(3)
22 τ(zi3) + a

(4)
22 τ(zi4)

) .

1.4 Assign Initial Values and Identify the Components

We assign the initial values with the constraints we imposed as described in

Section 2.1. When we use the EM algorithm, the parameters would converge

at its local maximums, so the initial values are pretty important. To assign
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the initial values, we first fit a two-component normal mixture model (there

are many other methods such as the K means or hierarchical clustering with

clusters set to 2) on each data type separately (Benaglia et al., 2009), then we

order the means based on its value and assign them as the initial values. This has

greatly helped to preserve our prespecified labels of the components. However,

we recognize that this may fail when the difference of the means between the

null and alternative are small. In this situation, the readers need to reorganize

the labels of the components based on the final converged mean parameters.

We present a quick example here, let the global null component labeled as

component 1 (data1-,data2-) and the other components ordered as the mean

constraints indicated previously, i.e., component 2 (data1+,data2-), component

3 (data1-,data2+), component 4 (data1+,data2+). This is similar to three data

types. This is a pretty straightforward task, as the means are set constrained,

it is easy to identify the correct component label. For example, if the converged

outcome gives us the mean vectors of each component as (0.56,1.13), (3.11,1.13),

(0.56,0.26), (3.11,0.26). We could rearrange the orders based on the mean values

and the constraints as comp1 (0.56,0.26), comp2 (3.11,0.26), comp3 (0.56,1.13),

comp4 (3.11,1.13). Here, the null mean is 0.56 for data type 1 and 0.26 for data

type 2; the alternative mean is 3.11 for data type 1 and 1.13 for data type 2.

2 Simulation Studies

2.1 Simulation Parameters Mimicking TCGA Bladder Can-

cer Real Data

The parameters used for multivariate normal mixture for simulation studies sce-

nario 6 mimicking TCGA bladder cancer real data are shown here, π̂=(0.268577053,

0.233897556, 0.189871018, 0.006866345, 0.256186213, 0.008889446, 0.010178071,

10



0.025534298), the mean vectors for the eight components are

µ1 = (0.5012989, 0.3832367, 0.4550859);µ2 = (3.6045370, 0.3832367, 0.4550859);

µ3 = (0.5012989, 4.2595606, 0.4550859);µ4 = (0.5012989, 0.3832367, 4.2136909);

µ5 = (3.6045370, 4.2595606, 0.4550859);µ6 = (3.6045370, 0.3832367, 4.2136909);

µ7 = (0.5012989, 4.2595606, 4.2136909);µ8 = (3.604537, 4.259561, 4.213691).

The covariance matrices for the eight components are

Σ1 =


1.26 0.01 0.05

0.01 1.04 0.02

0.05 0.02 1.21

 ; Σ2 =


1.50 −0.01 −0.02

−0.01 1.02 −0.04

−0.02 −0.04 1.14

 ; Σ3 =


1.21 0.09 0.02

0.09 2.52 −0.02

0.02 −0.02 1.22

 ;

Σ4 =


0.90 0.01 0.06

0.01 1.01 0.05

0.06 0.05 1.12

 ; Σ5 =


1.84 0.22 −0.09

0.22 3.58 −0.01

−0.09 −0.01 1.21

 ; Σ6 =


1.92 −0.04 0.16

−0.04 1.05 −0.16

0.16 −0.16 1.23

 ;

Σ7 =


1.01 0.11 0.13

0.11 2.80 0.36

0.13 0.36 1.24

 ; Σ8 =


1.63 0.29 0.08

0.29 4.02 0.09

0.08 0.09 1.39

 .

2.2 Model Calibration Estimation
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Figure 1: Model calibration of IMIX-Ind for 1000 simulation results.
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Figure 2: Model calibration of IMIX-Cor for 1000 simulation results.
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Figure 3: Model calibration of IMIX-Cor-Restrict for 1000 simulation results.
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Figure 4: Model calibration of IMIX-Cor-Twostep for 1000 simulation results.
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2.3 Model Selection

Number of Components Balanced Unbalanced
7 Components (0.25,0.125,0.125,0.125,0.125,0.125,0.125) (0.304,0.095,0.290,0.017,0.269,0.004,0.021)
8 Components (0.125,0.125,0.125,0.125,0.125,0.125,0.125,0.125) (0.300,0.095,0.290,0.017,0.269,0.004,0.021,0.004)

Table 1: Mixing proportions in simulation study setup 2. For each mixing
proportion and number of components combination, we generated four scenarios
with the mean and covariance parameters equal to the simulated parameters in
simulation study 1 Scenarios 2-5. In total there are 16 simulation scenarios.

Let xi be the group label, here we let it be from 1 to 8, xi = 1, · · · , 8. a is

the slope, b is the intercept. Let

a

8∑
i=1

xi + b = 1

Now we consider to solve this equation


36a+ 8b = 1

8a+ b = c

(1)

Here, we let c = 0.005, 0.01, 0.05, 0.1. Solve the equation and get the proportions

for each component for the 4 scenarios, the proportion of component i would be

axi + b.

Proportion
c=0.1 (0.150,0.143,0.136,0.129,0.121,0.114,0.107,0.100)
c=0.05 (0.200,0.179,0.157,0.136,0.114,0.093,0.071,0.05)
c=0.01 (0.240,0.207,0.174,0.141,0.109,0.076,0.043,0.010)
c=0.005 (0.245,0.211,0.176,0.142,0.108,0.074,0.039,0.005)

Table 2: Mixing proportions in simulation study setup 3.

Proportion
c=0.1 (0.129,0.129,0.129,0.129,0.128,0.128,0.128,0.100)
c=0.05 (0.136,0.136,0.136,0.136,0.136,0.135,0.135,0.05)
c=0.01 (0.144,0.141,0.141,0.141,0.141,0.141,0.141,0.010)
c=0.005 (0.143,0.142,0.142,0.142,0.142,0.142,0.142,0.005)

Table 3: Mixing proportions in simulation study setup 4, one group unbalance.
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Figure 5: Simulation study on selecting the number of mixture components
using BIC. (a) Unbalanced setting, 7-component mixture model. (b) Balanced
setting, 7-component mixture model. (c) Unbalanced setting, 8-component mix-
ture model. (d) Balanced setting, 8-component mixture model. Black triangle
represents the model BIC selects. ρ is the correlation between data types.
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Figure 6: Simulation study on selecting the number of mixture components
using AIC. (a)Unbalanced setting, 7-component mixture model. (b)Balanced
setting, 7-component mixture model. (c)Unbalanced setting, 8-component mix-
ture model. (d)Balanced setting, 8-component mixture model. Black triangle
represents the model AIC selects. ρ is the correlation between data types.
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Figure 7: Model selection of AIC and BIC when the mixing proportions are
unbalanced. AIC: (a) simulation set up 3. (b) simulation set up 4. BIC: (c)
simulation set up 3. (d) simulation set up 4. Black triangle represents the model
AIC/BIC selects. ρ is the correlation between data types.
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2.4 Computational Time of IMIX

Computation time (in seconds) Mean SD
IMIX-Ind 4.501 0.879
IMIX-Cor 970.901 167.922
IMIX-Cor-Restrict 417.531 57.425
IMIX-Cor-Twostep 217.379 25.787

Table 4: Computational time needed (mean and standard deviation (SD) with
20 000 genes of H = 3 data types) for IMIX models under comparison in the
simulation study 1 (Figure 1; Scenario 3 with data correlation of 0.3).

Number of iteration Mean SD
IMIX-Ind 67 8.652
IMIX-Cor 161 24.606
IMIX-Cor-Restrict 71 7.597
IMIX-Cor-Twostep 42 3.497

Table 5: Number of iterations needed (mean and standard deviation (SD) with
20 000 genes of H = 3 data types) for IMIX models under comparison in the
simulation study 1 (Figure 1; Scenario 3 with data correlation of 0.3).

3 Real Data Applications to The Cancer Genome

Atlas (TCGA)

3.1 Data Preprocessing and Quality Control

For bladder cancer in the TCGA, copy number variation (CNV) and methy-

lation data were retrieved from TCGA2STAT (Wan et al., 2016), RNAseq

data was retrieved from Broad Institute Genome Data Analysis Centers TCGA

(http://gdac.broadinstitute.org/), and preprocessed and log-transformed previ-

ously as described in Guo et al. (2019). All three datasets were with reference

genome build hg19. CNV was array-based level-3 gene-level data. Methylation

data were measured on the Illumina Infinium HumanMethylation450 (450K)
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BeadChip array at over 480,000 sites. The CpG sites with missing values in

more than 10% of the total samples were filtered out. We excluded all the

probes on the sex chromosomes, the probes of target polymorphic CpGs that

overlaps with known SNPs (Fortin et al., 2017), and the probes that are cross-

reactive (Chen et al., 2013). The methylation data were normalized using the

Beta-Mixture Quantile (BMIQ) Normalization function from R package “wa-

teRmelon” (Ruth, 2013). For downstream individual-level analysis, there were

373 DNA methylation samples, 391 RNA-Seq samples, and 387 CNV samples

with N = 15 672 genes.

Individual level test was conducted with respect to the binary molecular

subtypes using logistic regression adjusting for the clinical covariates, including

age, sex, race, smoking status, and pathological stage. The same procedure was

conducted for RNAseq and CNV data. For probe level methylation data, we

conducted the set-based test within each gene, the sequence kernel association

test (SKAT) (Wu et al., 2011). The summary statistics P -value was collected

for the three data types, and then transformed to z-scores for IMIX analysis.

For pancreatic cancer in the TCGA, we preprocessed the CNV data with

the same quality control procedures as the bladder cancer dataset. The level-

3 RSEM RNAseq data were retrieved from TCGA2STAT (Wan et al., 2016)

and log-transformed. The same preprocessing procedure on the samples was

performed. Individual-level test was conducted for the time-to-event outcome

using the Cox proportional hazards model to each of the 15 472 genes respec-

tively on 157 RNA-Seq samples and 161 CNV samples adjusting for age, gender,

and smoking status. The summary statistics P -values were collected for the two

data types, and then transformed to z-scores for IMIX analysis.

The molecular subtypes of bladder cancer patients in the TCGA were re-

trieved from previous work (Guo et al., 2019).
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Figure 8: Comparisons between the number of significant genes in the TCGA
datasets detected by the IMIX framework, Benjamini-Hochberg FDR (BH-
FDR), and Bonferroni correction. (a) Number of genes detected by the IMIX
framework, BH-FDR, and Bonferroni correction that are associated with the
molecular subtypes of muscle-invasive bladder cancer through DNA methyla-
tion, gene expression, and CNV, with adaptive FDR control at α = 0.2, esti-

mated m̂FDR8 = 0.1995. (b) Number of genes detected by IMIX and BH-FDR
that are associated with the survival status of pancreatic cancer patients through
gene expression and CNV, with adaptive FDR control at α = 0.2, estimated

m̂FDR4 = 0.2.

3.2 The Directed Acyclic Graphs (DAGs) of 61 Significant

Genes in Component 8

We estimated the causal relationships between DNA methylation, gene expres-

sion, and CNV of the 61 genes in component 8 by applying Bayesian networks

(Scutari, 2017) with the target nominal type I error rate at 0.01. The directed

acyclic graphs (DAGs) based on conditional independence tests with a restric-

tion of causal direction from CNV to E showed six different patterns of causal

structures for our data. In particular, seven genes had a full model with connec-

tions of CNV→E, E−M, M−CNV (Fig S8(1)); five genes showed causal effect

of both CNV and DNA methylation on gene expression, while CNV and DNA
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methylation were marginally independent (Fig S8(2)); 17 genes had a reactive

model as CNV→E→M (Fig S8(3)), which had also been reported by previous

research (Sun et al., 2018). Seventeen genes showed that DNA methylation and

gene expression were conditionally independent given CNV as M−CNV→E (Fig

S8(4)) with the causal direction between CNV and DNA methylation indistinct

from the statistical test. One gene showed conditional independence between

CNV and gene expression given DNA methylation (Fig S8(5)); however, the

direction of the DAG was not available due to the Markov equivalence, i.e., all

three scenarios ( CNV→M→E; E→M→CNV; CNV←M→E) led to conditional

independence. This model was likely to be a true causal model as CNV→M→E.

Four genes showed a dependence structure between gene expression and CNV

given DNA methylation (Fig S8(6)). The rest of the ten genes showed no tri-

angular association pattern.

3.3 A Sensitivity Analysis of Overlapped and Non-Overlapped

Samples

The patients can be partially overlapped or completely different across the data

types as the method only involves summary statistics for analysis. We have

performed a sensitivity analysis in the TCGA bladder cancer data to show this

feature. As proof of concept, we used only CNV and RNAseq data. We first

matched the samples across the two data types (n=371) and randomly split them

into two halves. Analysis 1 was based on the same set of samples in the two data

types. We used the same first half (n=185) of the samples across the two data

types. Analysis 2 was based on two different sets of samples without overlap in

the two data types. We used the first half of samples (n=185) for CNV data and

the second half of samples (n=186) for RNAseq data. We compared the results

from the two analyses based on the Benjamini-Hochberg FDR control at 0.05 for
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each data type separately and IMIX-Cor-Twostep with across-data-type FDR

at 0.2, as shown in the table below.

BH-FDR (not consider correlation) IMIX-Cor-Twostep
````````````Analysis 1

Analysis 2
1 (GE-,CNV-) 2 (GE+,CNV-) 3 (GE-,CNV+) 4 (GE+,CNV+) 1 (GE-,CNV-) 2 (GE+,CNV-) 3 (GE-,CNV+) 4 (GE+,CNV+)

1 (GE-,CNV-) 7475 1738 120 53 8512 2352 16 51
2 (GE+,CNV-) 1461 4660 32 97 942 4164 0 0
3 (GE-,CNV+) 86 18 224 72 25 0 81 23
4 (GE+,CNV+) 33 69 67 253 27 0 18 247

Table 6: Results of the sensitivity analysis comparing same samples (analysis
1) and different samples (analysis 2) in the TCGA bladder cancer data using
only gene expression and CNV data.

We conclude that despite the expected difference between the actual indi-

vidual samples that may result in the difference as illustrated in the BH-FDR

method, IMIX performed well in returning a robust result. Specifically, com-

paring the results of analysis 1 and analysis 2, where one used the same sample

set and the other used complete different samples, both returned 8512 genes in

component 1 (GE-,CNV-), 4164 genes in component 2 (GE+,CNV-), 81 genes

in component 3 (GE-,CNV+), and 247 genes in component 4 (GE+,CNV+).
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Figure 9: The canonical pathways identified by the Ingenuity Pathway Analysis
(IPA) on the 61 significant genes in component 8 with adaptive FDR controlled
at α = 0.01 of bladder cancer subtypes in the TCGA.
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Figure 10: The Directed acyclic graphs (DAGs) based on Bayesian network with
a restriction of causal direction from CNV to gene expression for the genes in
component 8 of TCGA bladder cancer with across-data-type FDR controlled at
α = 0.01.
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Figure 11: Results of IMIX analysis for pancreatic cancer prognosis in the
TCGA. Kaplan-Meier curves for pancreatic cancer patient survival in the
TCGA. Samples were clustered based on the 104 genes identified by IMIX,

with adaptive FDR control at α = 0.05, estimated marginal FDR (m̂FDR4) =
0.0498.
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