
A Optimization of the sterile males releases date
To identify the best period for the sterile males releases, we optimized the starting date of releases similarly to Haramboure
et al.1. The effectiveness of the SIT and BSIT was quantified by gathering 5 model outputs into a single value (1): the mean
reduction rate over the releases (no units), the resilience (years), the sterility rate (no units), the emergence reduction rate (no
units) and the increase rate of female population (no units). These outputs were computed relatively to the control model
(without any vector control actions). Since the increase in female population during releases is an undesirable effect, the female
increase rate was substracted to lower down effectiveness estimator. The release starting day (Tstart ) was optimized to find the
overall maximal effectiveness value. Both global and local optimizations were performed using the algorithm from nloptr R
package (https://cran.r-project.org/web/packages/nloptr/index.html).

E f f ectivness = f (Tstart) (1)

= ∑
y

∑
p

Reduction rateyp +Sterility rateyp +Resilienceyp

+Emergence reductionyp− Increase rateyp,

with
{

p ∈ Parcels,
y ∈ [2015−2017].

Optimization of SIT and boosted SIT consisted of maximizing their respective effectiveness. Because of inter-annual
weather variations and field heterogeneity, these effectiveness were computed in three different years (2015, 2016 and 2017)
and on the four Reunion Island-like parcels linked to the Montpellier meteorological stations (see Methods). It thus takes into
account weather variability and field heterogeneity in both SIT and boosted SIT efficiency.

We defined the best release period as the time-frame of vector control actions that allows to reach at least 95% of the
maximal potential effectiveness.

The best starting period was found to be late March in the temperate climate. A 3.5-months interval extending from
February to mid-May allows reaching at least 95% of the maximum SIT and BSIT potential (Figure 1(A)). The 99% interval,
mainly driven by resilience augmentation, is much shorter and lasts 40 days for both SIT and BSIT. It takes place within the
firsts months of the favorable period, when the adult population is very low (Figure 1 (B)).

During control, and similarly in SIT and BSIT, the female population is heavily lowered during summer, approaching
extinction (Figure 1 (B)). A few individuals nevertheless survive and breed, leading to the population recovery the year after.

B Undesirable increase in female abundance
When started late in the mosquito season, SIT with late releases of less than 1100 males per hectare, has been found to cause a
temporary increase in female abundance (see Results), which is not a desirable effect of control. This undesirable increase
of female abundance has been reported in several studies2–4. We further investigated the causes by running two sets of three
simulations for SIT, BSIT and a control, one with larval competition and the other without (i.e., removing the competition
term 1+ P

kP(1−a rprev)
, eq. (2)). To allow comparison while avoiding the burst in population induced by the removal of larval

competition, the total numbers of adult males and females were caped at 200 individuals.
An increase in female abundance was observed for SIT, which disappeared with the removal of larval competition from

the model (Figure 2), suggesting that the sterile males releases induce a reduced larval competition, leading temporarily to
more emergence. This increase is not observed with BSIT, either with or without larval competition, probably because the
pp-contamination of breeding sites heavily lower down the larval population and overcome the effect of any competition
process.

C Model validation in the temperate climate
The simulated population dynamic without any sterile male releases (eq. (2) : λMs = λMsc = 0 and a = 0) has been validated on
entomological data recorded by the "Entente Interdépartementale de Démoustication (EID) Méditerranée", the public agency in
charge of the mosquito control in the southeast France.

Ovitraps were placed in 5 residential areas (Table 1) located in Montpellier (Vert-bois, Pompigane Sud and Aiguelongue) or
in the adjacent city of Castelnau-Le-Lez (Volhe and Chevalerie) (Figure 3). Studied areas were described as discontinuous
medium to dense urban fabrics by the reference CORINE, an European reference describing the land-cover structure based on
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Figure 1. Best release starting date in the temperate climate for a maximum SIT and BSIT effect. (A) Effectiveness at
different starting dates for SIT (blue) and BSIT (red). Periods reaching at least 95% and 99% of the maximum effect are
respectively filled in blue and red. (B) SIT and BSIT effect on female dynamics over time. The release starts at its optimal day
(March, the 24th) in year 2015. The scenario consists of 18 releases of 1,000 males/ha during a period of 4 months. Grey
background represents the mosquitoes favorable period, i.e.,. when no diapause occurs.

satellite imagery5. Ovitraps were mostly placed in sites shaded by vegetation. They consisted of 3L plastic black buckets filled
with 2L of tap water, in which a floating polystyrene square (5 x 5cm) acted as an ovipositing support. Biolarvicide Bacillus
thuringiensis israelensis was added into the bucket to prevent the production of mosquitoes from the trap.

The number of trapped eggs were monitored weekly between April and November, in 2015, 2016 and 2017 (Table 1). The
trapping network in each parcel was composed of 8 to 25 ovitraps. We considered that a reasonable-enough trapping effort was
performed to get an accurate description of the local Ae. albopictus population dynamics. Hatched and unhatched eggs were
removed from the trap each week for identification and count at the laboratory.

Table 1. Entomological record of Ae. albopictus in the Montpellier area

Location Year Beginning End Number Surface of trapping Maximum mean number of eggs
of traps area (ha) per trap per capture session

Vert-Bois 2015 30 Avr 18 Nov 25 9.739 434.36
Vert-Bois 2016 12 Mai 24 Nov 11 9.739 395.7
Vert-Bois 2017 26 Avr 19 Oct 19 9.739 294.2
Chevalerie 2016 12 Mai 24 Nov 10 5.876 377.2
Chevalerie 2017 26 Avr 19 Oct 8 5.876 259.25
South Pompignane 2016 12 Mai 24 Nov 10 12.313 334.9
Volhe 2016 12 Mai 24 Nov 10 9.954 483
Volhe 2017 26 Avr 19 Oct 11 9.954 228.36
Aiguelongue 2017 26 Avr 5 Oct 20 5.026 200.4

These observed data were then compared to the predictions of the model using a Spearman correlation test. The predicted
numbers of new eggs produced per week were independently computed as (γgc(βnFn +βpFp)). Model simulations were highly
consistent with the dynamics recorded in the field, with a significant correlation of 61% (pvalue ' 10−27).

However, the model tends to underestimate the number of new eggs produced at the beginning of the favorable period (April).
An early egg peak is observed in 2017 in all studied areas (Figure 4). This burst is not captured by our simulations and could
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Figure 2. Population dynamics during late implementation of SIT or BSIT, with or without pupal competition. The release
period is filled in grey. We bounded the adult females abundance to avoid exponential growth of population when the
density-dependent (i.e., the competition) process are removed.

not be explained by temperature or rainfall fluctuations. It is probably responsible for the lower correlation (52%, pvalue ' 0.01)
observed in the Aiguelongue area where the few records (24) provided were all performed in 2017. Eggs measured in Chevalerie,
Volhe and Vert-bois areas, were followed for more than one year and show higher correlation coefficients: 0.75 (pvalue ' 10−11),
0.69 (pvalue ' 10−9) and 0.65 (pvalue ' 10−11), respectively. The best fit to the entomological data was observed in the South
Pompignane neighborhood with a significant correlation of 86% (pvalue ' 10−9); this area is the only one where no records
were performed in year 2017.

D Full model, modified from Haramboure et al. 1

The original model was developed for Reunion Island (southwest Indian Ocean, tropical climate) by Haramboure et al.1.
The present model is an adaptation that allows for the temperate climate, using Montpellier (southern France, Mediterranean
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Figure 3. Study area. Colored points represent the two meteorological stations (blue for Prades-Le-Lez and red for
Montpellier’s airport) of the area. The same color code was used to link each parcel with its closest meteorological station.
Entomological data were provided for 5 parcels : Vert-Bois, Aiguelongue, South Pompignade, Chevalerie and Volhe (filled
parcels). The maps were produced using QGIS 3.10 (http://www.qgis.org). The shapefile of the regions of France is
taken from the open street map (https:
//www.data.gouv.fr/fr/datasets/contours-des-regions-francaises-sur-openstreetmap/).

temperate climate, i.e., hot and dry summers vs. mild and humid winters) as a reference:
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Mx(Tstart +nτ
+) = Mx(Tstart +n∆t)+λMx , n = 1,2,3, ...; n∆t ≤ τ; x ∈ {sc,s},

Ftot = Fem +Fn +Fp +Fs.

(2)
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Figure 4. Model vs. observed data in the Vert-bois area. (Top panel) Comparison of the numbers of new eggs sampled each
week in the entomological collection (red) and predicted by the model (black). (Bottom panel) Temperature and rainfall records
from Prades-Le-Lez meteorological station.

with z =
{

0 if dstart ≤ t ≤ dend (diapause)
1 otherwise and a =

{
1 during vector control
0 otherwise

Constant parameters are in Greek letters. They include mortality rates (µX being the mortality rate of compartment X , 11
compartments in total, see text), and the transition rates from emerging to nulliparous females (γFem), and from nulliparous to
parous females (γgc). γgc is then multiplied by the number of eggs laid per ovipositing nulliparous (βn) and parous (βp) females
to compute the egg-laying rate. An additional mortality rate is added for female compartments, due to their host-seeking
behaviour (µr). σ is the sex ratio at emergence. Each male being able to fertilize several females, we assumed that the mating
probability for females was 1, i.e., independent of the male density.

Latin letters are weather-dependent functions that act on the mortality rates (mx), the transition rates ( fx) and the environment-
defined carrying capacities (kx) for the aquatics stages. Carrying capacities drive the density-dependent mortality at larval stage(

mL

(
1+ L

kL

))
and the pupae density-dependent success for adult emergence

(
exp
(
−µFem

(
1+ P

kP

)))
. Temperature impacts

mx and fx, whereas kx is rainfall-dependent.
During diapause (dstart ,dend), observed only in the temperate climate, the transition between the eggs and larvae compart-

ments is stopped by the z parameter that represents the egg dormancy process6.
When SIT, or BSIT, starts (Tstart ), a quantity of sterile males (λX , with X = Ms or Msc, resp.), is periodically released into

the population (∆t) during a given period of time τ . The sterile males have a probability to mate with an emerging females
(Fem) depending of their relative availability compared to the overall number of males, i.e., their proportion adjusted by the
competition parameter ω: p = ωX

ωX+M . No eggs produced by sterile females will hatch. Emerging females that encounter a
sterile male thus become sterile (Fs), while the other become nulliparous (Fn, probability 1− p).

Moreover, for BSIT the released sterile males (Msc) are also coated with pyriproxyfen (PP). Males attempt to mate with any
females of the population (Ftot = Fem +Fn +Fp +Fs), even if already fertilized. Each encounter of a contaminated male with a

female makes it loose a part of its PP coating until total decontamination after κF matings :
(

ωMsc
ω(Msc+Ms)+M

Ftot
κF

)
. The eventually
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decontaminated males nevertheless keep their ability to sterilize females (Ms). While laying eggs at each gonotrophic cycle
(γgc), PP-contaminated females transfer the contaminant to the breeding sites

(
ωMsc

ω(Msc+Ms)+M (Fn +Fp +Fs)γgc

)
, but only to the

non-contaminated fraction
(

1− Bc
Btot

)
, with Bc the number of contaminated sites among all breeding sites (Btot ). Females loose

part of the contaminant at each oviposition, until total decontamination after κBc gonotrophic cycles. Pupae emergence rate is
affected by the probability of the pupae to 1) grow in a contaminated breeding site and 2) to survive PP with a probability φ(

1− Bc
Btot

(1−φ)
)

. Finally, breeding site become decontaminated at a rate ν .
Bold sections of the equation (eq. (2)) model the vector control methods that are not based on sterile males releases : ADT

(OT , ST ), ovitraps (OT ), BGS-traps (BGS) and prevention (rprev) through breeding site destruction.

E Model parameters
Parameters and weather-dependent function have been adjusted according to expert knowledge and literature (Table 2 and 3).

The density of breeding sites Btot was estimated from the urbanization level in each delimited subarea, as the mean number
of breeding sites per household (10−20) multiplied by the number of households per hectare (25−30) and the surface of
the parcel. All were estimated from field observations, as well as the distinction between permanent and rainfall-dependent
breeding sites.

Table 2. Parameters values in the temperate climate

Parameter Definition Value Reference
σ Sexe ratio at emergence 0.5 7

βn Eggs laid by ovipositing nulliparous female (per female) 95 8

βp Eggs laid by ovipositing parous female (per female) 75 8

γFem Transition rate from emerging female to nulliparous female (/day) 0.4 6

γgc Length of the gonotrophic cycle (/day) 0.2 6

µE Egg mortality rate (/day) 0.05 (Lacour, unpublished)
µL Minimum larva mortality rate (/day) 0.02 (Lacour, unpublished)
µP Minimum pupa mortality rate (/day) 0.02 (Lacour, unpublished)

µFem Mortality rate during adult emergence (/day) 0.1 (Lacour, unpublished)
µr Female mortality rate related to seeking behaviour (/day) 0.058 current work
µM Male mortality rate (/day) 0.0735 7

µF Female mortality rate (/day) 0.02 7

kL f ix Standard rainfall-independent environment carrying capacity for larvae [0−55358] Field estimation ∗

kLvar Standard rainfall-dependent environment carrying capacity for larvae [0−40104] Field estimation ∗

kPf ix Standard rainfall-independent environment carrying capacity for pupae [0−55358] Field estimation ∗

kPvar Standard rainfall-dependent environment carrying capacity for pupae [0−40104] Field estimation ∗

TE Minimal temperature needed for egg development (◦C) 10 7

T DDE Total number of degree-day necessary for egg development (◦C) 110 (Lacour, unpublished)
dstart Beginning of the diapause period 30 Sept 9

dend End of the diapause period 10 Mar 9

∗ Standard environmental carrying capacities were extrapolated from field estimations for each delimited sub-area10.

F Sensitivity analysis in temperate climate
A sensitivity analysis (SA) was performed on the model outputs to identify key parameters of the SIT and BSIT in temperate
climate. Four model outputs were studied : the reduction rate, the resilience, the reduction rate of BSIT compared SIT and the
undesirable female augmentation.

SIT parameters (λMs , ω , µMs ), BSIT parameters (λMsc , ν , κBc, κF , µMsc ) and parameters describing the release period (Tstart ,
τ , ∆t ) were varied one by one through 100 trajectories to complete a Morris Sensitivity analysis11 with the sensitivity R
package. The grid of parameters space was discretized by 10 levels and the walking step was defined as 10

2 , following Morris’s
recommendations.

Each parameter space (Table 1) was determined from literature or expert knowledge, except for Tstart , which was just
estimated.
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Table 3. Functions adjusted for temperate conditions6. R is the rainfall and T, the temperature at time t.

Function Definition Expression
fE Transition function from egg to larvae (T (t)−TE)/T DDE
fL Transition function from larvae to pupae −0007T 2 +0.0392T −0.3911
fP Transition function from pupae to emerging adult 0.0008T 2−0.0051T +0.0319

mL Larva mortality µL +0.0007exp(0.1838(T −10))
mP Pupa mortality µP +0.0003exp(0.2228(T −10))
mF Female mortality µF +0.0003exp(0.1745(T −10))

Rnorm Normalized weekly rainfall amount
(
∑

t
i=t−14 R(i)

)
/100

kL Environmental carrying capacity for larvae kL f ix +min(kLvar Rnorm(t),kLvar)

kP Environmental carrying capacity for pupae kPf ix +min(kPvar Rnorm(t),kPvar)

As previously found for the tropical climate1, the main parameters influencing the mosquito population dynamics are
essentially the same between SIT and BSIT (Figure 5). The elementary effect variance increases for most of the parameters
according to the absolute value of the elementary effect. Most parameters have few or no influence on the output values.

Figure 5. Keys parameters of the SIT and BSIT in temperate climate. Sensitivity analysis performed on the SIT (blue
triangles) and the BSIT (red points). Four outputs were studied: the resilience (A), the reduction rate (B), the reduction rate of
the BSIT compared to the SIT (C), and the increase in the female population (D). The variance (σ ) of each elementary effect is
plotted against its absolute value (µ∗). Parameters without influence (σ = 0 and µ∗ = 0) were removed. The bottom-left region
(low µ∗ and σ ) of the reduction rate (B) and the female population increase (D) plots have been magnified (black boxes).

For 3 outputs out of 4, the date for the start of the releases (Tstart ) is by far the most influencing factor (Figure 5 (B, C, D)).
Its elementary effect absolute value, describing its overall influence on the outputs, is 2 to 100 times higher than the effect of
other parameters. Its participation to the output has either a non-linear relationship with the value, or a strong interaction with
other inputs (high σ ). The length of the release (τ) and the sterile male mortality (µs) are parameters that can significantly
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modify the population resilience after SIT or BSIT (Figure 5 (A)).
Even if the starting day of release remains by far the major influential parameter, BSIT is less sensitive than SIT to this

parameter for the reduction rate and resilience outputs (Figure 5 (A, B)). The reduction rate of BSIT compared to SIT is mostly
influenced by the starting day of releases, and, to a much lesser extent, by sterile males competitiveness (ω) and the number of
sterile males released (λMs) (Figure 5 (C)). Male competitiveness, starting date of releases and the quantity of sterile males
released drive an undesirable augmentation of the females number in SIT, while none has been observed for BSIT (Figure 5
(D)). These parameters may act in interaction (high σ ). Boost related parameters (e.g. the decontamination rate, ν , the larval
resistance to PP, φ and the PP transfers, κBc and κF ) have few or no influence in the outputs (Figure 5).
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