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Supplementary Note 1. Sample preparation 

An overview image of the sample surface, which was used for the experiments, is shown in Supplementary Fig. 1a. 

Using the procedure described in the Methods section of the main text, we obtained a similar Nb(110) surface quality 

as previously reported in the literature1. Only a few dark depressions, which can be identified as oxygen impurities, 

remain on the surface. Clean patches of Nb(110), at least 5 nm x 5 nm in size, could easily be found and were used for 

the scanning tunneling spectroscopy (STS) experiments in order to avoid any influence of the oxygen impurities. 

Supplementary Fig. 1b shows an atomically resolved STM image. White lines tracing the rows of surface Nb atoms 

along the two crystallographic directions are added as a guide to the eye. We find that the centers of the Mn adatoms 

(bright protrusions) lie in the rectangular area defined by two neighboring lines along the [001] and two neighboring 

lines along the [11̅0] direction. An atom-manipulation image2, which is obtained by pushing or dragging a single Mn 

adatom across the sample surface while recording an STM image at high tunneling conductance, is shown in 

Supplementary Fig. 1c. We find that the symmetry and the distances of the protrusions in the manipulation image 

follow that of the four-fold coordinated hollow sites of the Nb(110) surface. In combination with the information 

drawn from Supplementary Fig. 1b and VASP calculations (Supplementary Note 6), we conclude that this hollow site, 

for which a Mn adatom adsorbs in the diamond-shaped center of four surface Nb atoms, is the only favorable and 

observable adsorption site. 
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Supplementary Figure 1 | Overview of Mn/Nb(110) sample and Mn adsorption site. a, Large-scale STM image 

providing an overview of the prepared Mn/Nb(110) sample. A small amount of oxygen contaminations remained on 

the sample, which are visible as dark depressions. The white scale bar represents a length of 5 nm (Vbias=6 mV and 

I=200 pA). b, Atomically resolved STM image of the Nb(110) surface including four single Mn adatoms in the scan 

frame. White lines trace the rows of surface Nb atoms along the [001]- and [11̅0]-directions. The white scale bar 

represents a length of 2 nm (Vbias=6 mV and I=1 nA). c, Atom-manipulation image obtained by dragging/pushing a Mn 

adatom across the Nb(110) surface while taking the image. The black scale bar represents a length of 500 pm 

(Vbias=-3 mV and I=50 nA). 

 

Supplementary Note 2. Determining the positions of the two atoms in the dimers 

Supplementary Fig. 2 shows STM images and height profiles across a single Mn atom and close-packed dimers which 

have been assembled by STM tip-induced atom manipulation in different crystallographic directions as described in 

the Methods section of the main text. In comparison to the Mn atom, which has an almost circular shape, each Mn 

dimer has an elliptical shape. The ellipse is oriented along the specific crystallographic direction which coincides with 

the orientation of the two atoms in the dimer predetermined by the manipulation process. In addition, atom-

manipulation images taken on the bare Nb substrate overlaid on these STM images reveal the possible adsorption 

positions of the two atoms in the dimer. Combining the lattice positions predetermined by the atom manipulation 

process, the orientation and size of the elliptical shape of the dimer from the STM image, and the possible adsorption 

sites from the overlaid atom manipulation image, we can unambiguously determine the positions of the two atoms in 
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each of the manipulated dimers. These positions are indicated in Supplementary Fig. 2 by red circles as well as in 

Figs. 2c,d and Figs. 3b,c. Finally, as revealed by the line profiles in Supplementary Fig. 2, the dimers have an increased 

apparent height compared to the single Mn adatom. 

 

Supplementary Figure 2 | Positions of the two atoms in the manipulated dimers. a-d, STM images taken using the 

same tip with overlaid atom-manipulation images (left panels) and height profiles along the indicated red lines (right 

panels) of a Mn atom (a), a 1a − [001] dimer (b), a √2a − [11̅0] dimer (c), and a √3a 2⁄ − [11̅1] dimer (d). The 

determined positions of the two atoms in each dimer are indicated by red circles. The crystallographic orientation of 

all images is indicated by the vectors in a. (STM images: Vbias=6 mV and I=1 nA; atom manipulation images: Vbias=-3 mV 

and I=50 nA). 
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Supplementary Note 3. Determining the tip gap 

Accurately knowing the size of the superconducting gap of the STM tip is important if one wants to determine the 

exact energetic positions of the Shiba states, since all features are shifted by ±Δtip to higher bias voltages. One way 

to characterize the superconducting gap of the tip is based on a comparison with STS measurements using a normal 

conducting metal tip. An example of a tunneling spectrum obtained with a normal conducting Cr tip on a Nb(110) 

sample is shown in Supplementary Fig. 3a. The spectrum is fitted by standard STS theory using a Dynes function in 

order to model the substrate’s local density of states (LDOS) 

 

𝜌(𝐸 = 𝑒𝑉) = 𝜌0 ∙ Re (
𝐸−i𝛾

√(𝐸−i𝛾)2−Δ2
) . (1) 

The resulting superconducting gap of Nb is Nb=1.50 mV, which is indicated by the red vertical lines. Since we now 

know the actual superconducting gap Nb of the sample measured at 320 mK, we can calculate the superconducting 

gap tip of the tip used in all other measurements. We recall the positions of the coherence peaks indicated in Fig. 1a 

of the main text (±2.93 mV) which are given by ±(Nb+tip). By a simple subtraction of the fitted gap of Nb (Nb) from 

this quantity, we obtain a tip gap of Δtip = 1.43 mV. This value is substantiated by a corresponding fit of a substrate 

spectrum taken with the superconducting tip assuming two Dynes functions (Supplementary Eq. (1)), one for the 

substrate’s LDOS for which we now know the fitting parameters, which are then used to calculate a convolution matrix 

(see ref.3), and one for the tip’s DOS with a different set of parameters, still to be optimized. The multiplication of the 

convolution matrix with the tip DOS is fitted to the dI/dV spectrum measured on bare Nb(110) which is shown in 

Supplementary Fig. 3b. 
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Supplementary Figure 3 | Determination of the substrate and tip gaps. a, dI/dV spectrum (black dots) taken on bare 

Nb(110), using a non-superconducting Cr tip. The spectrum was fitted (blue curve) assuming a broadened Dynes 

function, Supplementary Eq. (1), as the LDOS of the superconducting Nb(110). The extracted fitting parameters are 

ΔNb = 1.50 mV and 𝛾 = 0.12 mV. Red vertical lines indicate the position of ±Nb (Vstab=-5 mV, Istab=1 nA, Vmod=40 µV, 

Cr tip). b, dI/dV spectrum (black dots) taken on bare Nb(110), using the superconducting tip, which was used for all 

measurements discussed in the main text. The spectrum was fitted (blue curve) assuming two broadened Dynes 

functions, one for the substrate’s LDOS with fixed parameters (see a) and one for the tip’s DOS (Supplementary Eq. 

(1)). The extracted fitting parameters are Δtip = 1.43 mV and 𝛾 = 300 nV. Red vertical lines indicate the positions of 

±(ΔNb + Δtip) (Vstab=6 mV, Istab=1 nA, Vmod=40 µV, Nb-coated W tip). 

 

Supplementary Note 4. Spin-polarized STM measurements 

A recent publication on spin-polarized STM (SP-STM) of Mn chains assembled atom-by-atom using tip-induced atom 

manipulation on clean Nb(110) discusses the experimentally observed magnetic coupling for a chain of Mn adatoms 

spaced by √3a/2 and built along the [11̅1]-direction and for a chain of Mn adatoms spaced by 2a built along the 

[001]-direction4. In both of these chains the antiferromagnetic state observed in a small magnetic field indicates that 

the neighboring Mn adatoms are AFM coupled. 
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To demonstrate the FM coupling of Mn adatoms with a spacing of √2a along the [11̅0]-direction, the results of an SP-

STM measurement using Cr bulk tips on a chain of 11 Mn adatoms with nearest-neighbor separation of √2a along the 

[11̅0]-direction are shown in Supplementary Fig. 4. The same microtip and measurement conditions as in ref.4 were 

used for this measurement. An STM image of the Mn11 chain is shown in Supplementary Fig. 4a. dI/dV maps taken on 

the same area across this chain in +0.5 T and -0.5 T magnetic field, i.e. pointed along opposite directions, are shown 

in Supplementary Figs. 4b and c, respectively. The contrast of the color scale is adjusted to the same values for both 

images. One finds that the Nb(110) substrate has the same color in both magnetic fields (compare edges of 

Supplementary Figs. 4b and c). However, on top of the chain one finds different signals due to the tunneling 

magnetoresistance. In a magnetic field of +0.5 T, the dI/dV signal on the chain is lower than it is in a magnetic field of 

-0.5 T, indicating that the chain’s overall magnetization follows the external magnetic field and is aligned parallel and 

antiparallel to the stable Cr tip magnetization. Since the dI/dV signal is constant along the chain for each magnetic 

field, we conclude that the chain is in a ferromagnetically ordered state. 

The asymmetry in the measured differential conductance obtained from the dI/dV maps in opposite magnetic fields 

is given by: 

𝐴SP =
d𝐼/d𝑉(𝑉, 𝐫t)|−0.5T − d𝐼/d𝑉(𝑉, 𝐫t)|+0.5T

d𝐼/d𝑉(𝑉, 𝐫t)|−0.5T + d𝐼/d𝑉(𝑉, 𝒓t)|+0.5T
, (2) 

where V is the tunneling bias voltage, and  𝐫t is the position of the tip apex5. A map of this asymmetry calculated from 

Supplementary Figs. 4b and c is shown in Supplementary Fig. 4d and clearly shows FM order. Therefore, we conclude 

that Mn adatoms with a spacing of √2a along the [11̅0]-direction are FM coupled. 
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Supplementary Figure 4 | Magnetic structure of a chain of 11 Mn adatoms with a spacing of √𝟐𝐚 along the [𝟏𝟏̅𝟎]-

direction. a, STM image of the Mn11 chain, which was constructed using atom manipulation. b and c, are the 

corresponding dI/dV maps measured with a Cr bulk tip at opposite magnetic fields of +0.5 T and -0.5 T (Vbias=6 mV, 

I=1 nA, Vmod=2 mV). Both maps are adjusted to the same color scale for comparability. d, Asymmetry (ASP) map 

calculated from the dI/dV maps in opposite magnetic fields (b, c) according to Supplementary Eq. (2). The black scale 

bar in a represents a length of 1 nm and is valid for all panels. 

 

Supplementary Note 5. Complementary spectroscopic data 

The following figures, Supplementary Figs. 5a-d, Supplementary Fig. 6 and Supplementary Fig. 7 contain the positive 

bias counterparts of the dI/dV maps shown in the main text of a single adatom (Figs. 1f-i), a √2a − [11̅0] dimer 

(Figs. 2e-j) and a √3a/2 − [11̅1] dimer (Figs. 3d-i), respectively. They allow for the same conclusions regarding the 

hybridization of Shiba states which were drawn in the main text and support these findings. 

Additionally, Supplementary Figs. 5e-l show larger scale (5 nm x 5 nm) dI/dV maps measured on a single Mn adatom, 

to display the strong spatial decay of the spectral intensity of the Shiba states. To make the long-range extension visible 

at all, the stabilization current was increased to 𝐼stab = 3 nA, compared to 𝐼stab = 1 nA which was used for all other 

dI/dV maps. Furthermore, the contrast had to be adjusted. 
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Supplementary Figure 5 | Positive bias and large-scale dI/dV maps of Shiba states of a single Mn adatom. 

a-d, Positive bias counterpart of the dI/dV maps shown in Figs. 1f-i in the main text of a single Mn adatom taken at the 

bias voltages as indicated (Vstab=6 mV, Istab=1 nA, Vmod=40 µV). Red circles denote the position of the adatom. e-l, Large-

scale dI/dV maps (5 nm × 5 nm), recorded with bias voltages as indicated and obtained with a lower stabilization 

height compared to all other dI/dV maps shown in this work. The color maps are adjusted to lower dI/dV values in 

order to enhance the visibility of the long-range extension of the Shiba states (Vstab=6 mV, Istab=3 nA, Vmod=40 µV). 

 

 

Supplementary Figure 6 | Hybridization of Shiba states in the FM-coupled √𝟐𝐚 − [𝟏𝟏̅𝟎] Mn dimer. 

a-f, Positive bias counterpart of the dI/dV maps shown in Figs. 2e-j of the main text for the √2a − [11̅0] Mn dimer at 

the respective bias voltages, where Shiba states were identified (Vstab=6 mV, Istab=1 nA, Vmod=40 µV). Red circles denote 

the positions of the Mn adatoms in the dimer. 
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Supplementary Figure 7 | Hybridization of Shiba states in the AFM-coupled √𝟑𝐚/𝟐 − [𝟏𝟏̅𝟏] Mn dimer. 

a-f, Positive bias counterpart of the dI/dV maps shown in Figs. 3d-i of the main text for the √3a/2 − [11̅1] Mn dimer 

at the respective bias voltages, where Shiba states were identified (Vstab=6 mV, Istab=1 nA, Vmod=40 µV). Red circles 

denote the positions of the Mn adatoms in the dimer. 

 

In Supplementary Fig. 8 we present another example of split Shiba states in an AFM-coupled dimer, i.e., the 2a −

[001] Mn dimer. The AFM coupling of two atoms with that distance is concluded from SP-STM measurements of chains 

along this direction with the same nearest-neighbor separation4 (Supplementary Note 4) and from our calculations 

based on the KKR method which reveal an AFM ground state for the dimer (Supplementary Table 3). A dI/dV spectrum 

taken on a single Mn adatom and one taken on the 2a − [001] dimer is shown in Supplementary Fig. 8a. A small-scale 

STM image of the dimer is shown in Supplementary Fig. 8b. dI/dV maps, taken at all bias voltages where a peak can 

be identified in Supplementary Fig. 8a are shown in Supplementary Figs. 8c-l. The spatial distributions of the Shiba 

states in Supplementary Figs. 8c and d resemble that of two ± states of two Mn adatoms which are not split into 

hybridized combinations. However, similar to the case of the √3a 2⁄ − [11̅1] Mn dimer shown in Fig. 3 of the main 

text, we find that the ± and the ± states are split into pairs of hybridized combinations of the single-adatom Shiba 

states also for this AFM-coupled dimer (Supplementary Figs. 8e-l). We correspondingly name them ±1 and ±2, and 

±1 and ±2. While the +2 and +2 states have clear nodal lines between the two adatoms (Supplementary Figs. 8f and 

l), the -1 and -1 states reveal maxima in intensity at the corresponding locations (Supplementary Figs. 8g and i). Note 

that this classification into antisymmetric and symmetric hybridizations of the corresponding single-adatom Shiba 

states is not as obvious for some of the particle-hole partners of these states (see the +1 state in Supplementary 

Fig. 8h and the +1 state in Supplementary Fig. 8j). Instead, we can conclude that overall, the split Shiba states at 

positive energy appear rather antisymmetric compared to their negative-energy partners which are rather symmetric. 
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Supplementary Figure 8 | STS study of hybridized Shiba states of an AFM-coupled 𝟐𝐚 − [𝟎𝟎𝟏] Mn dimer. a, dI/dV 

spectra obtained in the middle of the two adatoms forming the 2a − [001] Mn dimer (blue) and a reference spectrum 

taken on a single adatom (black). The superconducting energy gap of the tip is smaller in these spectra (Δtip =

1.37 mV) compared to all other single spectra and dI/dV maps displayed in this work. b, STM image of the 2a − [001] 

dimer (Vbias=-6 mV and I=1 nA). The red arrows indicate the crystallographic directions of the Nb(110) surface. c-l, dI/dV 

maps displaying the spatial distributions of the five pairs of Shiba states marked in a. The lattice vectors and the lateral 

scale bar marked in b are valid for all the maps. (Vstab=-6 mV, Istab=1 nA, Vmod=20 µV). 

 

Supplementary Note 6. VASP calculations 

The equilibrium geometry of the Mn adatom on Nb(110) and the shapes of the scattering potentials were determined 

using the Vienna Ab-initio Simulation Package (VASP)6–8. The considered supercell included a single Mn adatom 

deposited in a hollow position on 4 layers of Nb, with 7 × 7 atoms in each layer in the bcc(110) geometry, using the 

bulk lattice constant a = 330.04 pm. A sufficiently thick vacuum region of close to 10 Å was considered in the direction 

perpendicular to the surface to minimize interactions between repeated supercells. Exchange–correlation effects were 

included using the potential construction by Perdew, Burke and Ernzerhof9, and reciprocal-space calculations were 
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restricted to the Γ point due to the large size of the supercell. The Mn adatom and the atoms in the top Nb layer were 

allowed to relax vertically. It was found that the average vertical distance between the atoms in the two highest Nb 

layers decreased to 227.49 pm from the bulk value of 
√2

2
a = 233.37 pm, and that the Mn adatom relaxed even 

further, to a vertical distance of 198.68 pm measured from its nearest Nb neighbours. The spin magnetic moment of 

the Mn adatom was found to be 3.60 μB. It was confirmed that the total energy in the hollow adsorption site was about 

580 meV lower than on top of the Nb atoms, and that the adatom relaxed back into the hollow position when starting 

the relaxation with a slightly horizontally displaced position. This confirms the hollow position as the only energetically 

favorable adsorption site for the Mn adatom on the surface. 

The scattering wave functions 𝜓𝜇 indirectly entering Eq. (5) of the main text were extracted from the calculations 

similar to the procedure discussed in ref.10. Using the self-consistently optimized geometry, VASP calculations were 

performed for a minimal cluster consisting of the Mn adatom and its four nearest-neighbor Nb atoms, sufficient for 

reproducing the crystal-field splitting of the orbitals in the 𝐶2v point group. The distance between the Mn adatoms in 

repeated supercells was at least 20 Å, sufficiently large to avoid interactions between the periodic images, and a 

3 × 3 × 1 𝐤 mesh was used. 

By inspecting the orbital-resolved weights of the wave functions projected on the Mn adatom, it was possible to 

identify the five occupied 3d states in the majority spin channel, as expected for Mn with a half-filled d band. In the 

minimal cluster, these states are still strongly localized on the Mn adatom. There was a single state for each of the 

𝑑𝑥𝑦, 𝑑𝑦𝑧 and 𝑑𝑥𝑧 orbitals, and two of them were a linear combination of the hybridized 𝑑𝑧2  and 𝑑𝑥2−𝑦2 states, as 

expected based on symmetry arguments (see Supplementary Note 10). 

The wave-function coefficients for the identified states were extracted using the WaveTrans program11. The reciprocal 

space coefficients were transformed to real space12 in a volume centered on the adatom and being similar to the VASP 

supercell in size. Then, the 𝜓𝜇(𝐤) coefficients were determined on the finer grid in the vicinity of the Fermi level where 

the spectrum 𝜉𝐤 was calculated, following the energy cut-off discussed in the Methods section of the main text. Due 

to the fine grid in reciprocal space, the artificial periodicity of the wave function introduced by the supercell approach 

is suppressed. The wave vectors were restricted to the first Brillouin zone, avoiding periodicity in reciprocal space, 

thereby obtaining a smooth wave function in real space rather than peaks localized at the real-space lattice sites. The 
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latter property allows for a finer spatial resolution of the Shiba states compared to what can be achieved in lattice 

tight-binding models, which was necessary because the experimentally observed extension of the Shiba states is 

restricted to a few lattice constants. 

The non-magnetic 𝐾𝜇 and magnetic 𝐽𝜇𝑆/2 scattering parameters were determined from a comparison of the 

calculated LDOS at the adatom with the experimental spectra, as mentioned in the main text. Four different Shiba 

states were identified experimentally, each of them belonging to a different irreducible representation of the 𝐶2v point 

group. Therefore, we set the scattering parameters for the wave function with the strongest 𝑑𝑥2−𝑦2 character to zero, 

so that it does not produce a Shiba state. The 𝐾𝜇 and 𝐽𝜇𝑆/2 parameters for the remaining four scattering channels 

are listed in Supplementary Tables 1 and 2 with and without spin–orbit coupling, respectively. Note that turning the 

spin–orbit coupling on or off influences the density of states at the Fermi level, thereby requiring a different set of 

parameters to describe the same energy positions of the Shiba states. 

state 𝐾𝜇 (eV) 𝐽𝜇𝑆/2 (eV) 

𝑑𝑧2 = 𝛼 0.0360 0.0610 

𝑑𝑥𝑦 = 𝛽 -0.0010 0.1070 

𝑑𝑥𝑧 = 𝛾 0.0220 0.0980 

𝑑𝑦𝑧 = 𝛿 -0.0090 0.0450 

Supplementary Table 1 | Scattering parameters for the different scattering channels with spin–orbit coupling. These 

values were used for the calculations shown in Figs. 1j-n, 2k-s and 4f-n of the main text. 

 

state 𝐾𝜇 (eV) 𝐽𝜇𝑆/2 (eV) 

𝑑𝑧2 = 𝛼 0.0180 0.0330 

𝑑𝑥𝑦 = 𝛽 0.0040 0.0780 

𝑑𝑥𝑧 = 𝛾 0.0300 0.0750 

𝑑𝑦𝑧 = 𝛿 -0.0060 0.0335 

Supplementary Table 2 | Scattering parameters for the different scattering channels without spin–orbit coupling. 

These values were used for the calculations shown in Figs. 4a-e of the main text. 
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Supplementary Note 7. Determining the Rashba parameter based on SKKR calculations 

Using the optimized geometry of the surface layer and the adsorbed adatom obtained from VASP calculations 

(Supplementary Note 6), the surface electronic structure and the magnetic properties of the Mn adatoms and dimers 

were investigated in more detail based on the fully relativistic screened Korringa–Kohn–Rostoker (SKKR) method13. 

After performing self-consistent calculations for bulk Nb, an interface consisting of 8 Nb layers and 4 layers of empty 

spheres along the (110) direction was treated. The self-consistent calculations were performed with 16 energy points 

on a semicircle contour, using 253 𝐤 points in the irreducible part of the surface Brillouin zone and an angular 

momentum cutoff of 𝑙max = 3. 

The Rashba parameter in Eq. (3) of the main text was determined by calculating the Bloch spectral function in the 

surface Nb layer, defined as14,15 

𝐴𝐿
B(𝐸, 𝐤∥) = −

1

𝜋
ImTr ∫ 𝐺𝐿𝐿

+ (𝐸, 𝐤∥, 𝐫)d3𝐫 , (3) 

 

where 𝐸 is the energy, 𝐤∥ is the in-plane wave vector, 𝐿 is the layer index, and the trace is taken in angular momentum 

space. 𝐴𝐿
B(𝐸, 𝐤∥) corresponds to the density of states resolved in energy and in wave vector, where integration of the 

retarded Green's function 𝐺𝐿𝐿
+  is only carried out in real space over the atomic sphere. 

The Bloch spectral function along the high-symmetry lines in the surface Brillouin zone is displayed in Supplementary 

Fig. 9. The hexagonal Brillouin zone of the bcc(110) surface is shown in a sketch in the figure. Sharp peaks in the Bloch 

spectral function in the energy-wave vector plane localized in the few top layers of the Nb(110) surface correspond to 

surface states, while bulk states appear as a smooth background since the translational symmetry perpendicular to 

the surface is broken, effectively corresponding to an integration along the 𝑘𝑧 component of the wave vector. Surface 

states may be observed in regions in energy and wave vector space where there are no states in the bulk, for example 

in the region highlighted by the black ellipse along the Γ̅P̅ line (see also ref.1). The spin–orbit coupling causes a clearly 

identifiable Rashba splitting in these surface states. It was confirmed that these resonances disappear in the lower Nb 

layers, and the splitting is no longer observable if spin–orbit coupling is turned off in the calculations. The Rashba 

parameter was extracted by calculating the energy splitting of the peaks Δ𝐸 in the surface states, and comparing this 

value to the expression derived from Eq. (3) in the main text, 
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Δ𝐸 = 2√[4𝑡R sin (
𝑘𝑥

2
𝑎) cos (

√2

2
𝑘𝑦𝑎)]

2

+ [4√2𝑡R sin (
√2

2
𝑘𝑦𝑎) cos (

𝑘𝑥

2
𝑎)]

2

(4) 

It was found that 𝑡R=7.5 meV provides a reasonable agreement with the ab initio data in the whole highlighted range, 

and this value was used in turn for the Shiba state calculations in Figs. 1, 2 and 4 in the main text. 

 

Supplementary Figure 9 | Surface electronic structure of Nb(110). Brillouin spectral function from Supplementary Eq. 

(3) calculated along the high-symmetry directions of the Brillouin zone of the Nb(110) surface using the SKKR method. 

The surface Brillouin zone is illustrated in the sketch in the figure. The black ellipse highlights the surface states used 

to determine the Rashba parameter. Dashed black lines are guides to the eye. 

 

Supplementary Note 8. Approximation of the scattering potential strength based on SKKR calculations 

Instead of determining the 𝐾𝜇 and 𝐽𝜇𝑆/2 parameters by comparison with the experimental results as described in 

Supplementary Note 6, they may also be approximated based on the on-site energies and spin splittings of the energy 

levels of the adatom, along with the strength of the hybridization between the adatom and the substrate, as discussed 

in refs.10,16. These parameters are accessible in first-principles calculations, for example by calculating the density of 

states at the adatom position. 
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SKKR calculations based on the embedded cluster algorithm17 were performed by introducing the Mn adatom in the 

first vacuum layer of the Nb(110) surface calculated self-consistently in Supplementary Note 7. In the cluster, the 4 Nb 

atoms were included closest to the Mn adatom in the layer below, as well as 10 empty spheres from the same layer 

and the layer above. The spin magnetic moment of the adatom was found to be 3.70 μB, in good agreement with the 

VASP calculations in Supplementary Note 6. The magnetic easy axis of the adatom was found to lie along the out-of-

plane direction, preferred by 0.15 meV over the [001] and by 0.27 meV over the [11̅0] direction, as determined from 

rotating the magnetic moments in the whole cluster and calculating the band energy based on Lloyd’s formula18. This 

supports the out-of-plane magnetic alignment of the adatom and the dimers, assumed in the main text. It was 

confirmed that these values changed by less than 1% when increasing the cluster size up to 291 atoms. 

The DOS on the Mn adatom and in the top Nb layer without the adatom were calculated fixing the imaginary part to 

68 meV and changing the energy along the real axis. They are shown in Supplementary Figs. 10a and b, respectively. 

Spin–orbit coupling was turned off in these calculations, such that the eigenstates may be characterized by spin and 

angular momentum quantum numbers. Only the projections on the real 𝑙 = 2 spherical harmonics, or d states, are 

displayed in Supplementary Fig. 10. One or more resonance peaks may be observed on the adatom in each orbital 

channel, indicating that the atomic orbitals of Mn hybridize with the metallic Nb substrate and split in energy due to 

the crystal field. All resonance peaks are located below the Fermi level in the majority spin channel and above it in the 

minority channel, as expected for Mn with a half-filled d band. The hybridization strength depends on the orbitals. For 

example it is notably weak for the 𝑑𝑥𝑦 and 𝑑𝑥2−𝑦2 orbitals which overlap less with the Nb atoms in the layer below, 

leading to sharp resonance peaks. Multiple peaks may be observed for several orbitals, particularly in the majority 

channel. For the 𝑑𝑧2  and the 𝑑𝑥2−𝑦2 orbitals, this may occur because they can hybridize with each other and as such 

are not eigenchannels, as also observed in the VASP calculations in Supplementary Note 6. For the 𝑑𝑦𝑧 orbital, this is 

most likely caused by the hybridization with the substrate which also displays peaks in the DOS in the same energy 

range (Supplementary Fig. 10b). 

The connection between the features in the DOS and the parameters 𝐾𝜇 and 𝐽𝜇𝑆/2 is given by the expressions 

𝐽𝜇 =
𝐽𝜇𝑆

2
𝜋ρ0(𝐸 = 0) = −𝜋Γ𝜇

𝒥𝜇

(𝜀𝑑
𝜇

)
2

− (𝒥𝜇)2
2𝑆, (5) 
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𝐾𝜇 = 𝐾𝜇𝜋ρ0(𝐸 = 0) = −𝜋Γ𝜇
𝜀𝑑

𝜇

(𝜀𝑑
𝜇

)
2

− (𝒥𝜇)2
, (6) 

where ρ0(𝐸 = 0) is the DOS in the substrate at the Fermi level, 𝜋Γ𝜇 is the half-width at half-maximum of the 

resonance peaks characterizing the hybridization, and 𝜀𝑑
𝜇

± 𝒥𝜇 are the positions of the peaks in the minority and 

majority channels, respectively, the splitting of which leads to the emergence of the magnetic moment. Note that 

analogous expressions may be derived based on the Schrieffer–Wolff transformation10,16,19, 

𝐽𝜇 = 𝜋Γ𝜇
𝑈

𝜀𝑑̃
𝜇

(𝜀𝑑̃
𝜇

+ 𝑈)
2𝑆, (7) 

𝐾𝜇 = −𝜋Γ𝜇
2𝜀𝑑̃

𝜇
+ 𝑈

𝜀𝑑̃
𝜇

(𝜀𝑑̃
𝜇

+ 𝑈)
, (8) 

where 𝜀𝑑̃
𝜇

 and 𝜀𝑑̃
𝜇

+ 𝑈 are the energies of the first and the second electrons on the localized d level, the latter being 

increased due to the Coulomb repulsion. Supplementary Eq. (5) and (6) were deemed more suitable for describing the 

ab initio results, since the exchange–correlation magnetic field in the local spin density approximation of density 

functional theory breaks the spin symmetry, unlike the interacting Anderson impurity model on which Supplementary 

Eq. (7) and (8) are based. It is important to observe that Supplementary Eq. (5) and (6) hold under the assumptions 

that (i) the scattering channels may be treated together as a single spin of size 𝑆, (ii) the density of states in the 

substrate is a constant in the energy range of the order of 𝜀𝑑
𝜇

 and 𝒥𝜇, and (iii) the shape of the scattering potential is 

point-like (i.e., 𝜓𝜇(𝐤) ≡ 1). Under these assumptions, the energies of the Shiba states may be calculated as20,21 

𝐸YSR
𝜇

= ±Δ 
(𝐽𝜇)2 − (𝐾𝜇)

2
− 1

√[(𝐽𝜇)2 − (𝐾𝜇)
2

− 1]
2

+ (2𝐽𝜇)2

. (9) 
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Supplementary Figure 10 | Density of states in the Mn adatom and in the Nb(110) surface layer. The density of states 

was calculated from the SKKR method with an imaginary part of the energy of 68 meV. The projection of the DOS on 

the real d orbitals is plotted for a, the Mn adatom and for b, the top Nb layer (solid curves). The majority and minority 

spin channels are shown with positive and negative values in the DOS, respectively. Dashed curves in panel a denote 

the Lorentzian curves fitted in the vicinity of the peak positions, used to extract the parameters in Supplementary Eq. 

(5) and (6). 
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The results obtained from Supplementary Eq. (9) are displayed in Supplementary Fig. 11, where the spin size 𝑆 was 

used as a scaling parameter. The parameters 𝜀𝑑
𝜇

 and 𝒥𝜇 were extracted by the peak positions of Lorentzian peaks 

fitted on the DOS curves shown by dashed lines in Supplementary Fig. 10a. The value of 𝜋Γ𝜇 was calculated by 

determining the width of the Lorentzians, subtracting the artificial broadening of 68 meV introduced in the ab initio 

calculations, and linearly interpolating its value to the Fermi level between the positive and negative energy peaks. 

From the two peaks of the 𝑑𝑥2−𝑦2 and 𝑑𝑦𝑧 orbitals in the majority spin channel, the one closer to the Fermi level was 

selected for the former and the one further away for the latter. It can be deduced from Supplementary Fig. 11, 

assuming a sufficiently strong coupling such that all Shiba states have crossed the Fermi level, that their energetical 

order based on the calculations agrees with the experimental one. Note that the 𝑑𝑥2−𝑦2  state is neglected since only 

four states were observed experimentally. A quantitative agreement of the Shiba state energies with the experimental 

values requires assuming 2𝑆 = 8 − 10 for the four selected orbitals. Considering that the assumption of a constant 

density of states in the substrate in a wide energy range is not supported by the calculations (see Supplementary Fig. 

10b) and that the model described by Supplementary Eq. (9) does not take into account the shapes of the scattering 

potential or of the Fermi surface, we decided to use this description only for a qualitative evaluation of the Shiba 

states; see refs.10,22 for similar arguments. Based on these calculations, we concluded that all of the Shiba states are in 

the limit of strong coupling, which yields the correct order of the Shiba states compared to the experimental situation, 

and the numerical values of 𝐾𝜇 and 𝐽𝜇𝑆/2 were selected to reproduce the Shiba state positions assuming they already 

crossed the Fermi level. 
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Supplementary Figure 11 | Energy of Shiba states determined from the SKKR calculations. Continuous lines denote 

results from Supplementary Eq. (9), with the parameters extracted as described in the text. Horizontal dashed lines 

denote the experimentally determined positions of the Shiba states, both at positive and negative energy. Shiba states 

coming from the same orbitals are denoted by the same color in the theoretical curves and in the experimental lines. 

The corresponding pairs of the Shiba states for the theoretical model are not plotted for simplicity. The total spin of 

the adatom 𝑆 was used as a scaling parameter, with the expected value 2𝑆 = 5 for Mn based on Hund’s first rule 

denoted by a black dashed vertical line. 

 

Supplementary Note 9. Hybridization of Shiba states in the dimers 

Here we discuss the dependence of the splitting of the Shiba states on the angle between the spins and on the strength 

of the spin–orbit coupling. We consider the √3a/2 − [11̅1] dimer, and determine the energies of the Shiba states 

from the condition 

det [ 𝐼4 − ∑ Ψ𝜇
∗(𝐤′′)𝐺0(𝑧, 𝐤′′)Ψ𝜇(𝐤′′)

1

𝑁
(𝐾𝜇𝜏𝑧 −

𝐽𝜇𝑆

2
𝑆𝜇

𝛼
𝜎4

𝛼𝜏𝑧)

𝐤′′

] = 0, (10) 

cf. Eq. (9) in the Methods section of the main text. Only a single orbital is considered on each adatom in every 

calculation, thereby neglecting the hybridizations which would occur between different orbitals due to the reduced 

symmetry. As shown in Supplementary Fig. 12, in the absence of spin–orbit coupling the splitting between the energy 
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positions of the Shiba states monotonically decreases with the angle between the adatom spins, and completely 

disappears for an antiferromagnetic alignment as expected based on the arguments given in the main text. The only 

exception to the monotonic decrease can be observed for the  state, where one of the hybridized orbitals crosses the 

Fermi level if the angle between the spins is below 140°. Note that the splitting of the  states is significantly smaller 

than for all the other cases in this specific dimer. 

 

Supplementary Figure 12 | Hybridization of Shiba states in the √𝟑𝐚/𝟐 − [𝟏𝟏̅𝟏] dimer without spin–orbit coupling. 

The scattering parameters are taken from Supplementary Table 2. The orientation of the spins is 𝐒1 = (0,0,1) and 

𝐒2 = (sin 𝜑 , 0, cos 𝜑). The Shiba state positions were calculated separately for a, the , b, the , c, the  and d, the  

states. 

When spin–orbit coupling is taken into account, the degeneracy of the states in the AFM case is lifted, as shown in 

Supplementary Fig. 13. Remarkably, the splitting of the  states is considerably larger in the antiferromagnetic 

alignment than in the ferromagnetic one, and it almost vanishes in the latter case, similar to the result without spin–

orbit coupling in Supplementary Fig. 12b. Conversely, the splitting in the ferromagnetic alignment is higher than in the 

antiferromagnetic one for the other three Shiba orbitals, but even here the angle for which the splitting is maximal 

differs between the states. This points towards the observation that the effect of spin–orbit coupling is not equivalent 
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to rotating the spin directions on the different sites, as is the case in the one-dimensional Rashba model; see, e.g., 

ref.23. 

 

Supplementary Figure 13 | Hybridization of Shiba states in the √𝟑𝐚/𝟐 − [𝟏𝟏̅𝟏] dimer with spin–orbit coupling. The 

scattering parameters are taken from Supplementary Table 1. The orientation of the spins is 𝐒1 = (0,0,1) and 𝐒2 =

(sin 𝜑 , 0, cos 𝜑). The Shiba state positions were calculated separately for a, the , b, the , c, the  and d, the  states. 

 

dimer 𝜑0 (°) 

√3a/2 − [11̅1] 179.462 

√2a − [11̅0] 179.931 

2a − [001] 172.244 

Supplementary Table 3 | Ground state angles between the spins in the different dimers from SKKR calculations. 
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In order to separate the effects of the non-collinear spin alignment and the Rashba term in the Hamiltonian on the 

splitting of the Shiba states, both of which are caused by the spin–orbit coupling in a non-centrosymmetric structure, 

the SKKR calculations discussed in Supplementary Note 8 were extended to dimers. The parameters of a classical spin 

model were extracted based on the spin-cluster expansion24,25, and the ground state was found based on this spin 

model by energy minimization. The ground state angle between the spins is summarized in Supplementary Table 3 for 

the three dimers discussed in the paper. The calculations predict an almost AFM alignment for all three dimers, which 

agrees with the experimental results for the √3a/2 − [11̅1] and the 2 a − [001] dimers, but disagrees for the √2 a −

[11̅0] dimer. The deviation from the collinear alignment is below 10° in all cases and only around 0.5° for the √3a/2 −

[11̅1] dimer, meaning that the Dzyaloshinsky–Moriya interaction causing the non-collinearity is weak in the system. 

Comparing these small angles to the calculation results in Supplementary Fig. 12, it is clear that the non-collinear 

alignment itself is insufficient for explaining the experimentally observed magnitude of the splittings of the Shiba 

states. 

It is shown in Supplementary Fig. 14 how the splitting of the Shiba states in the antiferromagnetic alignment depends 

on the strength of the Rashba parameter 𝑡R. In the absence of spin–orbit coupling, the states in the dimer are 

degenerate, although their energy position is slightly shifted compared to Supplementary Fig. 12 due to the different 

choice of the scattering parameters. As described in Supplementary Note 6, introducing these different scattering 

parameters was necessary because the presence of spin–orbit coupling changes the DOS at the Fermi level, which 

influences the Shiba state positions; see, e.g., Supplementary Eq. (5), (6) and (9) for a simple example. This modulation 

of the DOS is enhanced by the limited resolution in reciprocal space and the energy cut-off restricting the states close 

to the Fermi level, which may partially explain the considerable oscillations of the Shiba state energies in 

Supplementary Fig. 14 as the spin–orbit coupling is changed. The numerical accuracy is expected to be improved by 

considering a finer 𝐤 mesh or a larger energy cut-off. The available data already supports that the effect of the single 

Rashba coupling parameter is not uniform on the different orbitals, as already discussed above for Supplementary Fig. 

13. For example, the  states are almost degenerate for 𝑡R=10 meV, while the splitting is almost maximal at this value 

for the other orbitals. 



24 
 

 

Supplementary Figure 14 | Hybridization of Shiba states in the √𝟑𝐚/𝟐 − [𝟏𝟏̅𝟏] dimer as a function of spin–orbit 

coupling. The scattering parameters are taken from Supplementary Table 1. An out-of-plane antiferromagnetic 

orientation of the spins was assumed. The Shiba state positions were calculated separately for a, the , b, the , c, the 

 and d, the  states. Dashed vertical lines denote the value of the Rashba coupling used in Figs. 4f-n in the main text. 

 

Supplementary Note 10. Symmetry analysis of Shiba state hybridization 

The possible hybridizations between Shiba states with different orbitals may be deduced based on group theoretical 

arguments. The character table of the 𝐶2v point group is given in Supplementary Table 4. In this specific case, the 

character expresses whether the selected d orbital is invariant under the selected symmetry operation (1) or it changes 

sign under it (-1). The possible symmetry operations include the identity transformation 𝐸, a 180° rotation 𝐶2 around 

the z axis, and mirroring 𝜎v on the xz and yz planes, respectively. The transformations are illustrated in Supplementary 

Figs. 15a-d for the 𝑑𝑥𝑦 orbital, which changes sign under both mirror operations but is invariant under the two-fold 

rotation. There are four possible different ways the orbitals may transform under the action of the group, known as 

irreducible representations (irreps). Since the Hamiltonian possesses a 𝐶2v symmetry, all of its eigenstates, including 

the Shiba states, belong to one of the irreps, similarly to odd and even eigenfunctions in one dimension. Orbitals 
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belonging to different irreps are always orthogonal and cannot hybridize, but atomic orbitals belonging to the same 

irrep may hybridize, meaning that the eigenstates of the Hamiltonian will become a linear combination of these atomic 

orbitals. This can be observed for the 𝑑𝑧2  and 𝑑𝑥2−𝑦2 orbitals in the present system, both of which belong to the A1 

irrep. 

irrep 𝐸 𝐶2 (𝑧) 𝜎v (𝑥𝑧) 𝜎v (𝑦𝑧) d orbitals 

A1 1 1 1 1 x2-y2, z2 

A2 1 1 -1 -1 xy 

B1 1 -1 1 -1 xz 

B2 1 -1 -1 1 yz 

Supplementary Table 4 | Character table of the 𝐶2v point group. 

 

Supplementary Figure 15 | Transformation of the orbitals under point group operations. a-d Transformation of an 

orbital with 𝑑𝑥𝑦 shape under the symmetry operations included in Supplementary Table 4. Green circles denote atomic 

positions of Nb atoms. Red and blue lobes indicate positive and negative signs of the wave functions of a Mn adatom, 

respectively. e-h Transformation of two orbitals with 𝑑𝑥𝑦 shape in a √2a − [11̅0] dimer arrangement. The numbers 1 

and 2 denote the different atomic positions. 
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The shapes of the Shiba states in the dimers may be deduced by describing them as linear combinations of the adatom 

orbitals. Under the symmetry transformations given in Supplementary Table 4, both orbitals may stay invariant (1), 

reverse sign (-1), or move to a different lattice site (0). This is illustrated in Supplementary Figs. 15e-h by considering 

a 𝑑𝑥𝑦 orbital on both adatoms in the √2a − [11̅0] dimer: the wave functions are invariant under 𝐸 (𝜒 = 2), they 

change sign under mirroring 𝜎v (𝜒 = −2) on the yz plane, and their positions are exchanged for the twofold rotation 

and mirroring on the xz plane (𝜒 = 0). Summing up these numbers over the two orbitals give the characters of the 

selected symmetry transformation, which are listed in Supplementary Table 5. All of these characters, considered as 

vectors over the different symmetry operations, may be written as linear combinations of the irreps, as given in the 

last column of Supplementary Table 5. It can be seen that all pairs of orbitals reduce to a pair of bonding (A1, B1) and 

antibonding (A2, B2) states, which are even and odd under mirroring on the xz plane between the two adatoms, 

respectively. Eigenstates belonging to the same irreps may still hybridize with each other, meaning that the 𝑑𝑧2 , 𝑑𝑥2−𝑦2 

and 𝑑𝑦𝑧 orbitals localized at different adatoms will combine, but they will remain orthogonal to the states stemming 

from the 𝑑𝑥𝑦 and 𝑑𝑥𝑧 orbitals. 

adatom orbital 𝐸 𝐶2 (𝑧) 𝜎v (𝑥𝑧) 𝜎v (𝑦𝑧) irreps 

x2-y2, z2 2 0 0 2 A1+B2 

xy 2 0 0 -2 A2+B1 

xz 2 0 0 -2 A2+B1 

yz 2 0 0 2 A1+B2 

Supplementary Table 5 | Reduction of atomic orbitals into irreducible representations for the √𝟐𝐚 − [𝟏𝟏̅𝟎] dimer. 

The same type of orbital is assumed on both adatoms in the dimer. 

In the √3a/2 − [11̅1] dimer, the adatom positions reduce the point group symmetry to 𝐶2, with the character table 

given in Supplementary Table 6. The characters of pairs of atomic orbitals localized at different positions in the dimer 

have to be calculated according to this symmetry group, and then reduced to irreps, as shown in Supplementary Table 

7. In this case, again all pairs of orbitals split into bonding (A) and antibonding (B) states, the latter having a node at 

the position where the 𝐶2 (𝑧) axis crosses the surface. Since all orbitals reduce to the same pair of irreps, any two of 

them may hybridize for this type of dimer. 

irrep 𝐸 𝐶2 (𝑧) d orbitals 

A 1 1 xy, x2-y2, z2 

B 1 -1 xz, yz 

Supplementary Table 6 | Character table of the 𝐶2 point group. 



27 
 

adatom orbital 𝐸 𝐶2 (𝑧) irreps 

x2-y2, z2 2 0 A+B 

xy 2 0 A+B 

xz 2 0 A+B 

yz 2 0 A+B 

Supplementary Table 7 | Reduction of atomic orbitals into irreducible representations for the √𝟑𝐚/𝟐 − [𝟏𝟏̅𝟏] 

dimer. The same type of orbital is assumed on both adatoms in the dimer. 

The above symmetry considerations did not take into account the spin degree of freedom, and they may only be 

applied if exchanging the atomic positions does not modify the spin configuration (i.e., for ferromagnetic dimers), and 

in the absence of spin–orbit coupling. Spin–orbit coupling mixes together the different atomic orbitals: for example, a 

𝑑𝑥𝑦 orbital (with magnetic quantum number 𝑚𝑙 = ±2) with spin pointing down (𝑚𝑙 = −1/2) is linearly combined 

with the 𝑑𝑥𝑧 orbital (𝑚𝑙 = ±1) with spin pointing up (𝑚𝑙 = 1/2) to form an eigenstate of the total angular 

momentum. Since the orbital part of the up and down spin components transforms differently under the symmetry 

operations (in the above example, consider the 𝐶2 (𝑧) rotation in Supplementary Table 6), antibonding states where 

the total density of states including contributions from both spin channels completely disappears at certain points or 

along specific lines both for positive and negative energy Shiba states may no longer be strictly defined. This is not 

immediately apparent for the ferromagnetic dimers if spin–orbit coupling is weak, but it strongly influences the states 

in antiferromagnetic dimers. 

 

Supplementary Note 11. Complementary calculated Shiba states 

Supplementary Figs. 16 to 18 show the calculated positive-bias counterparts of the two-dimensional maps of the LDOS 

of a Mn adatom (Supplementary Fig. 16), of a √2a − [11̅0] Mn dimer (Supplementary Fig. 17), and of a √3a 2⁄ − [11̅1] 

Mn dimer (Supplementary Fig. 18). They can be compared to their negative-bias counterparts given in the main text 

(Figs. 1k-n, Figs. 2l-s, and Figs. 4b-e and g-n, respectively). For the single adatom and the FM-coupled √2a − [11̅0] Mn 

dimer the spatial distributions of the LDOS at negative and positive bias voltages have very similar shapes. In contrast, 

for the AFM-coupled √3a 2⁄ − [11̅1] Mn dimer, the shapes are less similar and each Shiba state at positive energy 

appears rather symmetric compared to their negative-energy partners which are rather antisymmetric. 
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Supplementary Figure 16 | Calculated positive-bias LDOS of a Mn adatom on Nb(110). 

a-d, Positive-bias counterparts of the calculated two-dimensional maps of the LDOS in Figs. 1k-n in the main text of a 

single Mn adatom taken at the bias voltages as indicated. Red circles denote the position of the adatom. The white 

scale bar has a length of 500 pm. 

 

 

 

Supplementary Figure 17 | Calculated positive-bias LDOS of a FM-coupled √𝟐𝐚 − [𝟏𝟏̅𝟎] Mn dimer. 

a-h, Positive-bias counterparts of the calculated two-dimensional maps of the LDOS in Figs. 2l-s in the main text taken 

at the bias voltages as indicated. Red circles denote the locations of the Mn adatoms in the dimer. The white scale bar 

has a length of 500 pm. 
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Supplementary Figure 18 | Calculated positive-bias LDOS of an AFM-coupled √𝟑𝐚 𝟐⁄ − [𝟏𝟏̅𝟏] Mn dimer. 

Positive-bias counterparts of the two-dimensional maps of the LDOS in Figs. 4b-e and g-n in the main text at the 

indicated bias voltages a-d, without and e-l, with SOC. Red circles denote the positions of the adatoms in the dimer. 

The white scale bar has a length of 500 pm. 
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