Supplementary information

Triacylglycerols are preferentially oxidized over free fatty acids in heated soybean oil

Qing Shen^{a,b}, Zhichao Zhang^a, Shiva Emami^a, Jianchu Chen^b, Juliana Maria Leite Nobrega de Moura Bell^{a,c} and Ameer Y. Taha^{a,*}

 ^a Department of Food Science and Technology, College of Agriculture and Environmental Sciences, University of California, Davis 95616, CA, United States
^b College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
^c Department of Biological and Agricultural Engineering, University of California,

Davis, One Shields Avenue, Davis, CA 95616, USA

*Corresponding author:

Dr. Ameer Y. Taha

Department of Food Science and Technology, College of Agriculture and

Environmental Sciences, University of California Davis, Davis 95616, CA, United

States

Phone: (+1) 530-752-7096

Email: <u>ataha@ucdavis.edu</u>

Nome	Summa gata ugad	RT	Parent ion	Product	Fragmentor	Collision
name	Surrogate used	(min)	(m/z)	ion (m/z)	voltage (V)	energy (V)
		Sur	rogate			
d-11-11(12)-EpEtrE	NA	23.3	330.2	207.1	130	7
d11-14,15-DiHETrE	NA	13.3	348.2	207.1	110	12
d4-6-keto-PGF1a	NA	4.3	373.3	157.1	110	25
d4-9-HODE	NA	17.5	299.2	172.3	80	10
d4-LTB4	NA	11.5	339.2	197.2	80	10
d4-PGE2	NA	6.7	355.2	275.3	90	10
d4-TXB2	NA	5.8	373.3	173.2	100	12
d6-20-HETE	NA	15.9	325.2	281.2	70	12
d8-5-HETE	NA	20.6	327.2	116.1	70	7
		LA-deriv	ed oxylipins			
9-HODE	d4-9-HODE	17.5	295.2	171.1	110	12
13-HODE	d4-9-HODE	17.5	295.2	195.2	100	7
9-oxo-ODE	d6-20-HETE	19.4	293.2	185.1	100	12
13-oxo-ODE	d6-20-HETE	18.6	293.2	195.1	120	15
9(10)-EpOME	d-11-11(12)-EpEtrE	22.2	295.3	171.1	100	12
12(13)-EpOME	d-11-11(12)-EpEtrE	21.8	295.3	195.2	100	12
9,10-DiHOME	d11-14,15-DiHETrE	12.7	313.2	201.2	120	12
12,13-DiHOME	d11-14,15-DiHETrE	12.2	313.2	183.2	110	15
9,10,13-TriHOME	d4-PGE2	6.4	329.2	171.1	120	8
9,12,13-TriHOME	d4-PGE2	6.3	329.2	211.1	120	8
ALA-derived oxylipins						
9-HOTrE	d4-9-HODE	14.7	293.2	171.2	120	10
13-HOTrE	d4-9-HODE	15.1	293.2	195.1	100	10

Supplementary Table 1. Retention time, parent ion, product ion, fragmentor voltage and collision energy of the deuterated surrogate standards and unlabeled oxylipins.

Supplementary Table 2. Matrix effects (i.e. % ion suppression or enhancement) following oxylipin analysis in different soybean oil volumes. Ion enhancement: >100%; ion suppression: <100%. Data are n=1 per group.

	Volume of soybean oil (µL)			
	1	2	5	10
Total LA-derived oxylipins				
9-HODE	114	124	134	116
13-HODE	125	143	146	133
9-oxo-ODE	108	113	105	103
13-oxo-ODE	115	120	133	136
9(10)-EpOME	116	151	131	129
12(13)-EpOME	112	136	119	118
9,10-DiHOME	109	127	117	115
12,13-DiHOME	88	95	100	99
9,10,13-TriHOME	99	103	111	101
9,12,13-TriHOME	103	108	122	104
Total ALA-derived oxylipins				
9-HOTrE	105	121	129	115
13-HOTrE	111	122	136	119

Supplementary Table 3. Matrix effects (i.e. % ion suppression or enhancement) following hydrolysis of soybean oil with different base types. Ion suppression data are expressed at % of control. Ion enhancement: >100%; ion suppression: <100%. Data are n=1 per base condition.

0/ of control	Base hydrolysis type				
	Na ₂ CO ₃	NaOH			
Total LA-derived oxylipin					
9-HODE	104	127			
13-HODE	110	132			
9-oxo-ODE	99	101			
13-oxo-ODE	126	102			
9(10)-EpOME	100	102			
12(13)-EpOME	98	104			
9,10-DiHOME	104	113			
12,13-DiHOME	103	110			
9,10,13-TriHOME	101	99			
9,12,13-TriHOME	105	106			
Total ALA-derived oxylipin					
9-HOTrE	101	120			
13-HOTrE	113	127			

Supplementary Table 4. Matrix effects (i.e. % ion suppression or enhancement) following separation of free oxylipins from esterified oxylipins in 1, 2, 5 or 8 μ L soybean oil with silica columns. Data are n=1 per oil volume. Ion enhancement: >100%; ion suppression: <100%.

0/	Volume of soybean oil (µL)				
% of control	1	2	5	8	
Free LA-derived oxylipin					
9-HODE	96	102	107	110	
13-HODE	99	105	110	113	
9-oxo-ODE	100	105	101	109	
13-oxo-ODE	92	97	106	103	
9(10)-EpOME	92	100	98	102	
12(13)-EpOME	86	96	99	99	
9,10-DiHOME	96	106	109	112	
12,13-DiHOME	78	81	91	90	
9,10,13-TriHOME	99	107	111	116	
9,12,13-TriHOME	99	109	110	117	
Free ALA-derived oxylipin					
9-HOTrE	104	113	115	118	
13-HOTrE	100	107	111	114	

Supplementary Table 5. Raw UPLC-MS/MS chromatograms of each of the 9 deuterated surrogate standards recovered in the polar and neutral lipid fractions following silica column separation of 1, 2, 5, and 8 μ L of soybean oil.

Code	Name	RT (min)		
Main fatty acids in soybean oil				
C16:0	Palmitic Acid/Hexadecanoic Acid	14.7		
C18:0	Stearic Acid/Octadecanoic Acid	17.2		
C18:1 CIS	Oleic Acid	17.4		
C18:2 n-6	Linoleic Acid (LA)	18.0		
C18:3 n-3	linolenic acid (ALA)	18.9		
Internal standard				
C17:0	Margaric acid/Heptadecanoic acid	15.9		

Supplementary Table 6. Retention time of the main fatty acids in soybean oil, as well as the internal standard used to quantify fatty acids.

Supplementary Figure 1. Surrogate standard recovery from 1, 2, 5 and 10 μ L of soybean oil following hydrolysis with sodium carbonate. Values are expressed at mean ± standard deviation (SD) of n=3 per oil volume. Data were analyzed by one-way ANOVA and Tukey's post-hoc test. Different letters within each surrogate are significantly different (p < 0.05).

Supplementary Figure 2. Surrogate standard recovery following hydrolysis of 1 μ L soybean oil with sodium hydroxide (NaOH) or sodium carbonate (Na₂CO₃). Values are expressed at mean ± standard deviation (SD) of n=5 per base condition. Data were analyzed by one-way ANOVA and Tukey's post-hoc test. Different letters within each surrogate are significantly different. * *p* <0.05; ** *p* <0.01; *** *p* <0.001; *****p* <0.0001.

Supplementary Figure 3. Surrogate standard recovery following separation of free oxylipins from esterified oxylipins in 1, 2, 4 and 8 µL oil. Values are expressed at mean ±standard deviation (SD) of n=3 per oil volume. One-way ANOVA followed by Tukey's post-hoc test revealed no significant differences amongst the groups.

Supplementary Figure 4. Change in temperature over time of soybean oil heated at 100°C for 24 h (n=1 ; this is the sample in the 6th tube, next to 5 others sampled for oxylipin and fatty acid analysis throughout the experiment).

Supplementary Figure 5. Linear fit of the Concentration-Time plot of free pamitic acid (A), stearic acid (B), oleic acid (C), linoleic acid (LA; D), α -linolenic acid (ALA; E) and sum of free fatty acids (F) in soybean oil heated for 24 h (n=5 per time-point).

Supplementary Figure 6. Linear regression fit for Concentration-Time plots of total, free and esterified oxylipins formed in soybean oil heated for 24 h. 12(13)-EpOME (total/free/esterified, A1/A2/A3); 9(10)-EpOME (total/free/esterified, B1/B2/B3); 12,13-DiHOME (total/free/esterified, C1/C2/C3); 9,10-DiHOME (total/free/esterified, D1/D2/D3); 13-HODE (total/free/esterified, E1/E2/E3); 9-HODE (total/free/esterified, F1/F2/F3); 9,10,13-TriHOME (free, G); 13-oxo-ODE (total/esterified, H1/H2); 9-oxo-ODE (total/free/esterified, I1/I2/I3); Σ LA-derived oxylipins (total/free/esterified, J1/J2/J3); 13-HOTrE (total/esterified, K1/K2); 9-HOTrE (total/ esterified, L1/L2); Σ ALA-derived oxylipins (total/esterified, M1/M2). (n=5 per time point)

Supplementary Figure 7. Thin layer chromatography (TLC) of various soybean oil volumes, to determine the optimal amount that separates free fatty acids. Sample from the left to right lane are: TLC standard mix, 1 µL soybean oil, 2 µL soybean oil, TLC standard mix, 3 µL soybean oil, 4 µL soybean oil, and TLC standard mix. The TLC standard mix contained phospholipids, cholesterol, FFAs, TAGs and cholesteryl esters. Phospholipids appear at the bottom, followed by cholesterol, FFAs, TAGs and cholesteryl esters.