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Appendix E1 

In the following, we present the main technical aspects of our deep learning method for time-to-
maximum of tissue residue function (Tmax) parameter regression from DSC-MRI data. The 
proposed methodology, network architecture, and experimental results of an ablation study of 
key model components corresponds to the material presented in a previous technical publication 
(19). The main motivation behind our methodology is to replace the two step procedure 
consisting of Arterial Input Function (AIF) detection and subsequent deconvolution to obtain 
time-to-maximum of tissue residue function (Tmax) values with a direct regression of Tmax 
values from the raw DSC-MRI perfusion data. 

Preprocessing 
The DSC-MRI raw data and the target Tmax perfusion maps were both preprocessed. First, all 
patient data were padded in the spatial as well as temporal domain to match the maximum size of 
any volume in the training dataset. The resulting Tmax perfusion maps were of size 24 × 256 × 
256 and the DSC-MRI raw data of size 80 × 24 × 256 × 256, where 80 indicates the number of 
acquisitions over time. Second, the data were standardized such that it has zero mean and unit 
variance. Third, the DSC-MRI raw data in the training dataset was augmented by randomly 
offsetting the respective perfusion sequence by -5 to 30 frames. By doing so, the deep learning 
model becomes invariant to different bolus arrival times. 

Deep Learning Architecture for Perfusion Regression 
To perform the regression of Tmax values from DSC-MRI raw data, we employed a 
Convolutional Neural Network (CNN). An overview of the methodology is presented in Figure 
E4. The regression pipeline contains the following key components: 
• Bolus characterization: An image patch located at the transition between the basilar artery 

and the posterior cerebral artery is fed to two 3D convolutional layers encoding each patch 
into a vector of size 16. This serves as an approximation of the AIF. The location of the bolus 
characterization region is globally fixed and not optimized for individual subjects. 

• Sequence encoding: The sequence encoder processes individual voxels in a concurrent 
fashion. It is provided with three inputs, which are the output of the bolus characterization 
component, the temporal sequence of voxel intensity values (for 80 frames) and the sequence 
of frame times. The inputs are processed by three 1D convolutional layers producing an 
output vector of size 256, which captures the voxel-wise signal evolution over time. 

• Spatial correlation and regression: A 2D convolution is applied on axial slices to spatially 
correlate the sequence data. The architecture used for the spatial correlation is presented in 
Figure E5. The output of the spatial correlation is then processed by a fully connected layer 
with two output neurons and identity activation providing the final estimate of the Tmax 
value in form of a mean value and corresponding variance. 

• Loss weighting: The employed objective function is based on heteroscedastic aleatoric 
uncertainty modeling (35), in which the estimated value for Tmax corresponds to a mean and 
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is accompanied by a corresponding estimate of its variance. The loss function is a weighted 
version of the negative log-likelihood of a Laplace distribution, which penalizes large 
positive outliers as well as negative values that are physiologically not plausible. The target 
Tmax map, which used for loss computation, is provided by the oSVD method as 
implemented in Olea Sphere. 

The method was trained on 76 patients using Adam optimizer (36) with an initial learning rate of 
5e−4. Every four epochs the learning rate was divided by two. Furthermore, fully connected 
layers were regularized using dropout with a rate of 0.5. A Windows machine with an Intel Xeon 
E5–1630 v3 CPU with 3.7 GHz and an Nvidia GTX 1080, and an Ubuntu machine with an Intel 
i7–4790 K CPU with 4 GHz and two Nvidia GTX 1070 were used to perform training. All 
candidate models were trained for 30 epochs and the final model was selected based on the 
regression performance on the validation cohort (30 patients). 

Regression Performance 
In the following, the regression performance of the proposed model is presented in terms of the 
mean absolute error with clipping. The clipping was performed for values below 0 seconds and 
above 20 seconds. The reasoning behind the clipping is that values below 0 correspond to air and 
above 20 are largely noise. 

In Table E2, the performance of the full model as well as an ablation study, for which one 
of the key components has been removed, is presented. After inspection of the perfusion data, we 
found that the standard deviation of bolus arrival times is 2.76 frames in the validation set and 
2.09 frames in the test set. Therefore, the model without data augmentation reached a slightly 
smaller mean absolute error on the test cohort than the full model. To further investigate the 
benefits of the data augmentation, the mean absolute error was measured on the validation cohort 
while shifting the perfusion sequence by a number of frames. In Figure E6, it is evident that the 
model trained with data augmentation can compensate better for different bolus arrival times 
than a model trained without data augmentation. Additionally, the removal of the spatial 
correlation, bolus characterization or loss weighting led to increases in mean absolute error, 
which is demonstrated in Table E2. 

Discussion 
The proposed method is based on the simplifying assumption that values of the voxels in the 
Tmax map depend on the perfusion sequence of voxels at the same location (for the one-
dimensional convolutions) and neighborhood (for the two-dimensional convolutions). This 
assumption does not hold for cases in which significant patient motion occurred. An obvious 
solution would be to first coregister the different image volumes of the DSC-MRI sequence. 
However, given the large slice thickness of the imaging data (6 to 6.5 mm) this can potentially 
introduce strong interpolation artifacts. Moreover, a coregistration step independent of the 
subsequent deep learning-based regression does not fit the concept of end-to-end learning. A 
more consistent way of solving this issue would be an integration of the coregistration step 
within the deep learning framework. Recently, a number of approaches using neural networks to 
perform image registration have been proposed (37) and their integration with our proposed 
method is subject to future work. 
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Table E1: Complete data for DEFUSE 3 eligibility criteria of patients (n = 45) in test cohort. 
 Rater 1 Rater 2 
Patient # DWI 

<70 
mL 

Ratio 
>1.8 
(CNN) 

Diff. >15 
mL 
(CNN) 

Eligibility 
(CNN) 

Ratio 
>1.8 
(oSVD) 

Diff. >15 
mL 
(oSVD) 

Eligibility 
(oSVD) 

Disagreement 
(CNN vs oSVD) 

Ratio 
>1.8 
(CNN) 

Diff. >15 
mL 
(CNN) 

Eligibility 
(CNN) 

Ratio 
>1.8 
(oSVD) 

Diff. >15 
mL 
(oSVD) 

Eligibility 
(oSVD) 

Disagreement 
(CNN vs oSVD) 

64 1 1 1 YES 1 1 YES NO 1 1 YES 1 1 YES NO 
75 1 1 1 YES 1 1 YES NO 1 1 YES 1 1 YES NO 
85 1 1 1 YES 1 1 YES NO 1 1 YES 1 1 YES NO 
87 1 1 0 NO 1 1 YES YES 1 0 NO 1 1 YES YES 
90 1 1 1 YES 1 1 YES NO 1 1 YES 1 1 YES NO 
95 1 1 1 YES 1 1 YES NO 1 1 YES 1 1 YES NO 
100 1 1 1 YES 1 1 YES NO 1 1 YES 1 1 YES NO 
101 1 1 1 YES 1 0 NO YES 1 1 YES 1 1 YES NO 
109 1 1 1 YES 1 1 YES NO 1 1 YES 1 1 YES NO 
116 1 1 1 YES 1 1 YES NO 1 1 YES 1 1 YES NO 
123 1 1 1 YES 1 1 YES NO 1 1 YES 1 1 YES NO 
141 0 1 1 NO 1 1 NO NO 1 1 NO 1 1 NO NO 
146 1 1 1 YES 1 1 YES NO 1 1 YES 1 1 YES NO 
154 1 1 1 YES 1 1 YES NO 1 1 YES 1 1 YES NO 
157 0 0 1 NO 0 1 NO NO 0 1 NO 0 1 NO NO 
169 1 0 0 NO 1 1 YES YES 0 0 NO 1 1 YES YES 
172 1 1 1 YES 1 1 YES NO 1 1 YES 1 1 YES NO 
181 1 1 1 YES 1 1 YES NO 1 1 YES 1 1 YES NO 
190 1 1 1 YES 1 1 YES NO 1 1 YES 1 1 YES NO 
194 1 1 1 YES 1 1 YES NO 1 1 YES 1 1 YES NO 
204 1 0 0 NO 0 0 NO NO 0 0 NO 0 0 NO NO 
221 1 1 1 YES 1 1 YES NO 1 1 YES 1 1 YES NO 
222 1 1 0 NO 1 1 YES YES 1 0 NO 1 1 YES YES 
233 1 1 1 YES 1 1 YES NO 1 1 YES 1 1 YES NO 
240 1 1 1 YES 1 1 YES NO 1 1 YES 1 1 YES NO 
247 1 1 1 YES 1 1 YES NO 1 1 YES 1 1 YES NO 
250 1 1 1 YES 1 1 YES NO 1 1 YES 1 1 YES NO 
251 1 1 1 YES 1 1 YES NO 1 1 YES 1 1 YES NO 
255 0 1 1 NO 1 1 NO NO 1 1 NO 1 1 NO NO 
256 1 1 1 YES 1 1 YES NO 1 1 YES 1 1 YES NO 
262 1 1 1 YES 1 1 YES NO 1 1 YES 1 1 YES NO 
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266 1 1 1 YES 1 1 YES NO 1 1 YES 1 1 YES NO 
288 1 1 1 YES 1 1 YES NO 1 1 YES 1 1 YES NO 
296 1 1 1 YES 1 1 YES NO 1 1 YES 1 1 YES NO 
299 1 0 1 NO 0 1 NO NO 0 1 NO 0 1 NO NO 
302 1 1 1 YES 1 1 YES NO 1 1 YES 1 1 YES NO 
303 1 1 1 YES 1 1 YES NO 1 1 YES 1 1 YES NO 
316 1 1 1 YES 1 1 YES NO 1 1 YES 1 1 YES NO 
323 1 0 1 NO 1 1 YES YES 0 1 NO 1 1 YES YES 
376 1 0 0 NO 0 0 NO NO 1 0 NO 1 1 YES YES 
383 1 1 1 YES 1 1 YES NO 1 1 YES 1 1 YES NO 
426 1 1 1 YES 1 1 YES NO 1 1 YES 1 1 YES NO 
431 1 1 1 YES 1 1 YES NO 1 1 YES 1 1 YES NO 
439 1 1 1 YES 1 1 YES NO 1 1 YES 1 1 YES NO 
448 1 1 1 YES 1 1 YES NO 1 1 YES 1 1 YES NO 
Total: 42 39 40 35 41 42 38 5 40 40 35 42 44 40 5 

The values 1 and 0 indicate if a particular DEFUSE 3 criteria is satisfied (= 1) or not (= 0). The total number of patients satisfying a particular criteria as well as 
DEFUSE 3 eligibility are reported in the last row. Disagreement between eligibility criteria derived from the CNN or oSVD method are reported for both raters 
as well. CNN = Convolutional Neural Network, oSVD = oscillation index singular value decomposition. 
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Table E2: Ablation study results for Tmax value regression on validation and test 
cohort in mean absolute error with clipping reported in seconds. 
Model MAEC on validation 

cohort (seconds) 
MAEC on test cohort 
(seconds) 

Full model 0.513 0.530 
Model without Augmentation 0.531 0.524 
Model without Spatial Correlation 0.562 0.629 
Model without Bolus Characterization 0.632 0.680 
Model without Loss Weighting 0.683 0.738 

Tmax = Time to maximum of the tissue residue function, MAEC = Mean absolute error with clipping. 
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