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Appendix E1 

Training Procedures, Hyperparameter Tuning, and Other Design 
Decisions 

The ‘xgboost’ Python package (18) was used for this study. A grid search of hyperparameters 
was used to select the number of rounds [5, 10, 20, 30, 50, 75, 100], the maximum tree depth [5, 
10, 20, 30, 50, 75], and eta [0.05, 0.1, 0.2, 0,3]. Our final model had an eta of 0.1, 30 rounds, and 
a maximum tree depth of 20. Other parameters were set to their default values. 

The random forest and SVM classifiers were implemented using the scikit-learn Python 
package. For the random forest, a grid search was used to select the number of estimators [20, 
50, 100, 300, 500, 750, 1000] and the maximum tree depth [10, 20, 30, 40, 50, 75]. Our final 
model used 500 estimators with a maximum depth of 50. Other parameters were set to their 
default values. For the support vector machine, we used a linear kernel, L2 norm regularization, 
squared hinge loss, and class weights inversely proportional to class frequencies, although we 
tested other settings of these parameters. 

For some of the above classifiers, single models are only capable of producing binary 
classification outputs, which is not sufficient for a multiclass, multilabel classification problem 
such as this one. For these models, we trained individual classifiers at the same time for each 
organ class, and aggregated their predictions to produce a complete set of organ predictions for 
each pathology report. 

For the neural networks, we used pretrained GloVe vectors as word representations. We 
experimented with pretrained Word2Vec vectors but found GloVe to perform better in 
preliminary tests. Since we wanted to demonstrate the feasibility of out-of-the-box classifiers 
without significant modification, we opted not to use more sophisticated word representations as 
they require significantly more processing power both at train time and at inference time. We 
opted to use pretrained word embeddings rather than our own for similar reasons: ease of use 
comparable to TF-IDF, lack of additional computing time to prepare, and the potential 
performance benefits of representations trained on general purpose English text with a wide 
variety of grammatical constructions. Continuing to train the embeddings during classification 
training did not provide any additional performance benefit. 

We used a grid search to identify the best performing learning rate [1e-5, 1e-4, 5e-4, 1e-
3, 5e-3, 1e-2], number of units [100, 150, 200, 300, 500], and for the CNN, filter size [3,5,7,10]. 
There were minimal performance differences relating to number of units, with additional units 
beyond 200 providing no consistent benefit on the validation set (given the small size of this data 
set, small numeric variations in performance were likely to reflect particularities of the data set, 
the train-test splits, and the specific random seeds used to initialize the network weights). The 
same was true of adding additional convolutional or recurrent layers to the models. In particular, 
adding an additional convolutional layer resulted in a microaveraged F1 score of 95.9% at 
convergence, as opposed to 96.3% for the 1-layer network, and adding an additional LSTM layer 
did not change the performance of 96.5%. 
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Our final model sizes were the smallest which achieved this ‘plateau’ level of 
performance, to perform real-time inference on large report volumes on our clinical data servers, 
which do not have GPUs. Our final LSTM had 150 units and the final CNN had 200 units and a 
filter size of 7 tokens, both with a learning rate of 1e-3. Models were trained until validation set 
loss stopped improving, with a patience of 3 epochs. 

Given the class imbalance present in this data set (particularly reflected in the small 
number of adrenal pathology reports), we experimented with class-based loss weighting in the 
neural networks, in which models are penalized more harshly for misclassifying instances of rare 
classes, as well as oversampling from the rare classes in the data set. These approaches did not 
provide any performance gains in our models, even on the rare classes, so we did not use them in 
the final models. 

Appendix E2 

F1 Score 
The F1 score is the harmonic mean of recall (sensitivity) and precision (positive predictive value) 
and is a commonly-used metric designed to incorporate both precision and recall into the 
evaluation of a classification model’s performance. Unlike the traditional accuracy metric, the 
F1 score does not include true negatives in its calculation, which is useful for classification tasks 
where the positives are relatively rare compared with the negatives. For instance, in this study, a 
system could have achieved high (> 95%) accuracy at classifying reports as relevant to the 
adrenal glands by simply predicting ‘not relevant’ for every report, as the vast majority of reports 
would be true negatives. However, for tasks like this, we are usually interested in whether a 
system can effectively identify the few positives in a large group of negatives, making F1 a more 
effective comparison metric than accuracy. 
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