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Appendix E1 

Hardware 
All training and evaluation was performed on a standard desktop workstation with the following 
hardware: Intel i7 3770k 3.5 GHz Processor, 8 GB RAM, 250 GB Solid-State drive, and Nvidia 
GTX 1080 Ti GPU. We utilized the current version of the PyTorch deep learning framework 
(version 0.4.0) (36). 

Report Classification 
One of the great challenges facing the community of researchers creating deep learning models 
in radiology is the lack of well-annotated data. Despite the utilization of structured reporting at 
our institution, we similarly faced a challenge in classifying the largely heterogeneous bodies of 
text in various reports. We accordingly turned to machine learning to solve this problem and 
used the recently described fastText algorithm (11) to aid in rapidly classifying radiology reports 
into “normal” and “abnormal” studies. 

We first manually classified 200 reports into normal and abnormal reports. The 
difference between normal and abnormal reports included subtle differences in phrasing such as, 
“indubitably, there is evidence of a joint effusion” and “I see there is no evidence of a joint 
effusion.” We then trained a fastText classifier on the 200 reports and subsequently used the 
trained fastText classifier to assist in classifying an additional 200 reports. Assistance is defined 
here as the model “suggesting a categorization” as either normal or abnormal, with final choice 
ultimately being human. We then retrained the fastText model on the 400 manually classified 
reports and continued this process iteratively. 

As the fastText model improved in accuracy, the human operator was allowed more 
opportunity to simply agree rather than have to override the suggested categorization, thus 
speeding up the process iteratively. In total, 2200 reports were classified manually with this 
method. The remaining 19256 studies were classified automatically with the algorithm. We 
chose 2200 as the stopping point based on randomly sampling 500 automatically classified 
reports (250 normal and 250 abnormal) and ensuring that all 500 reports were classified 
correctly. The use of such a natural language processing tool in this instance necessitated far less 
manpower to classify 21456 reports than would otherwise have been required. 

Preprocessing 
The DICOM source images were preprocessed into anonymized 8-bit PNG gray-scale images 
(Fig E1, Step 1), which were stored on the hard drive of our machine performing training. Every 
pixel of these 8-bit images was represented by an integer value in the range from 0 to 255. Each 
of these PNG images underwent a series of random transformations prior to being passed into the 
model throughout training (Fig E1, Steps 2–5); these transformations are easily defined in the 
PyTorch library and are further detailed in the Data Augmentation section below. The images are 
normalized into a 500 × 500 array of floating point numbers, where each pixel value is 
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represented in the range of 0.0 to 1.0. Thus, 8-bit integer values of 0, 127.5, and 255 are 
represented as 0.0, 0.5, and 1.0, respectively. The channel dimensionality of this 500 × 500 array 
is defined as 1 (single-channel) for gray-scale to distinguish it from a RGB color image with 
channel dimensionality of 3. 

Data Augmentation 
Data augmentation (Fig E1, Steps 2–5) is the process by which training set images are altered 
slightly each time they are seen throughout training to increase variability and effectively 
increase the number of training samples the model may see. For example, by utilizing a random 
rotation of 2 degrees, images may be rotated by −2, −1, 0 (no rotation), 1, or 2 degrees, prior to 
being passed into the model, ensuring the model sees slightly rotated variations of the same 
image. The following data augmentation was employed through both phases of training for our 
study: random rotation of 20 degrees, random resizing ranging between 510 × 510 pixels and 530 
× 530 pixels, random crop of target image size (500 × 500), and random horizontal flips. 

Softmax Function (Probabilistic Interpretation) (14) 
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where the probability of an output class yi is normalized into the probabilities of each class based 
on the output vector f so that the probabilities sum to 1. As an example, if the output values are 
−1 and 1 for negative and positive, the softmax output would be 0.12 and 0.88, respectively. In 
Python, the code can be represented as: 

( ) ( )( )  : .  . .=Softmax lambda x numpy exp x numpy sum numpy exp x , 

where x is an array of the output values, with length of the array equal to 2 for our study (either 
positive or negative). 

Rationale for CNN/Model Selection 
The Inception architecture (37) has been shown in the literature to be versatile at a wide range of 
image classification tasks, including excellent classification of small bowel obstruction (5) and 
human-level detection of dermatologic conditions (38,39). We chose the Xception architecture 
(12), which is inspired by Inception but replaces the standard Inception modules with depth-wise 
separable convolutions, allowing for more efficient use of model parameters. We also favored 
the architecture for its relatively low parameter count (approximately 25 million parameters) 
compared to its performance on benchmark datasets such as ImageNet, where architectures on 
par with Inception-v3 have been shown to achieve human-level classification accuracy 
(14,40,41). 

Most modern freely available published architectures in standard GPU accelerated deep 
learning frameworks, such as PyTorch (36), demonstrate excellent speed in inference, which was 
evidenced in our results with approximately 21 milliseconds to process a single image and 63 
milliseconds to produce an output for an entire study. Speed of inference will be an important 
factor in the real-time application of classification in an acute care setting. As these frameworks 
continue to mature, we expect continued improvement in their performance and ease of use. 
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RNNs have enjoyed recent success in the problem domain of video processing, as 
suggested and cited in our Discussion section. One such method involves passing the CNN 
feature layer outputs to be processed as a whole by the RNN, analogous to the usage by our 
model in this article. A paper that explores this concept is by Sun et al (26). Simplistically, 
LSTMs and GRUs can be thought of as having “memory” maintained across timesteps. In the 
case of video processing, the RNN processes the extracted features from each frame in the video 
after it is passed through the trained CNN, achieving an overall decision about the video by using 
its “memory” to remember relevant items across multiple frames. 

Another excellent resource for understanding RNNs is the CS231n course taught by 
Karpathy (14), as well as a blog post by Karpathy dedicated to underlying intuitions regarding 
RNNs (42). 

Figure E2 shows output numbers for training and validation sets. Figures E3 and E4 show 
true-positive examples. 
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