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Appendix E1 

Datasets 

Training and Testing: Automated Cardiac Diagnosis Challenge (ACDC) Dataset 
The ACDC dataset was made freely available by the University Hospital of Dijon (20). The 
dataset is divided evenly into five subgroups: healthy subjects and patients with myocardial 
infarction (ejection fraction of the left ventricle lower than 40% and several myocardial segments 
with abnormal contraction), dilated cardiomyopathy (diastolic left ventricular volume > 100 
mL/m2and an ejection fraction of the left ventricle lower than 40%), hypertrophic 
cardiomyopathy (left ventricular cardiac mass high than 110 g/m2, several myocardial segments 
with a thickness higher than 15 mm in diastole and a normal ejection fraction), and abnormal 
right ventricle (volume of the right ventricular cavity higher than 110 mL/m2 or ejection fraction 
of the right ventricle lower than 40%). The cine-MR images were acquired in breath hold with a 
steady-state free precession sequence in short axis orientation. Briefly, a series of cardiac short 
axis slices cover the left ventricle from the base to the apex, with a thickness of 5 mm. The 
spatial resolution ranges from 1.37 to 1.68 mm2/pixel, and 28 to 40 frames per subject cover 
completely the cardiac cycle. Table E1 contains the patient demographics. 

Validation on a Synthetic Dataset 
This dataset enabled us to test the accuracy of the network on data acquired on different scanners 
with various field strengths from 1.5T to 3T and thus various image resolutions. Each simulation 
generates sequential cine frames with the corresponding ground-truth motion vectors that 
parameterize the motion from the first frame. However, we note that motion estimates are only 
generated for voxels within the myocardial tissue, and everywhere else are undefined. The output 
of the corresponding motion simulation is an 80 × 80 × 16 × 3 tensor, representing the required 
voxelwise deformation in the x, y, z directions. For each simulation, several parameters of the 
XCAT (eg, heart volume and shape) and MRXCAT (eg, signal-to-noise-ratio) were randomized. 

Validation on a Real Dataset 
The short axis cardiac MR images acquired from 33 subjects obtained using a GE Genesis Signal 
MR scanner and the FIESTA scan protocol were made freely available by the Hospital for Sick 
Children of Toronto, Canada. All the subjects were under the age of 19. Each patient’s image 
sequence consisted of exactly 20 frames, and the number of slices along the long axis of the 
subjects ranged between 8 and 15. Spacing-between slices ranged between 6 and 13 mm. Each 
image slice consisted of 256 × 256 pixels with a pixel-spacing of 0.93–1.64 mm. 

Architecture and Training 
Two different learning rate schedules were compared: a constant learning rate of 1 × 10−4, and a 
step decay schedule initialized at 1 × 10−4 and reduced by half every 10 epochs. We also 
hypothesized that due to the large variations in the heart volume of the subjects (eg, normal 
versus hypertrophy) as well as in the motion magnitude (eg, frame 1 to frame 2 versus frame 1 to 
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systole), the number of learnable parameters might limit the network performance. To test this, 
we compared our network with a similar architecture with fewer convolutional layers and fewer 
feature maps per layer (Fig E1). As shown in Figure E2, the combination of an architecture with 
more parameters and a step decay training schedule are closer to optimal. This combination was 
used for the rest of our experiments. 

Evaluation Methods 
We conducted a comprehensive evaluation of the performance of CarMEN by comparing its 
performance to that of a range of state-of-the-art methods we chose based on how widely used 
and accessible they were. These methods are summarized in Table E2. The hyperparameters of 
the Vampire method were selected as described by Gigengack et al (30) for cardiac applications, 
whereas the simplified Elastix package had a fully automated implementation that did not require 
tuning. For the other three methods, we obtained optimal parameters by using 50 subjects from 
the ACDC training dataset through a wide parameter sweep. The regularization parameters 
which maximized the average Dice similarity coefficient (DSC) on the training dataset were then 
used in our testing experiments. 

The design and hyperparameters for the ITK BSpline methods were chosen initially from 
the default values as these provided reasonable results. Using 50 subjects form the ACDC 
training datasets, these parameters were then optimized to obtain the best Dice coefficient. 
However, we note that few parameters affected the Dice coefficient. This is likely due to the 
large variation in the patient population, ie, it is difficult to optimized for normal subjects and 
patients with hypertrophic cardiomyopathy simultaneously. 

In summary, for the first method (BSpline1) we used a limited-memory Broyden-
Fletcher-Goldfarb-Shanno (LBFGSB) optimizer with a gradient convergence tolerance equal to 

51 10−× , a maximum number of corrections and a maximum number of function evaluations set 
to 5 and 1000, and a cost function convergence factor set to 71 10× . We optimized an image 
correlation loss function for 100 iterations with a linear interpolator and a meshsize equal to 
[8,8,8]. For the second method (BSpline2) we used as gradient descent optimizer with a learning 
rate set to 5, a convergence minimum value and window size set to 0.0001 and 5, and shrink 
factors and smoothing sigmas per level set to [6,2,1]. We optimized the image Mattes mutual 
information loss function for 100 iterations. The third method (BSplineElastix) did not required 
any hyperparameters as these are automatically estimated by the software. The values for the 
Vampire method were selected as described by Gigengack et al (30) as these parameters were 
optimized using an XCAT (30) synthetic cardiac dataset similar to ours. For the dDemons 
method, the fluid (SigmaFluid), diffusion (SigmaDiff), noise (Alpha) regularizers and parameters 
were sweep. The most relevant parameters are shown in Figure E3. 

Results 
We have provided additional figures of our results. Figure E4 is an outlier example in which 
CarMEN fails to accurately model the motion of two subjects with hypertrophic cardiomyopathy 
and abnormal right ventricle. Figure E5 shows the results from different slices (from base to 
apex) of a subject with hypertrophic cardiomyopathy. We have also included figures showing the 
dice similarity coefficient (Fig E6) and end-point-error (Fig E7) for the two cardiac phases used 
with the synthetic dataset separately. 
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Table E1: Patient Demographics 
Subgroup Average Height (cm) Average Weight (kg) Average BMI (m/kg2) 

Dilated LV Cardiomyopathy 171 ± 10 76 ± 17 26 ± 5 
Hypertrophic LV Cardiomyopathy 170 ± 9 80 ± 20 28 ± 5 
Myocardial Infarction 172 ± 6 74 ± 12 25 ± 5 
Normal 172 ± 10 78 ± 14 26 ± 4 
Abnormal Right Ventricle 170 ± 10 77 ± 21 27 ± 7 

Table E2: Summary of Registration Software Tools and Methods Used 
Name (author) Method Reference Website Link 
SimpleITK BSpline1 (28,29) http://simpleitk.readthedocs.io/en/master/Examples/ImageRegistrationMethodBSplin

e1/Documentation.html 
SimpleITK BSpline2 (28,29) http://simpleitk.readthedocs.io/en/master/Examples/ImageRegistrationMethodBSplin

e2/Documentation.html 
SimpleElastix BSpline (28,29) https://github.com/SuperElastix/SimpleElastix 
FAIR Vampire (36) https://github.com/C4IR/FAIR.m 
Kroon dDemon (37) https://www.mathworks.com/matlabcentral/fileexchange/21451-multimodality-non-

rigid-demon-algorithm-image-registration 
 
 


