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1.

General Information

Reactions were performed under inert nitrogen atmosphere in oven-dried glassware unless otherwise noted. Room
temperature (r.t.) refers to a standard 21 °C. All reactions were stirred with Teflon®-coated magnetic stir bars and were
monitored by thin layer chromatography (TLC) performed on Macherey-Nagel TLC Silica gel 60 F254 precoated glass
plates (0.25 mm thickness). Substances were visualized under UV light (A = 254 nm) and/or staining with basic KMnO,
or p-anisaldehyde solutions. Chromatographic purification was performed on silica gel (SiliCycle, 40-63 pm mesh).
All chemicals were purchased from commercial suppliers and were used without further purification unless otherwise
stated. THF, toluene, Et;O and Et;N were dried by passage over a column of activated alumina (JC Meyer Phoenix SDS
Solvent System). CH,Cl, and diisopropylamine (DIPA) were distilled over anhydrous CaH,. Anhydrous EtOH, CHCl;
and pyridine were obtained in sealed bottles from commercial suppliers.

'H and “C-NMR spectra were recorded on Bruker spectrometers operating at 300, 400, 500, 600 MHz for 'H and 125,
151 MHz for *C experiments. Chemical shifts are reported relative to TMS as parts per million (ppm) and are
referenced to the solvent signals [§(*"H) = 7.26 ppm and §(**C) = 77.16 ppm for CDCls; §("H) = 3.31 ppm and §(**C) =
49.00 ppm for methanol-d4; 6('"H) = 7.16 ppm and §(**C) = 128.06 ppm for CsDs]. Multiplets are reported as follows:
s (singlet), d (doublet), t (triplet), q (quartet), dd (doublet of doublet), dt (doublet of triplet), m (multiplet), br s (broad
singlet).

Infrared spectra (IR) were recorded on a Bruker ALPHA FT-IR spectrometer as thin films and are reported in [cm™].
Specific optical rotations were measured on a Perkin-Elmer 241 polarimeter in a cuvette of 10 cm optical pathlength.
Concentrations (c) are given in grams of solute per 100 ml of solution.

LC-MS measurements were performed on a Shimadzu 2020 LC-MS system equipped with a Hypersil Gold column (50
mm X 4.6 mm, 3 pm particle size) using the following elution method: solvent A: H,O (+ 0.1% v/v HCO,H), B: MeCN
(+0.1% v/v HCO,H); 30% to 95% B in 6 min, 1 mL min™. The quadrupole MS was operated in ESI (+) mode (-3.5 kV
cone voltage).

GC-MS with volatile compounds was performed on a Shimadzu QP2010 SE system equipped with a SHRXI-5MS
capillary column (30 m x 0.25 mm x 0.25 pm film) operated in positive ESI mode (-1.5 kV cone voltage) and with He
as carrier gas. The default method consisted of a linear temperature gradient (10 °C min™") between 80 and 250 °C (250
°C injector temp.)

HR-MS spectra were recorded at the QB3/Chemistry Mass Spectrometry Facility at the University of California,
Berkeley, on a Finnigan/Thermo LTQ-FT instrument (ESI), and the data acquired was processed using the XcaliburTM

software.
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2. Preparative Procedures

2.1. Synthesis of 6-methyl-3,4-dihydropyridin-2(1H)-one (17)

acrylonitrile Z”(N?a)z * 6 H,0
NaOEt CN acetone oxime
j\/ﬁ\ 0°Cto 21 °C j\)/ H0.90°C o M o
— - .
Me O'Bu then pTsOH Me’ then U
145 °C dehydration
vacuum distillation in vacuum
1 16 (120 °C) 17

The title compound was prepared according to a literature procedure in 18% overall yield (lit. 19%)."

2.2. Synthesis of (+)-pulegone epoxide (19)

o Me . o o. Me
e H;0,, LIOH e
MeOH
Me Me'
(+)-pulegone (18) 19

Adapted from literature.> A solution of lithium hydroxide monohydrate (1.07 g, 25.6 mmol, 0.13 equiv) in water (10
mL) was added dropwise to a mixture of (+)-pulegone (30.0 g, 197 mmol, 1.0 equiv) and hydrogen peroxide (35% aq.
solution, 21.6 mL, 296 mmol, 1.5 equiv) in methanol (150 mL) at 21 °C over the course of 5 min. The mixture was
stirred at 21 °C for 6 h, after which TLC (hexanes/EtOAc = 2:1) showed full conversion of the starting material. Brine
(100 mL) was added, followed by extraction with EtOAc (3 x 150 mL). The combined organic extracts were washed
with brine (3 x 150 mL), dried over MgSO, and the solvent was removed under vacuum (40 °C) to give epoxide 19 as
colorless oil, which slowly crystallizes at room temperature (30.0 g, 90%, 2:1 mixture of diastereomers).
IH-NMR (CDCl;, 500 MHz) & [ppm] 2.60 (d, J = 13.5 Hz, 0.3H, fB-isomer), 2.41 (s, 2H), 2.19 (td, ] = 13.1, 4.2 Hz,
0.7H, a-isomer), 2.06-1.70 (m, 4H), 1.42 (s, 3H), 1.22 (s, 2H, a-isomer), 1.20 (s, 1H, S-isomer), 1.12-0.99 (m, 3H).
LC-MS (EST*) m/z = 169 (M+H?*), 210 (M+MeCN+H?*).

Spectral data in agreement with literature.?
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2.3. Synthesis of (5R)-5-methyl-2-(phenylthio)cyclohexan-1-one (S1)

Me
ﬁ)('we %, b/sph
Me Me
19 s1
Adapted from literature.* Thiophenol (23.8 mL, 25.5 g, 232 mmol, 2.05 equiv) was dissolved in anhydrous THF (500
mL) in a 1.0 L round-bottom flask with stir bar. Pieces of flattened sodium metal (5.17 g, 226 mmol, 2.0 equiv) are
added and the developing colorless suspension was stirred at room temperature overnight. Pulegone epoxide 19 (2:1
mixture of - and f-isomers, 19.0 g, 113 mmol, 1.0 equiv) was dissolved in anhydrous THF (25 mL) in a 100 mL round
bottom flask and was added dropwise via cannula to the PhSNa suspension over the course of 30 min. The mixture
was heated to 85 °C and kept at reflux for 7 h after which TLC (hex/EtOAc 2:1, UV/p-anisaldehyde, Rgproa = 0.71, Reom
= 0.46; diluted sample in a few pL. MeOH) confirmed full conversion of the epoxide. The reaction was cooled to room
temperature and water (200 mL) was added, followed by extraction with ethyl acetate (3 x 150 mL). The combined
organic extracts were washed with sat. aq. K;COs (3 x 150 mL) and brine (200 mL), dried over MgSO, and the solvent
was evaporated under reduced pressure (40 °C) to give 25.8 g of S1 as a yellow-brownish oil, which slowly turns into
to a waxy solid upon storage at 4 °C (104 % crude yield). The mixture of diastereomers was used in the next step without
further purification.
'"H-NMR (400 MHz, CDCL;) 64 [ppm] 7.53-7.47 (m, 0.6H), 7.42-7.34 (m, 2H), 7.34-7.20 (m, ~3.5H, superimposed on
solvent), 3.87 (ddd, ] = 11.3, 5.8, 1.2 Hz, 0.4H), 3.73 (ddd, J = 4.6, 2.9, 1.5 Hz, 0.5H), 2.79 (dd, J = 13.7, 12.2 Hz, 0.5H),
2.68 (ddd, J = 12.9, 3.8, 2.1 Hz, 0.6H), 2.38-1.59 (m, 8H), 1.45-1.32 (m, 1.2H), 1.24-1.13 (m, 0.8H), 1.10-0.96 (m,
3.9H).
BC-NMR (100 MHz, CDCl;) éc [ppm] 132.5, 131.6, 129.2, 129.1, 127.6, 127.4, 57.5, 54.5, 49.2, 45.5, 34.8, 33.4, 33.0,
31.7,29.4,22.2, 21.7 (C=0 signal was not observed in spectrum)
LC-MS (EST*) m/z = 340 (100), 262 (66, M+ MeCN+H"), 381 (65), 194 (53), 142 (49), 295 (45), 358 (38), 408 (31), 278
(21), 221 (11, M+H").
IR v[cm™'] 2953, 2926, 1710 (C=0), 1438.
HR-MS (ESI") calculated mass for C;3H;,0S [(M+H?")]: m/z = 221.0995; found: 221.0998.
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2.4. Synthesis of (5R)-5-methyl-2-(phenylsulfinyl)cyclohexan-1-one (20)

o] o o]
SPh NaBOj3 - H,O é\Ph
AcOH, 40 °C
Me Me'
S1 20

Crude thioether S1 (25.0 g) was dissolved in acetic acid (glacial, 225 mL, 9 mL/g crude) in a 500 mL round bottom flask
and heated to 40 °C. Sodium perborate monohydrate (12.4 g, 125 mmol, 1.1 equiv) was ground to a fine powder with
a mortar before adding it to the dissolved thioether in ca. 2 g portions over the course of 5 min. The suspension was
stirred at 40 °C for 45 min, after which the mixture clarified and TLC (hexanes/EtOAc 2:1, UV/p-anisaldehyde, Ryprod
= 0.25, brown) confirmed full conversion of the starting material. The reaction was cooled to 0 °C in an ice bath, and
NH,OH (14.8 M, 265 mL) was added slowly (!) over 1.5 h with a dropping funnel whilst stirring to quench the acetic
acid. The resulting colorless suspension was diluted with water (100 mL) and the pH adjusted to 7-8 by dropwise
addition of aqueous ammonia solution (14.8 M). The aqueous mixture was extracted with CH,Cl, (3 x 150 mL), the
combined organic extracts washed with brine (150 mL), and dried over MgSO,. Evaporation of the solvent under
reduced pressure (20 °C) gave 26.5 g of a thick, brownish oil (99% crude over 2 steps), which was purified by column
chromatography using a gradient of hexanes/EtOAc 2:1-1:1-1:2. The title compound 20 was obtained as colorless oil,
which solidifies upon standing at room temperature (17.3 g, 65% over two steps, mixture of diastereomers).

IH-NMR (400 MHz, CDCL;) & [ppm)] 7.68-7.61 (m, 1H), 7.58-7.54 (m, 1H), 7.50-7.46 (m, 3H), 3.66 (dd, J = 10.9, 5.9
Hz, 0.17H), 3.37-3.30 (m, 0.82H), 2.62-2.47 (m, 1.4 H), 2.38-2.20 (m, 0.7H), 2.15-1.90 (m, 3.5H), 1.81 (q, ] = 6.9 Hz,
1H), 1.40-1.29 (m, 0.7 H), 1.06 (d, J = 6.6 Hz, 1.2H), 1.01-0.96 (m, 1.8 H).

BC-NMR (100 MHz, CDCL3) &c [ppm] 131.7, 131.5, 131.0, 129.4, 129.3, 129.2, 129.0, 126.0, 124.8, 124.7, 124.6, 75.3,
73.4,73.1,71.7,51.4, 50.5, 50.4, 50.1, 34.1, 33.6, 33.57, 32.3, 32.2, 29.7, 29.6, 27.6, 25.1, 24.0, 22.9, 21.9, 21.8, 21.6, 21.3.
LC-MS (ESI*) m/z = 278 (100, M+MeCN+H"), 300 (52), 495 (29), 473 (27), 237 (25, M+H?*), 279 (23), 341 (13), 301
(12).

IR v[cm™']3058, 2953, 1710 (C=0), 1442, 1145-1022 (sulfoxide), 747, 689.

HR-MS (ESI") calculated mass for C;3H;,0,S [(M+H?")]: m/z = 237.0944; found: 237.0950.
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2.5. Synthesis of (R)-3-(4-methyl-6-oxocyclohex-1-en-1-yl)propanenitrile (21)

" acrylonitrile,

o] o] o]
| DBU
S< - CN
+Ph ]
'PrOH, 0 — 40 °C
Me' Me'
20 21

Sulfoxide 20 (18.4 g, 77.9 mmol, 1.0 equiv) was dissolved in in isopropanol (430 mL) and cooled to 0 °C. 1,8-
Diazabicyclo[5.4.0Jundec-7-ene (DBU, 23.2 mL, 156 mmol, 2.0 equiv) was added dropwise over 10 minutes. The
yellowish solution was stirred for 15 min at 0 °C before acrylonitrile (6.67 mL, 101 mmol, 1.3 equiv) was added with a
syringe pump (0.25 mL min™) at 0 °C. The reaction was allowed to warm to room temperature and stirred for 2 h
before heating to 40 °C for another 2 h, upon which TLC (n-hexane/EtOAc 2:1, UV/p-anisaldehyde, R¢proa = 0.33,
purple to green to yellow) confirmed full consumption of starting material. Volatile components were removed under
vacuum (40 °C) and the black-brown oily residue was taken up in brine (200 mL). The aq. phase was extracted with
EtOAc (3 x 200 mL) and the combined extracts were washed with 1 M aq. HCI (2 x 150 mL) and brine (150 mL). After
drying over MgSO,, the solvent was removed under reduced pressure (40 °C) and the brown-red oil was purified by
silica gel chromatography (n-hexane/EtOAc 2:1) to afford nitrile 21 (7.68 g, 60%) as yellow oil. A yellow impurity is
frequently observed to coelute with the product and can be removed by passing the oily product through a plug of
neutral ALOs; (n-hexane/EtOAc 2:1).

IH-NMR (400 MHz, CDCL) 8 [ppm] 6.90 (dd, ] = 5.6, 2.7 Hz, 1 H), 2.62 - 2.36 (m, 6 H), 2.32 - 2.00 (m, 3 H), 1.06
(d,] = 6.3 Hz, 3 H).

13C-NMR (100 MHz, CDCl;) 8¢ [ppm] 199.2, 148.1, 135.7, 119.4, 46.4, 34.4, 30.6, 26.5, 21.2, 17.0.

GC-MS (ESI*) m/z = 163 (30, M*), 148 (52, [M=“CH,”]"), 121 (53), 53 (58), 81 (100).

Spectral data is in agreement with literature.

S8



2.6. Synthesis of (R)-3-(9-methyl-1,4-dioxaspiro[4.5]dec-6-en-6-yl)propanenitrile (52)

o ethylene glycol [\
PTsOH cat. (o) (o]
CN - CN
HC(OEt)3, reflux
Me' Me
21 S2

Adapted from literature®: Only a modest conversion of 21% (GC-MS, 'H-NMR) was observed under the described
conditions and an increase of ethylene glycol equivalents at lower temperature was necessary.

To nitrile 21 (7.68 g, 47.0 mmol, 1.0 equiv) was added ethylene glycol (anhydrous, 34.1 mL, 612 mmol, 13.0 equiv),
triethyl orthoformate (anhydrous, 47.0 mL, 282 mmol, 6.0 equiv), and p-toluene sulfonic acid monohydrate (44.5 mg,
0.23 mmol, 0.5 mol%) and the reaction mixture was heated to 75 °C. After stirring for 2 hours, TLC (n-hexane/EtOAc
2:1, p-anisaldehyde) confirmed full conversion of the starting material to a product with slightly higher R; which was
invisible under UV-light. The reaction was cooled to approx. 40 °C and anhydrous K,CO; (ca. 2 g) was added. The
yellow mixture was concentrated under reduced pressure (40-45 °C) and the oily residue was purified by silica gel
chromatography (n-hexane/EtOAc 2:1) to afford ketal S2 (9.4 g, 97%) as pale-yellow oil.

IH-NMR (400 MHz, CDCL) &y [ppm] 5.84 (d, ] = 4.4 Hz, 1H), 4.07-3.91 (m, 4H), 2.54-2.48 (m, 2H), 2.36 (t, ] = 7.4
Hz, 2H), 2.15 (dt, = 17.7, 4.9 Hz, 1H), 1.95-1.82 (m, 2H), 1.71-1.63 (m, 1H), 1.31 (t, J = 13.0 Hz, 1H), 0.96 (d, ] = 6.5
Hz, 3H).

13C-NMR (100 MHz, CDCL;) 8¢ [ppm] 134.4, 132.0, 120.1, 108.3, 65.4, 64.3, 41.8, 34.0, 27.6, 26.3, 21.5, 17.8.

GC-MS (ESI*) m/z = 207 (0.5, M*), 165 (47, [M—~CH,CN-H]"), 125 (100).

HR-MS (ESI") calculated mass for C;.Hi1sNO, [(M+H?")]: m/z = 208.1332; found: 208.1359.

The number of protons in literature® does not match the title compound and the here acquired NMR data.
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2.7. Synthesis of (R)-3-(9-methyl-1,4-dioxaspiro[4.5]dec-6-en-6-yl)propan-1-amine (22)
0/_\0 N LiAIH, 0/_\0 He
Me Me
s2 22
Adapted from literature.' Ketal $2 (2.85 g, 13.8 mmol, 1.0 equiv) was dissolved in anhydrous Et,O (57.0 mL) and cooled
to 0 °C. LiAlH, (2.11 g, 55.6 mmol, 4.04 equiv) was added portion-wise over 12 minutes and the grey suspension was
stirred for 4 h at 0 °C. Upon full consumption of starting material (TLC) the reaction was worked up according to the
Fieser & Fieser protocol: The reaction mixture was diluted with Et,O (57 mL) and water (2.15 mL) was added dropwise
(violent gas evolution) at 0 °C. 15% aq. NaOH solution (2.15 mL) was added and the mixture was stirred for 20 minutes
at 0 °C. Water (6.30 mL) was added and the mixture was stirred for 20 minutes at room temperature. MgSO, (5.7 g)
was added and the mixture was stirred for another 20 minutes. The white suspension was filtered through a pad of
celite and the filter was thoroughly washed with Et,O. Concentration under reduced pressure gave a slightly yellowish
oil of amino ketal 22 (2.42 g, 11.51 mmol, 84%) which was used without further purification.
IH-NMR (400 MHz, CDCL) 8y [ppm] 5.68 (d, ] = 1.6 Hz, 1 H), 4.09-4.00 (m, 2 H), 4.00-3.91 (m, 2 H), 2.70 (t, ] = 7.2
Hz, 2 H), 2.15-1.70 (m, 5 H), 1.70-1.55 (m, 5 H), 1.33 (t, ] = 12.8 Hz, 1 H), 0.94 (d, ] = 4.4 Hz, 3 H).
BC-NMR (125 MHz, CDCL;) 8¢ [ppm] 137.0, 127.8, 108.2, 65.3, 64.2, 42.2, 41.9, 33.8, 32.3, 27.4, 26.0, 21.4.
LC-MS (EST*) m/z = 212 (100, M+H"), 253 (56, M+ MeCN+H"), 421 (52, 2M+H"), 628 (49), 150 (27).

Spectral data is in agreement with literature.'
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2.8. Synthesis of N-desmethyl-a-obscurine (5)

/ \ NH. H
o__o 2 Me._N.__O
U aq. HCIO,
—_—
1,4-dioxane
Me' reflux
22 17

The crude material obtained by following a literature procedure' may be purified by a phase-transfer protocol if needed:
The yellow residue was taken up in 1 M aq. HCl and washed with CH,Cl, (2 x 50 mL). After adjusting the pH to 6 with
sat. aq. Na,CO;3, another three washes with CH,Cl, followed. Further basification with sat. aq. Na,COs led to formation
of a white precipitate. At pH 13-14, the mixture was extracted again with CH,Cl, (3 x 50 mL). The combined organic
extracts from the last step were dried over MgSO, and concentrated under reduced pressure to afford N-desmethyl-a-
obscurine as yellowish/off-white solid.

IH-NMR (500 MHz, CDCL) 8y [ppm] 7.45 (bs, 1H), 2.82 (d, J = 12.5 Hz, 1H), 2.50-2.15 (m, 6H), 1.87 (bs, 1H), 1.71-
1.55 (m, 5H), 1.55-1.34 (m, 5H), 1.21 (t, ] = 13.5 Hz, 1H), 0.85 (d, J = 6.0 Hz, 3H).

LC-MS (ESI*) m/z = 261.2 [(M+H)*].

Spectral data is in agreement with literature.'

2.9. Synthesis of N-Boc-a-obscurine (S3)

Boc,0, EtzN

THF, 60 °C

N-Boc-5 (S3)

The title compound was prepared from crude 5 according to a literature procedure in 54% yield (over two steps) (lit.

65%).!

2.10. Synthesis of N-Boc-B-obscurine (23)

Me

ZI

Pb(OAc),

CHClg, 21 °C N<Boc

23

The title compound was prepared according to a literature procedure in 90% yield (lit. 84%).!

2.11. Synthesis of 1-triflyl-N-Boc-lycodine (24)

Me

7 o Tf,0, pyridine

N< CH,Cl,
Boc ~78°C10 21 °C

23

The title compound was prepared according to a literature procedure in 78% yield (lit. 72%)."
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2.12. Synthesis of 9-oxo-1-triflyl-N-Boc-lycodine (25)

NalO,4
RuO, cat.
————————————-
BuOH/H,0 3.5:1
60 °C

In a 100 mL flask RuO; - H,O (2.2 mg, 16.6 pmol, 1.0 mol%) was suspended in water (23 mL) and NalOy (2.41 g, 112.9
mmol, 6.8 equiv) was added to form a clear yellow solution of RuO,. Triflate 24 (814 mg, 1.66 mmol, 1.0 equiv)
dissolved in ‘BuOH (3.6 mL) was added to the solution of RuQ,. The source vessel was washed with another 3.6 mL
'BuOH, which was also transferred to the reaction. During the addition, precipitation of black RuO, - H,O was
observed, which partially re-dissolved with stirring. The mixture was heated to 60 °C and stirred for 3 h upon which
TLC (n-hexane/EtOAc 2:1, spot hot reaction mixture) confirmed full conversion of the starting material. After cooling
to room temperature, the mixture was diluted with water (50 mL) and extracted with CH,CL, (3 x 50 mL). The
combined organic extracts were dried over MgSO,, concentrated under reduced pressure and the brown residue was
passed through a pad of silica (n-hexane/EtOAc 2:1 as solvent) to afford triflyl imide 25 (721 mg, 86%) as white solid.
IH-NMR (500 MHz, CDCL) &y [ppm] 8.67 (d, ] = 8.6 Hz, 1 H), 6.99 (d, ] = 8.5 Hz, 1 H), 3.14 (dd, J = 19.6, 7.5 Hz, 1
H),2.76 (d, J=19.7, 1 H), 2.53 (ddd, J = 18.1,9.9, 8.3 Hz, 1 H), 2.34 (m, 1 H), 2.24 (ddd, J = 17.9, 7.7, 3.0 Hz, 1 H), 2.11
(ddd, J = 12.5,4.7, 3.0 Hz, 1 H), 2.06 (dd, J = 12.3, 2.5 Hz, 1 H), 1.84 (d, J = 6.2 Hz, 1 H), 1.81 - 1.74 (m, 1 H), 1.56 (s,
9 H), 1.52 - 1.44 (m, 1 H), 1.4 (t, ] = 12.0 Hz, 1 H), 1.42 - 1.36 (m, 1 H), 1.30 (m, 1 H), 0.88 (d, ] = 6.2 Hz, 3 H).
BC-NMR (125 MHz, CDCls) 8¢ [ppm] 171.2, 156.9, 154.2, 154.1, 142.2, 136.6, 118.8 (q, J (C-F) = 320.4 Hz), 112.8,
84.9, 63.0, 44.8, 42.6, 41.6, 34.6, 32.6, 31.2, 27.7 (2C), 24.8, 22.5, 21.7.

LC-MS (ESI*) m/z = 490 (100), 546 (39), 446 (28), 491 (26), 547 (22), 505 (22, M+H?").

IR v[cm™] 2927, 1739, 1677, 1419, 1252, 1212, 1140, 955, 932, 881, 848, 600.

[a]%? = +101.5° (c = 0.93, CHCL).

HR-MS (ESI+) exact mass calculated for C;,HsN,OgF;S [(M+H)*]: m/z = 505.1615; found: 505.1620.
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2.13. Synthesis of 9-oxo-N-Boc-S-obscurine (S4)

Me
H
ag. LiOH 7 N o
THF, 30 °C N~Boc
sS4
o

1 M aq. LiOH (3.14 mL, 3.14 mmol, 2.2 equiv) was added to a solution of triflyl imide 25 (720 mg, 1.43 mmol, 1.0
equiv) in THF (7.0 mL). The reaction was heated to 30 °C and stirred for 35 min after which a second portion of 1 M
aq. LiOH (2.2 equiv, 4.4 equiv total) was added to the clarified mixture. Stirring was continued for 25 min at 30 °C
upon which TLC (hexanes/EtOAc 1:1) showed full conversion of 25. Water (5 mL) was added and the pH of the aq.
phase was carefully adjusted to pH 7.0 with 0.5 M aq. HCI (9.5 mL). The aq. phase was extracted with CH,Cl, (3 x 50
mL), the combined organic extracts were dried over MgSO, and evaporated under reduced pressure afforded crude
pyridonyl imide S4 as colorless amorphous solid (530 mg). The crude material was taken directly into the pyridone
methylation.

IH-NMR (500 MHz, CDCL) 8y [ppm] 13.33 (bs, 1H), 8.21 (d, ] = 9.5 Hz, 1H), 6.45 (d, ] = 9.5 Hz, 1H), 3.01 (dd, J =
19.1,7.2 Hz, 1H), 2.51 (d, J = 19.0 Hz, 1H), 2.54-2.45 (m, 1H), 2.30-2.22 (m, 2H), 2.07 (dd, J = 12.7, 3.5 Hz, 1H), 2.05—
2.00 (m, 1H), 1.81-1.72 (m, 2H), 1.55 (s, 9H), 1.48-1.39 (m, 1H), 1.37-1.29 (m, 2H), 0.88 (d, J = 6.2 Hz, 3H).
BC-NMR (125 MHz, CDCL) éc [ppm] 171.5, 165.1, 154.1, 143.5, 142.7, 118.5, 117.8, 84.6, 61.7, 44.1, 42.2, 41.7, 32.2,
31.0,29.4,27.7 (3C), 24.9, 22.2, 21.6.

LC-MS (ESI) m/z = 414 (100, M+MeCN+H?*), 415 (28), 341 (20).

IR v[cm™] 2950, 2924, 2870, 1739, 1655, 1612, 1558, 1458, 1368, 1249, 1154, 849.

HR-MS (ESI*) exact mass calculated for C,HoN,O4 [(M+H)*]: m/z = 373.2122; found 373.2125.
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2.14. Synthesis of 1-methoxy-9-oxo-N-Boc-lycodine (S5)

Me
H
7 N (o] Mel, Ag,CO3
= CHClj, reflux
N~Boc s
o S4

Ag,COs (749 mg, 2.72 mmol, 1.9 equiv) was added to a solution of crude pyridonyl imide S$4 (530 mg, 1.43 mmol
assumed from previous step, 1.0 equiv) in CHCl; (10 mL) followed by a solution of MeI (111 pL, 1.78 mmol, 2.6 equiv)
in CHCl; (2.0 mL). The grey suspension was heated to reflux (75 °C) in the dark (wrap with tin foil) for 13 hours, after
which TLC (n-hexane/EtOAc 1:1) showed full conversion of the starting material. After cooling to room temperature,
the yellow-brown suspension was filtered through a pad of celite and the yellow oily residue obtained after evaporation
was purified by silica gel chromatography (hexanes/EtOAc 2:1) to afford the title compound S5 as colorless foam (475
mg, 86% over two steps).

IH-NMR (500 MHz, CDCL) &y [ppm] 8.24 (d, ] = 8.6 Hz, 1H), 6.57 (d, ] = 8.6 Hz, 1H), 3.88 (s, 3H), 3.07 (dd, J = 19.1,
7.5 Hz, 1H), 2.62 (d, ] = 19.1 Hz, 1H), 2.45 (dt, ] = 17.3, 8.5 Hz, 1H), 2.30-2.27 (m, 1H), 2.21-2.13 (m, 1H), 2.08-2.01
(m, 2H), 1.83-1.73 (m, 2H), 1.62-1.54 (m, 1H) superimposed on 1.55 (s, 9H), 1.41-1.34 (m, 3H), 0.85 (d, ] = 4.8 Hz,
3H).

3C-NMR (125 MHz, CDCL) 8¢ [ppm] 171.7, 162.6, 154.0 (d), 139.2, 127.9, 108.7, 84.3, 63.0, 53.5, 45.1, 42.9, 41.8, 34.9,
32.9,31.0,27.7 (3C), 24.9, 22.3, 21.7.

LC-MS (ESI*) m/z = 387 (100, M+H"), 428 388 (26), (11, M+MeCN+H").

IR v[cm™] 2923, 1740, 1674, 1594, 1476, 1421, 1367, 1312, 1249, 1152, 1031, 850, 731.

HR-MS (ESI) exact mass calculated for C,,H3N,O, [(M+H)*]: m/z = 387.2278; found: 387.2278.
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2.15. Synthesis of aminoacid 26

aq. LiOH
THF, 65 °C

1 M aq. LiOH (5.90 mL, 5.90 mmol, 4.8 equiv) was added to a solution of methoxy imide S5 (475 mg, 1.23 mmol, 1.0
equiv) in THF (4.5 mL). The mixture was stirred at 65 °C, with an additional portion of 1 M aq. LIOH (1.6 eq, 5.4 equiv
total) being added after 6 h. After 22 h, full conversion of the starting material was determined by TLC (n-
hexane/EtOAc 1:1) and the clear mixture was cooled to room temperature, followed by addition of water (60 mL) and
careful acidification with 1 M aq. HCI (ca. 15 mL) to pH 1-2. The aqueous phase was extracted with CH,Cl, (5 x 100
mL) and the combined organic extracts were dried over MgSO,. Removal of solvent under reduced pressure afforded
methoxy acid 26 (465 mg, 97%) as a colorless foam without further purification.

IH-NMR (500 MHz, CDCl;) 8u [ppm] 7.51 (d, ] = 8.6 Hz, 1H), 6.55 (d, ] = 8.5 Hz, 1 H), 4.92 (bs, 1H), 3.88 (s, 3H), 3.06
(dd, J = 19.0, 7.0 Hz, 1H), 2.52 (d, J = 19.0 Hz, 1H), 2.49-2.40 (m, 2H), 2.38-2.29 (m, 3H), 1.83-1.76 (m, 1H), 1.71 (d,
J =12.8 Hz, 1H), 1.59-1.55 (m, 1H), 1.45 (s, 9H), 1.39-1.13 (m, 4H), 0.78 (d, J = 6.3 Hz, 3H).

BC-NMR (125 MHz, CDCLs) &c [ppm] 178.8, 162.3, 154.9 (2C), 135.4, 127.5, 108.6, 79.6, 59.0, 53.5, 47.0, 42.8, 41.1,
34.2,32.2,30.8, 28.5 (3C), 26.4, 23.2, 21.9.

LC-MS (ESI*) m/z = 405 (100, M+H?), 406 (29).

IR v [cm™] 3500-3000, 2950, 2918, 2868, 1712, 1598, 1578, 1476, 1422, 1312, 1259, 1163, 1035.

HR-MS (ESI+) exact mass calculated for C,,H3;N,Os [(M+H)*]: m/z = 405.2384; found 405.2383.
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2.16. Synthesis of 1’-methyl-N-Boc-casuarinine H (27)

PdBr,
DPE-Phos
Et;N
Piv,0
_—
DMPU
130°C,4h

An oven-dried, tall tube with stir-bar and septum cap was loaded with methoxy acid 27 (100 mg, 247 pmol, 1.0 equiv),
PdBr, (2.0 mg, 7.4 umol, 3 mol%) and DPE-Phos (12.0 mg, 22.3 umol, 9 mol%) and subjected to three cycles of
evacuation and backfilling with nitrogen. Anhydrous DMPU (1.2 mL) was added, followed by pivalic anhydride (105
pL, 519 umol, 2.1 equiv) and anhydrous triethylamine (4.0 pL, 29.7 umol, 12 mol%). The clear yellow solution was
stirred at 130 °C for 4 h upon which the color changes to orange/red and then dark purple and TLC (#-hexane/EtOAc
2:1, p-anisaldehyde) confirmed full conversion of the starting material. The solution was cooled to room temperature,
then cooled further to 0 °C, and 1 mL saturated aqueous NaHCO; was added. The solution was allowed to warm to
room temperature and stirred for 20 minutes. The mixture was diluted with EtOAc (30 mL) and washed with sat. aq.
NH,Cl (30 mL), water (2 x 30 mL) and brine (30 mL). The organic phase was dried over MgSO,, filtered, and
concentrated under reduced pressure to give a purple oil, which was purified by silica gel chromatography (n-
hexane/EtOAc 9:1) to afford olefin 27 as a colorless oil (57.6 mg, 65%).

IH-NMR (500 MHz, CDCl;) & [ppm] 7.61 (d, J = 8.6 Hz, 1 H), 6.57 (d, ] = 8.6 Hz, 1 H), 5.64 (dt, ] = 16.9, 10.0 Hz, 1
H), 5.24 (dd, ] = 16.9, 2.2 Hz, 1 H), 5.07 (dd, J = 10.2, 2.2 Hz, 1 H), 4.83 (s, 1 H), 3.90 (s, 3 H), 3.16 (dd, J = 18.9, 7.1 Hz,
1 H),2.96 (d, ] = 9.7 Hz, 1 H), 2.58 (d, ] = 18.9 Hz, 1 H), 2.30 (dd, J = 7.1, 3.6 Hz, 1 H), 2.16 (d, ] = 12.2 Hz, 1 H), 1.89
(d,7=12.7 Hz, 1 H), 1.71 (d, ] = 13.2 Hz, 1 H), 1.44 (s, 9 H), 1.28 (m, 1 H), 1.38 (td, J = 13.0, 4.2 Hz, 1 H), 0.82 (d, ] =
6.4 Hz, 3 H).

BC-NMR (125 MHz, CDCL) éc [ppm] 162.4, 155.4, 154.8, 138.2, 136.2, 128.2, 118.3, 108.6, 79.2, 57.9, 53.5, 49.2, 46.3,
42.7,35.1,34.7, 28.6 (3C), 26.4, 22.0.

LC-MS (ESI*) m/z = 359 (100, M+H"), 360 (29), 400 (15, M+MeCN+H").

IR v[cm™] 3500 - 3300, 3071, 2922, 2854, 1724, 1597, 1577, 1476, 1421, 1365, 1314, 1264, 1164, 1034.

HR-MS (ESI") exact mass calculated for C,H31N,O; [(M+H)*]: m/z = 359.2329; found: 359.2329.
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2.17. Synthesis of (-)-casuarinine H (2)

(-)-casuarinine H (2)
Methoxy olefin 27 (10 mg, 0.028 mmol, 1.0 equiv) was concentrated in a 1 dram vial and introduced to a glovebox. In
the glovebox, 27 was dissolved in anhydrous CHCI; (0.5 mL) and trimethylsilyl iodide (TMSI) (40 pL, 0.28 mmol, 10
equiv) was then added dropwise. The vial was sealed, removed from the glovebox, and heated at 65 °C for 5 hours,
resulting in a dark yellow solution. After cooling to room temperature, the reaction was transferred to a 2 dram vial
with CH,CL (2 x 1.0 mL). The solution was cooled to 0 °C and H,O, sat. aq. K,COs, and sat. aq. Na,S,0; (0.5 mL of
each) were added while stirring. The pH of the resulting solution was confirmed to be >10 and the aqueous phase was
extracted with CH,Cl, (3 x 1 mL). The combined organic extracts were dried over MgSO, and filtered. Concentration
under reduced pressure afforded (-)-casuarinine H (2) as an off-white solid/foam (6.1 mg, 89%).

IH-NMR (500 MHz, CDCl5) 8 [ppm] 13.25 (br s, 1H, NH), 7.76 (d, ] = 9.4 Hz, 1H), 6.43 (d, ] = 9.3 Hz, 1H), 5.62 (ddd,
J=16.9,9.8,9.8 Hz, 1H), 5.23 (dd, = 17.0, 2.1 Hz, 1H), 5.13 (dd, ] = 10.2, 2.1 Hz, 1H), 3.06 (dd, J = 18.9, 7.1 Hz, 1H),
2.51 (d, ] = 18.8 Hz, 1H), 2.29 (m, 1H), 2.15 (dd, J = 9.0, 2.5 Hz, 1H), 1.78-1.60 (br s, 2H, NH,), 1.74 (d, ] = 13.3 Hz,
1H), 1.65 (dd, J = 11.7, 3.6 Hz, 1H), 1.41 (m, 1H), 1.29 (ddd, ] = 12.8, 12.8, 4.1 Hz, 1H), 1.10 (dd, J = 12.1, 12.1 Hz, 1H),
0.85 (d, J = 6.4 Hz, 3H).

BC-NMR (151 MHz, CDCL;) éc [ppm] 165.0, 143.9, 140.4, 137.4, 120.5, 119.2, 117.3, 54.8, 52.4, 50.0, 42.6, 34.3, 30.0,
26.5,21.9.

LC-MS (EST*) m/z = 286 (100, M+MeCN+H?"), 228 (73, [M=NH,]*), 287 (23), 245 (22, M+H"), 269 (18), 229 (13).
[a]%2 = -7.1° (c = 0.22, CHCL).

IR v[cm™] 3600-3200, 2924, 2853, 1654, 1609, 1559, 1457, 1178, 1128, 666.

HR-MS (ESI+) exact mass calculated for C;sH,; N,O [(M+H)']: m/z = 245.1648; found: 245.1648.

Characterization data in agreement with material isolated from natural sources.’”
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2.18. Synthesis of (+)-lycoplatyrine B (4)

Me
N s
fo) m
-
ag. HCI (3 M)
J NH, 0-21°C
2 (+)-lycoplatyrine B (4)

Casuarinine H (2, 5.2 mg, 21.3 pmol, 1.0 equiv) was concentrated in a 1 dram vial, cooled to 0 °C, and subsequently
dissolved in aq. HCI (3 M, 285 nL). To the clear solution stirring at 0 °C was piecewise added grains of samarium metal
(26 mg, 170.3 umol, 8.0 equiv, 6-7 grains). Complete dissolution of each grain of Sm was observed before the addition
of the next grain. The addition of larger grains and/or several of the last grains resulted in a deep purple solution. In
these instances, the solution was stirred until the purple color disappeared to yield a clear or very light yellow solution
before the addition of the next grain of Sm. Note: Slow addition of the Sm metal in this manner is critical to avoid an
exotherm and to obtain clean product. Upon complete addition of the Sm metal, full dissolution of the last grain, and
decolorization, the solution was stirred for 2 minutes at 0 °C. The ice bath was removed and the solution was stirred
for 10 minutes at 21 °C. To the solution was added H,O (750 uL) and the aqueous layer was washed with MTBE (3 x
750 pL). These organic washes were discarded. The aqueous layer was transferred to a 2 dram vial with H,O (2 x 500
pL). This solution was cooled to 0 °C and basified via the slow dropwise addition of sat. aq. K;CO; (1.6 mL) with stirring
(the solution bubbles vigorously!). The pH was confirmed to be >10. The resulting solution was extracted with MTBE
(3 x 1 mL), the extracts dried over MgSO, and filtered, and the solvent removed under reduced pressure to yield the
title compound lycoplatyrine B (4) as a white solid (4.4 mg, 84% yield). CDCl; was deacidified by passing through a
plug of basic alumina (Brockmann I) before dissolving the product for NMR analysis.

IH-NMR (600 MHz, CDCL) 8y [ppm] 7.17 (br s, 1H, NH), 5.81 (dt, J = 17.1, 9.8 Hz, 1H), 5.21 (dd, ] = 17.1, 2.1 Hz,
1H), 5.13 (dd, J = 10.2, 2.2 Hz, 1H), 2.48-2.40 (m, 4H), 2.27 (m, 1H), 2.13 (m, 1H), 2.04 (dd, 9.4, 3.0 Hz, 1H), 1.71 (d,
J = 18.1 Hz, 1H), 1.68-1.64 (m, 3H), 1.36-1.19 (br s, 2H, NH,), 1.25-1.20 (m, 1H), 0.89 (d, J = 6.1 Hz, 3H), 0.89 (m,
1H).

BC-NMR (151 MHz, CDCL;) dc [ppm] 171.2, 138.4, 129.6, 118.3, 114.2, 55.0, 53.0, 47.1, 43.0, 34.6, 31.2, 30.2, 27.0, 22.0,
19.9.

LC-MS (ESI) m/z = 288 (43, M+MeCN+H?*), 247 (8, M+H").

[a]%2 = +79.2° (c = 0.22, CH,CL).

IR v[cm™] 3217-3073, 2948, 2908, 2840, 1666, 1381, 1212, 915, 828.

HR-MS (ESI+) exact mass calculated for C;sHz; N>O [(M+H)*]: m/z = 247.1805; found: 247.1805. Characterization

data in agreement with material isolated from natural sources.?
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2.19. Synthesis of 1’-methyl-N-Boc-8,15-dihydrohuperzine A (S6)

Pd(dba),
P(Bu)z
PrcocCl

toluene
90 °C, 21 h

Methoxy terminal olefin 27 (20.5 mg, 57.2 pmol, 1.0 equiv) was concentrated in a 1 dram vial and taken into a glovebox.
To the vial was added Pd(dba), (6.6 mg, 11.4 umol, 0.2 equiv) and P("Bu)s; (2.3 mg, 11.4 pmol, 0.2 equiv), followed by
anhydrous toluene (250 pL). In the glovebox in a separate vial, a stock solution of ‘PrCOCI (12 pL) in anhydrous
toluene (500 pL) was prepared. A 50 pL aliquot of the ‘PrCOCI stock solution (containing 1.2 uL, 11.4 pmol, 0.2 equiv
"PrCOCI) was added to the other reagents. The vial was capped with a solid cap, removed from the glovebox, and heated
at 90 °C for 21 hours, yielding an orange solution. After cooling to 21 °C, the solution was filtered through a plug of
Celite with CH,Cl, and concentrated in vacuo. The crude oil was purified via silica gel chromatography (9:1 n-
hexane/EtOAc) to yield methoxy internal olefin S6 (TLC: Ry = 0.39 in 4:1 hexanes/EtOAc, visualized by UV/p-
anisaldehyde) as a pale-yellow foam (16.5 mg, 81% yield). The product was isolated as an approximate 7:3 mixture of
rotamers.

'H-NMR (600 MHz, CDCl;) i [ppm] 7.51 (d, ] =8.8 Hz, 0.3H, minor rotamer), 7.47 (d, ] = 8.5 Hz, 0.7H, major
rotamer), 6.53 (d, ] = 8.5 Hz, 1H), 5.38 (m, 1H), 4.74 (s, 0.7H major rotamer), 4.58 (s, 0.3H, minor rotamer), 3.87 (s,
3H), 3.34 (br s, 1H), 3.20 (dd, J = 18.1, 7.0 Hz, 0.7H, major rotamer), 3.06 (dd, ] = 18.5, 6.3 Hz, 0.3H, minor rotamer),
2.78 (d, J = 18.1 Hz, 1H), 1.82 (m, 1H), 1.70 (d, J = 6.8 Hz, 3H), 1.56 (d, J = 14.0 Hz, 1H), 1.52 (m, 1H), 1.47 (d, ] =
14.4 Hz, 1H), 1.42 (s, 6H, major rotamer), 1.25 (m, 1H), 1.05 (s, 3H, minor rotamer), 0.78 (d, ] = 6.2 Hz, 3H).
BC-NMR (151 MHz, CDCl;, peaks for major rotamer tabulated) dc [ppm] 162.2, 154.5, 153.7, 138.8, 135.2, 129.0,
112.3,108.2, 79.3, 59.8, 53.5, 52.1, 43.5, 39.4, 31.6, 28.5, 26.1, 21.5, 12.6.

LC-MS (ESI*) m/z = 359 (100, M+H?*), 400 (6, M+MeCN+H").

[a]%? = +15.2° (c = 0.21, CH,CL).

IR v[cm™] 3350-3270, 2921, 2951, 1694, 1598, 1475, 1365, 1311, 1265, 1250, 1168, 1039, 1027, 825.

HR-MS (ESI+) exact mass calculated for C,;Hs N,Os [(M+H)]: m/z = 359.2329; found: 359.2336.
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2.20. Synthesis of (-)-8,15-dihydrohuperzine A (3)

Me
H
OMe TMSI N [o)
Me A =
CHCl, e NH,

65°C,5h
(—)-8,15-dihydrohuperzine A (3)

Methoxy internal olefin §6 (10.4 mg, 0.029 mmol, 1.0 equiv) was concentrated in a 1 dram vial and introduced to a
glovebox. In the glovebox, S6 was dissolved in anhydrous CHCl; (0.5 mL) and TMSI (42 pL, 0.29 mmol, 10.0 equiv)
was then added dropwise. The vial was sealed, removed from the glovebox, and heated at 65 °C for 5 hours, resulting
in a dark red/brown solution. After cooling to room temperature, the reaction was transferred to a 2 dram vial with
CH,CL (2 x 1.0 mL). The solution was cooled to 0 °C and H,O (1 mL) was added dropwise while stirring. The aqueous
phase was washed with MTBE (3 x 2 mL) and the organic washes were discarded. The aqueous layer was cooled to 0
°C and basified via the dropwise addition of sat. aq. K;CO; (800 pL) with stirring. The pH was confirmed to be >10.
The resulting solution was extracted with MTBE (3 x 1 mL), the extracts dried over MgSO,, and the solvent removed
under reduced pressure to yield the crude product as a colorless oil. The crude product was purified by silica gel
chromatography (CH,Cl,/MeOH 10:1) to afford 8,15-dihydrohuperzine A (3) (TLC: Ry = 0.43 in 9:1 CH,CL,/MeOH,
visualized by UV/KMnOs,) as a colorless oil (2.9 mg, 41% yield). CDCl; was deacidified by passing through a plug of
basic alumina (Brockmann I) before dissolving the product for NMR analysis.

IH-NMR (600 MHz, CDCLs) 8y [ppm] 12.83 (br s, 1H, NH), 7.82 (d, = 9.4 Hz, 1H), 6.41 (d, ] = 9.4 Hz, 1H), 5.50 (q,
J = 6.7 Hz, 1H), 3.33 (m, 1H), 3.01 (dd, ] = 18.2, 7.3, Hz, 1H), 2.69 (d, ] = 18.1 Hz, 1H), 1.80 (d, J = 13.2 Hz, 1H), 1.72
(brd,J =122 Hz, 1H), 1.67 (d, ] = 6.7 Hz, 3H), 1.64-1.53 (br s, 2H, NH,), 1.63-1.56 (m, 1H), 1.19 (dt, J = 12.8, 4.4
Hz, 1H), 1.05 (t, ] = 11.9 Hz, 1H), 0.82 (d, ] = 6.5 Hz, 3H).

BC-NMR (151 MHz, CDCl;) 8¢ [ppm] 164.9, 144.6, 144.4, 139.6, 122.3, 117.1, 111.4, 55.1, 51.3, 42.8, 34.6, 30.7, 26.6,
21.5,12.4.

LC-MS (ESI*) m/z = 286 (100, M+MeCN+H?*), 245 (5, M+H").

[a]%? = -56.6° (c = 0.15, CH,Cl,).

IR v[cm™] 3400-3250, 2913, 1654, 1615, 1458, 833, 660.

HR-MS (ESI+) exact mass calculated for C;sHz N,O [(M+H)*]: m/z = 245.1648; found: 245.1647. Characterization

data in agreement with material isolated from natural sources.” '’
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2.21. Synthesis of N-Boc-lycodine (30)

Pd(OAc), (5 mol%)
dppf (5 mol%)
NH,4H,CO, EtzN

DMF, 60 °C

The title compound was prepared from 24 according to a literature procedure in 99% yield (lit. 90%)."

2.22. Synthesis of N-Boc lycodine boronic ester (S7)

Me
[Ir(COD)(OMe)], (4 mol%)
dBu-bipy (8 mol%)

Bopiny
> 0 Me
THF, 80 °C y IMG
° Me
Me

The title compound was prepared from 30 according to a literature procedure' and was used without purification in

the next step.

2.23. Synthesis of N-Boc-2-bromolycodine (31)

Cu(ll)Br,
o Me (I)Bry
B” Me MeOH/H,0 1:1
\ o
° Me
Me

Adapted from a literature procedure.! To a solution of crude boronic ester $7 (0.512 mmol assumed from previous
step, 1.0 equiv) in MeOH (25 mL), a solution of copper(II)bromide (241 mg, 1.79 mmol, 3.5 equiv) in H,O (25 mL)
was added. The reaction mixture was heated to reflux (80 °C) for 3 h. Then, the mixture was allowed to cool to r.t. and
was quenched with 10% NH,OH solution (150 mL), followed by extraction with Et,O (3 x 50 mL). The combined
organic layers were washed with H,O and brine (50 mL), dried over MgSO, and the solvent was removed under reduced
pressure. The resulting black oil was purified by flash column chromatography (n-hexane/EtOAc 9:1-4:1-2:1) to afford
the title compound 31 as slightly yellow foam (159 mg, 377 umol, 74% over two steps).

'H NMR (500 MHz, CDCL) 8y [ppm] 8.44 (d, ] = 2.3 Hz, 1H), 7.66 (d, ] = 2.3 Hz, 1H), 4.11 (dq, ] = 13.7, 3.1 Hz, 1H),
3.13 (dd, J = 19.0, 7.4 Hz, 1H), 2.73 (ddd, = 13.2, 3.7, 1.5 Hz, 1H), 2.63 (d, ] = 19.0 Hz, 1H), 2.43-2.36 (m, 1H), 2.15-
2.11 (m, 1H), 1.89-1.81 (m, 2H), 1.75-1.68 (m, 1H), 1.63-1.55 (m, 2H), 1.55-1.48 (m, 1H) superimposed on 1.51 (s,
9H), 1.42-1.20 (m, 2H), 1.21-1.11 (m, 1H), 0.84 (d, ] = 6.4 Hz, 3H).

BC-NMR (125 MHz, CDCl;) 8y [ppm] 156.7, 156.2, 148.6, 137.8, 136.4, 118.5, 80.2, 64.0, 48.4, 44.4, 43.5, 43.0, 34.8,
34.3,28.7 (3C), 27.8,26.7, 25.7, 22.5.

LC-MS (ESI) m/z = 464 (100, M+MeCN+H?*), 462 (93), 423 (86, M+H"), 421 (76, M+H?*), 465 (23), 424 (19).

[a]%% = +126.7° (c = 0.255, CH,CL,).

IR v[cm™] 2925, 2869, 1700, 1456, 1365, 1268, 1156, 965.

HR-MS (ESI+) exact mass calculated for C,1H3oBrN,O, [(M+H)*]: m/z = 421.1485; found: 421.1493.

Spectral data in agreement with those reported for a N-Cbz-protected derivative."!
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2.24. Synthesis of protected piperidine adduct 33

RuPhos-Pd-G4
Cs,CO3

toluene, 70 °C, 2.5 h

Lactam 32 was prepared according to literature procedures."

In a Schlenk-flask equipped with septum and stir bar, N-Boc-2-bromolycodine 31 (19.8 mg, 47 pmol, 1.0 equiv) and
enantiomerically pure trans-o-hydroxy-f-lactam (2°R)-32 (9.7 mg, 44.6 pumol, 0.95 equiv) were subjected to three
cycles of evacuation and backfilling with N, before introducing the evacuated vessel to a glove box. Cs,COs (30.6 mg,
94 pmol, 2.0 equiv), RuPhos Pd G4 (4.0 mg, 4.7 pmol, 10 mol%) and toluene (degassed by three cycles of freeze-pump-
thaw, 306 uL, 0.2 M) were added to the flask inside the box. The flask with the light brown suspension was sealed and
placed in a preheated oil bath at 70 °C. After 2.5 h, LC-MS and TLC (n-hexane/EtOAc 1:1, UV/KMnO; stain)
confirmed full consumption of the bromide and the formation of the desired coupled product. The crude reaction
mixture was directly applied to preparative TLC for purification (n-hexane/EtOAc, 1:2, product Reproduct = 0.5, 3 X 1.0
mL of CHCls/MeOH 20:1 for elution of material from SiO,) to yield 17.0 mg (65%) of (2'R)-33 as a colorless foam.
Notes: The f-lactam coupling partner is set as limiting component since unreacted material co-elutes with the coupling
product. When racemic trans-a-hydroxy-f-lactam is used, no separation of product epimers on TLC was observed.

'"H NMR (500 MHz, CDCl;, 21 °C) & [ppm] 8.41 (d, ] = 2.0 Hz, 0.35H, major rotamer), 8.40 (d, J = 2.0 Hz, 0.1H, minor
rotamer 1), 8.32 (d, ] = 2.0 Hz, 0.25H, minor rotamer 2), 8.03-7.92 (m, 1.6H), 7.68-759 (m, 1H), 7.59-7.44 (m, 2.7H),
6.18 (d, ] = 5.4 Hz, 0.1H minor rotamer 1), 6.04 (d, ] = 4.6 Hz, 0.4H, major rotamer), 4.88 (d, ] = 3.3 Hz, 0.3H, minor
rotamer 2), 4.63 (d, ] = 13.4 Hz, 0.3H), 4.21-4.05 (m, 1H), 3.63-3.57 (m, 0.3H), 3.42 (d, J = 13.5 Hz, 0.6H), 3.27-3.11
(m, 1H), 3.06 (ddd, J = 14.2, 113, 4.0 Hz, 0.5H), 2.90-2.74 (m, 1.3H), 2.69 (t, ] = 18.7 Hz, 1H), 2.49-2.24 (m, 2H), 2.17-
2.09 (m, 1H), 2.20-2.10 (m, 1H), 2.10-1.99 (m, 1H), 1.99-1.67 (m, 6H), 1.67-1.51 (m, 5H), 1.49-1.48 (2 x s, 9H), 1.40—
1.11 (m, 4H), 0.88-0.78 (2 x d, ] = 6.4 Hz, 3H).

3C NMR (125 MHz, CDCl;, 21 °C) &c [ppm] 191.50, 191.40, 166.75, 166.50, 157.13, 156.87, 156.47, 156.41, 146.83,
135.52,135.36, 134.92, 134.89, 133.29, 133.25, 132.64, 132.56, 132.09, 131.15, 129.77, 129.32, 129.23, 79.99, 79.87, 64.07,
63.87, 54.75, 48.96, 48.33, 48.15, 44.34, 44.32, 43.91, 43.81, 43.17, 43.13, 37.82, 37.81, 34.85, 34.81, 34.44, 34.42, 31.06,
28.67 (3C, minor rotamer 2), 28.64 (3C, major rotamer), 27.76, 27.74, 26.69, 26.56, 25.99, 25.60, 25.80, 22.52, 19.78,
19.62.

LC-MS see 2’S epimer.

[a]%? = +115° (c = 1.13, CHCL).

IR see 2’S epimer.

HR-MS (ESI+) exact mass calculated for C;sH.N;O4 [(M+H)*]: m/z = 558.3326; found: 558.3379.
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(2'S)-33 (13.3 mg, 65% yield) was obtained from a coupling of (2’S)-32 and 31 (15.5 mg, 37 pumol) with adjusted
reagent/catalyst amounts.

'H-NMR (500 MHz, CDCl;) &4 [ppm] 8.42 (d, ] = 1.8 Hz, 0.4H, major rotamer), 8.40 (d, / = 2.0 Hz, 0.1H, minor
rotamer 1), 8.32 (d, /] = 1.8 Hz, 0.25H, minor rotamer 2), 7.98 (d, 3] = 7.5 Hz, 1.4H), 7.95 (d, ] = 7.6 Hz, 0.25H), 7.65 (4,
J = 7.4 Hz, 0.5H), 7.62-7.44 (m, 3H), 6.14 (d, ] = 5.4 Hz, 0.1H minor rotamer 1), 6.04 (d, ] = 4.9 Hz, 0.4H, major
rotamer), 4.90 (d, ] = 3.6 Hz, 0.25H, minor rotamer 2), 4.63 (d, 3] = 13.4 Hz, 0.4H), 4.17-4.06 (m, 1H), 3.69-3.55 (m,
0.4H), 3.41 (d, J = 14.0 Hz, 0.6H), 3.26-3.10 (m, 1H), 3.08-3.00 (m, 0.5H), 2.83 (dd, J = 13.1, 2.8 Hz, 0.7H), 2.79-2.59
(m, 1.4H), 2.46-2.24 (m, 2H), 2.17-2.09 (m, 1H), 2.09-1.93 (m, 1H), 1.92-1.66 (m, 5H), 1.65-1.50 (m, 5H), 1.52-1.46
(2 x s, 9H), 1.41-1.07 (m, 5H), 0.88-0.78 (2 x d, J = 6.4 Hz, 3H).

BC-NMR (125 MHz, CDCL3) &c [ppm] 191.58, 191.48, 166.78, 166.70, 157.14, 156.94, 156.45, 156.27, 146.59, 146.21,
135.65, 135.58, 134.92, 134.86, 133.28, 133.13, 132.74, 132.48, 132.17, 131.38, 129.92, 129.75, 129.34, 129.25, 79.97,
79.95, 64.03, 63.91, 54.75, 48.97, 48.49, 48.20, 44.32, 44.30, 43.87, 43.71, 43.17, 43.12, 43.07, 37.79, 34.89, 34.77, 34.43,
34.36, 31.06, 28.70 (3C, minor rotamer 2), 28.64 (3C, major rotamer), 27.79, 27.72, 27.17, 26.67, 26.61, 25.99, 25.78,
25.55,22.52,19.81, 19.67.

LC-MS (ESI*) m/z = 558.4 [100, (M+H)*], 599.3 [60, (M+MeCN+H)*].

[a]%? = + 16° (c = 1.33, CHCL).

IR v[cm™] 2924, 1676, 1643, 1444, 1364, 1270, 1222, 1154, 969, 724 (sample consisted of a 1:1 mixture of epimers).
HR-MS (ESI+) exact mass calculated for C;sH4uN;O4 [(M+H)*]: m/z = 558.3326; found: 558.3368.

Coupling of 31 (68.3 mg, 162 pmol) and rac-32 with adjusted reagent/catalyst amounts yielded 33 as a mixture of
epimers at C2’ (64.7 mg, 72% yield).

S23



2.25. Synthesis of lycoplatyrine A (8)

NaOH

1,4-dioxane/
MeOH 4:1
70°C, 40 h

lycoplatyrine A (8)

Coupling product 33 (1.0 equiv., 9-13 umol) and powdered anhydrous NaOH (5.0 equiv) were provided in a 4 mL
threaded glass vial equipped with a stir bar. MeOH (600 uL) and 1,4-dioxane (2.4 mL) were added in this order before
the vial was sealed with a Teflon-lined cap and placed in a preheated aluminum heat block at 70 °C. After 18 h, another
portion of NaOH was added to the now grey suspension (1 equiv) and stirring at 70 °C was continued for 2 h upon
which TLC (Et,O/MeOH 9:1, UV/KMnO,) and LC-MS confirmed virtually full conversion of the starting material.
The reaction mixture was cooled to 21 °C and transferred dropwise to a separation funnel with aq. HCI (0.2 M, 5 mL).
The acidic colorless, clear solution was washed with Et;O (2 x 5 mL) before it was basified to a pH > 10 with aqg NaOH
(15%). The emulsion was extracted with Et;O (3 x 5 mL), the combined extracts dried over MgSO, and the solvent
removed under reduced pressure to give the free piperidine §9 along with a minor amount of the piperidine-N-
formamide S8 as a colorless foam.

Characterization for C2’ epimeric mixture:

'H NMR (500 MHz, CDCl;, 21 °C) &u [ppm] (peaks that could be unambiguously assigned to one of the compounds
through comparison with a spectrum of a purified sample of S8 are indicated) 8.38 (dd, J = 13.6, 2.0 Hz, 0.6H, §9), 8.29
(dd, J = 15.7, 2.0 Hz, 0.2H, S8), 8.26 (bs, 0.2H, S8), 8.21 (s, 0.1H, 8.20, 0.10H, S8), 8.15 (s, 0.1H, S8), 7.47 (dd, J = 21.7,
2.0 Hz, 0.5H, $9), 7.45 (dd, J = 19.8, 2.0 Hz, 0.2H, S8), 7.37 (dd, ] = 12.4, 1.6 Hz, 0.3H, $8), 5.77-5.72 (m, 0.3H, S8),
4.78-4.74 (m, 0.2H, S8), 4.15-4.07 (m, S8) superimposed on 4.07 (d, ] = 13 Hz, §9, 1.2H total), 3.58-3.53 (m, 0.6H,
$9), 3.50-3.44 (m, 0.3H, S8), 3.21-3.12 (m, 1.6H), 3.11-3.02 (m, 0.3H, S8), 2.96-2.81 (m, 0.4H, S8), 2.81-2.61 (m,
2.4H), 2.41-2.26 (m, 1.4H), 2.15-2.07 (m, 1.1H), 1.95-1.78 (m, 3.4H), 1.78-1.66 (m, 2.8H), 1.66-1.43 (m)
superimposed on 1.51 (s, S9) and 1.48 (s, S8, 15.3H total), 1.36-1.21 (m, 2.2H), 1.21-1.11 (m, 1.0H), 0.84 (dt, J = 6.3,
1.8 Hz, S8) superimposed on 0.80 (dd, J = 6.4 Hz, 2.7 Hz, S9, 3.0H total).

BC NMR (125 MHz, CDCl;, 21 °C) &c [ppm] (multiplicity of signals within 0.1 ppm are given in parentheses) 161.9,
161.7 (2), 157.5 (2), 156.6 (5), 156.5 (2), 156.4, 146.6 (2), 146.4 (2), 146.3, 139.1 (2), 135.7, 135.5, 135.3 (2), 135.1 (2),
132.7, 132.5,132.3 (2), 132.2 (4), 132.0, 131.8, 80.0 (3), 79.8 (2), 79.7 (2), 64.3 (2), 64.0, 63.9 (3), 60.0, 59.8, 55.5 (2), 48.5
(3),48.3, 48.1 (3), 47.8 (2), 44.3 (5), 44.1, 43.8 (3), 43.2 (3), 37.9 (2), 34.9 (5), 34.5 (5), 29.8, 29.6, 28.7 (3), 27.7 (3), 27.4
(2),26.7 (3), 26.5 (3), 26.0 (2), 25.8 (4), 25.4 (2), 25.1 (2), 22.5 (2), 20.8 (2), 20.1 (2).

The mixture of starting materials (S8, §9) from the previous step was taken up in aq. HCI (6 M, 300 uL) and stirred for
2hat70°Cin a preheated oil-bath upon which LC-MS confirmed full conversion to the starting materials. The reaction
was cooled to 21 °C and washed with CH,Cl, (2 x 500 pL). The vial with the aqueous phase was then placed in a water
bath and NH,OH (35%, 1.0 mL) was added dropwise whilst stirring until the pH was >10. The basified aqueous layer
was extracted with CH,Cl, (3 x 500 pL), the organic extracts were dried over MgSOy and the solvent removed under

reduced pressure to give lycoplatyrine A (8) as colorless oil.
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Deprotection of (2°S)-33 (12.7 umol) yielded (2'S)-8 (3.7 mg, 11.4 pmol, 90% yield over two steps) in >95:5 d.r. (‘H-
NMR).

H NMR (500 MHz, CDCls) & [ppm] 8.32 (d, 9 = 2.1 Hz, 1H), 7.74 (d, 9 = 2.1 Hz, 1H), 3.61 (d, ] = 10.5 Hz, 1H); 3.20
(d,]=11.6 Hz, 1H), 3.13 (dd, ] = 18.6, > = 7.1 Hz, 1H), 2.79 (m, 2H), 2.69 (d, % = 18.6 Hz, 1H), 2.42 (m, 1H), 2.08 (m,
1H), 1.90 (m, 1H), 1.82-1.64 (m, 6H), 1.60 (dt, ] = 12.4, 2.9 Hz, 1H), 1.56-1.47 (m, 6H), 1.4 (d, J = 10.3 Hz, 1H), 1.33
(td, J = 12.3, 3.8 Hz, 1H), 1.27-1.12 (m, 3H), 0.76 (d, ¥J = 6.0 Hz, 3H).

BCNMR (125 MHz, CDCl;) & [ppm] 157.7, 145.9, 138.8, 135.9, 131.1, 60.0, 56.4, 51.5, 47.9, 44.7, 44.0, 41.5, 35.3, 35.1,
33.9,27.9, 26.3, 25.9 (2C), 25.5, 22.2.

LC-MS (ESI+): m/z = 326 [(M+H)*], 367 [(M+MeCN+H)*], 225, 246.

[a]2’= -52.4° (CHClL, ¢ = 0.37).

IR v[cm™] 2924, 1692, 1643, 1444, 1364, 1270, 1222, 1154, 969, 724.

HR-MS (ESI*) exact mass calculated for C,;H3,N; [(M+H)*]: m/z = 326.2591; found: 326.2588.

Deprotection of (2’R)-33 (14.3 pmol) yielded (2’R)-8 (3.2 mg, 9.8 umol, 68% yield over two steps) in >95:5 d.r. (‘H-
NMR).

IH-NMR (500 MHz, CDCls) & [ppm] 8.37 (d, ¥J = 2.0 Hz, 1H), 7.72 (d, ¥J = 2.0 Hz, 1H), 3.62 (d, *] = 10.0 Hz, 1H);
3.20 (d, J = 11.5 Hz, 1H), 3.13 (dd, 7/ = 18.1, ¥J = 7.1 Hz, 1H), 2.83-2.74 (m, 2H), 2.69 (d, % = 18.6 Hz, 1H), 2.41 (m,
1H), 2.08 (m, 1H), 1.90 (m, 1H), 1.84-1.64 (m, 6H), 1.61-1.47 (m, 7H), 1.44 (d, ] = 10.4 Hz, 1H), 1.33 (td, J = 12.4, 3.8
Hz, 1H), 1.28-1.12 (m, 3H), 0.77 (d, *J = 6.1 Hz, 3H); 1,4-dioxane (3.70, s) as solvent impurity.

BC-NMR (125 MHz, CDCL;, 21 °C) & [ppm] 157.6, 145.7, 138.8, 135.8, 131.4, 60.1, 56.3, 51.6, 47.9, 44.8, 44.0, 41.6,
35.3, 35.2, 33.9, 28.0, 26.3, 26.0 (2C), 25.5, 22.2.

[a]2’= +17.4° (CHCL, ¢ = 0.32).

IR v[cm™] see 2’S epimer.

LC-MS (ESI+): m/z = see 2°S epimer.

HR-MS (ESI*) exact mass calculated for C;;H3,N; [(M+H)*]: m/z = 326.2591; found: 326.2576.

Spectral data of both isomers is in agreement with literature.®

The natural product derived from deprotection of the coupling product with racemic 32 was obtained as a 1.5:1 mixture

of (2'S) and (2'R) epimers, respectively.
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2.26. Synthesis of N-Boc pyrrolidine adduct 36

31

Boc SBulLi H Boc Pd(OAc),
i 1
[r\l) (+)-or (-)-sparteine [Zn] N BusPHBF,
————————— *
M{BE, 78 °C \Ii) MIBE, 60 °C, 18 h
then
34 ZnCl,, -78 °C to 21 °C 35

N-Boc-pyrrolidine (34, 12.5 uL, 71.2 pmol, 1.2 equiv.) and (-)-sparteine (16.4 uL, 71.2 umol, 1.2 equiv.) were provided
in a threaded tall test tube (1 = 15 cm, V = 10 mL) equipped with a stir bar and septum screw cap. Anhydrous MTBE
(200 pL) was added and the colorless to slightly yellow solution was cooled to -78 °C (acetone/dry ice bath). “BuLi (51
L of a 1.4 M solution in hexanes, 71.2 umol, 1.2 equiv.) was added dropwise directly (!) into the rapidly stirred solution
(the *BuLi solution will solidify on the cooled tube wall and upon removal of the ice bath rapid thawing will lead to
uncontrolled addition of the reagent). The first slightly turbid mixture was stirred at -78 °C for 3 h, after which a solution
of ZnCl, (85.4 uL of a 0.5 M solution in THF, 42.7 umol, 0.72 equiv.) was added dropwise to the now clear, rapidly (!)
stirred solution (>1000 rpm). Upon complete addition the mixture was rapidly stirred at -78°C for 30 min, then the
ice bath was removed and the mixture was allowed to warm to room temperature in ambient air before it was placed
in a water bath at 21 °C and rapid stirring was continued for another 30 min. 31 (23.8 mg, 56.5 umol, 0.95 equiv.) was
provided in an oven-dried glass vial and dissolved in anhydrous MTBE (100 pL). The solution was transferred dropwise
to the reaction using a cannula and the source vial is washed with another 100 uL MTBE. Then Pd(OAc), (0.7 mg, 3.0
pmol, 5 mol%) and ‘BusPHBF, (1.1 mg, 3.6 umol, 6 mol%) were added together as solids in a N,-stream. The resulting
yellow, clear solution was placed in a preheated oil bath at 60 °C and the precipitation of Zn-salts was observed within
the first 30 to 60 min. After 18 h, TLC (n-hexane/EtOAc 1:1, UV/KMnO,) and LC-MS confirmed full consumption of
31 and the beige suspension was cooled to room temperature. NH,OH (35%, 11.5 uL) was added and the beige
suspension was stirred for 30 min at 21 °C before filtering through a short pad of celite. The reaction vial and plug were
washed with MTBE (3 x 1.0 mL) and the filtrate was evaporated in vacuo to give a yellow oil, which was purified by
column chromatography (EtOAc/n-hexane 3:1) or preparative TLC (EtOAc/n-hexane 1:1) to afford the coupling
product (2°R)-36 as colorless foam (25.4 mg, 88%).

'"H NMR (500 MHz, CDCl;, 21 °C) &4 [ppm] 8.24 (s, 1H), 7.35-7.26 (m, 1H), 4.92 (bs, minor rotamer, 0.4H), 4.70 (bs,
major rotamer, 0.5H); 4.16-3.98 (m, 1H), 3.66-3.45 (m, 2H), 3.26-3.09 (m, 1H), 2.78 (d, ] = 13.0 Hz, 1H), 2.67 (d, ] =
18.6 Hz, 1H), 2.39-2.23 (m, 1H), 2.35 (t, J = 12.92, 1H), 2.11 (bs, 1H), 1.97-1.67 (m, 6H), 1.62-1.40 (m, 16H), 1.36—
1.13 (m, 8H), 0.82 (d, ¥J = 5.7 Hz, 3H).

BC NMR (125 MHz, CDCl;, 21 °C) & [ppm] (multiplicity of signals within 0.1 ppm are given in parentheses) 156.3
(3), 154.4, 145.6, 138.9, 135.0 (2), 131.2, 130.2, 79.8, 79.6, 64.1, 59.4, 58.7, 48.4, 47 .4, 47 .2, 44.4, 44.0 (3), 43.2, 36.1, 35.1,
34.9, 34.5, 28.7, 28.6, 28.4, 27.7 (2), 26.7 (2), 25.8, 23.5 (2), 22.5 (2).

LC-MS (EST*): see 2°S epimer. IR v[cm™] see 2°S epimer.

[a]%? = +82.2° (c = 0.65, CHCL).

HR-MS (ESI") exact mass calculated for C;HysN304 [(M+H)*]: m/z = 512.3483; found: 512.3516.
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(2'S)-36 (16.7 mg, 55% yield) was obtained from ortho-lithiation of 34 in the presence of (+)-sparteine and coupling
with 31 (24.0 mg, 57 umol) using adjusted reagent/catalyst amounts.

'H NMR (500 MHz, CDCl;, 21 °C) & [ppm] 8.22 (d, J = 2.1 Hz, 1H), 7.29 (d, J = 2.2 Hz, 1H), 4.95 (bs, minor rotamer,
0.3 H), 4.71 (bs, major rotamer, 0.6H), 4.15-4.03 (m, 1.3H), 3.67-3.41 (m, 2H), 3.23-3.08 (m, 1H), 2.75-2.59 (m, 2H),
2.41-2.20 (m, 2H), 2.11 (bs, 1H), 1.95-1.65 (m, 6H), 1.62-1.36 (m, 16H), 1.50 (s superimposed on m, N*-Boc), 1.43 (s
superimposed on m, N'-Boc minor rotamer), 1.36-1.08 (m, 10H), 1.17 (s superimposed on m, N'-Boc major rotamer),
0.80 (d, ¥J = 6.4 Hz, 3H).

3C NMR (125 MHz, CDCl;, 21 °C) & [ppm] 156.4 (2), 154.2, 145.9, 139.0, 135.6, 130.3, 80.2, 79.4, 64.2, 60.5, 59.1,
48.7,47.2,44.0,43.7,43.1, 36.3, 34.9, 34.4, 28.7, 28.6, 28.4, 27.8, 26.8, 25.8, 23.4, 22.4, 21.2.

LC-MS (ESI*): m/z = 512 [(M+H)*], 553 [(M+MeCN+H)*].

[a]%? = +18.3° (c = 0.64, CHCL).

IR v [cm™] 3000-2900, 1697, 1390, 1365, 1157.

HR-MS (ESI") exact mass calculated for C;0HysN3O4 [(M+H)']: m/z = 512.3483; found: 512.3454
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2.27. Synthesis of deprotected pyrrolidine adduct 14

ag. HCI (6 M)

21°C,4.25h

Coupling product (2°S)-36 (16.7 mg, 32.6 umol, 1.0 equiv) was taken up in aq. HCI (6 M, 500 pL) and stirred for 4.25
h at 21 °C upon which LC-MS confirmed full consumption of the starting material. The aqueous reaction mix was
washed with MTBE (2 x 1 mL) followed by careful adjustment of the pH with NH,OH (35%) to > 9. The basic aqueous
phase was again extracted with MTBE (2 x 1 mL), the extracts were dried over MgSO, and the solvent evaporated
under reduced pressure (40 °C) to yield the free amine (2’S)-14 as colorless oil (10.2 mg, quantitative) in >95:5 d.r. (‘"H-
NMR).

'H NMR (500 MHz, CDCl;, 21 °C) & [ppm] 8.34 (d, ] = 2.2 Hz, 1H), 7.75 (d, ] = 2.1 Hz, 1H), 4.10 (t, ] = 7.7 Hz, 1H),
4.24-3.16 (m, 1H), 3.12 (dd, J = 18.6, 7.2 Hz, 1H), 3.01 (ddd, J = 10.2, 8.4, 6.8 Hz, 1H), 2.78-2.73 (m, 1H), 2.69 (d, J =
18.6 Hz, 1H), 2.46-2.37 (m, 1H), 2.23-2.15 (m, 1H), 2.07 (dq, ] = 6.1, 2.8 Hz, 1H), 1.98-1.80 (m, 3H), 1.77 (d, ] = 12.7
Hz, 2H), 1.71-1.61 (m, 1H), 1.61-1.41 (m, 5H), 1.33 (td, J = 12.3, 3.4 Hz, 1H), 1.28-1.10 (m, 4H), 0.76 (d, ] = 6.2 Hz,
3H).

BC NMR (125 MHz, CDCl;, 21 °C) &c [ppm] 157.4, 145.9, 137.9, 135.8, 131.2, 60.5, 56.3, 51.5, 47.1, 44.8, 44.0, 41.5,
35.2, 34.6, 33.9, 28.0, 26.3, 25.9, 25.6, 22.2.

LC-MS (EST*): m/z = 218 (100), 312 (87, M+H?*), 353 (91, M+MeCN+H*), 239 (86).

[a]%2 = -34.08 + 0.17° (c = 3.3, CHCL).

IR v[cm™] 3278, 2914, 1454, 750.

HR-MS (ESI*) exact mass calculated for CyH3oNs [(M+H)*]: m/z = 312.2434; found: 312.2480

Deprotection of (2’R)-36 (15.0 mg, 29.3 umol) under identical conditions yielded (2'R)-14 (6.4 mg, 70%) in >95:5 d.r.
("H-NMR).

'H NMR (500 MHz, CDCl;, 21 °C) 6 [ppm] 8.36 (d, ] = 1.7 Hz, 1H), 7.74 (d, 1.4 Hz, 1H), 4.10 (t, 7.8 Hz, 1H), 3.24-
3.17 (m, 1H), 3.13 (dd, J = 18.6, 7.2 Hz, 1H), 3.05-2.97 (m, 1H), 2.77 (bd, J = 13.8 Hz, 1H), 2.69 (d, J = 18.6 Hz, 1H),
242 (td, J = 13.3, 12.7, 3.8 Hz, 1H), 2.26-2.16 (m, 1H), 2.11-2.05 (m, 1H), 1.98-1.82 (m, 2H), 1.77 (bd, J = 11.7 Hz,
3H), 1.71-1.62 (m, 1H), 1.61-1.48 (m, 4H), 1.45 (bd, J = 11.7 Hz, 1H), 1.33 (td, ] = 12.4, 3.7 Hz, 1H), 1.29-1.12 (m,
5H), 0.77 (d, J = 6.1 Hz, 3H).

BC NMR (125 MHz, CDCl;, 21 °C) &c [ppm] 157.3, 145.8, 137.9, 135.7, 131.3, 60.6, 56.3, 51.6, 47.1, 44.9, 44.0, 41.6,
35.2,34.3, 33.9, 28.1, 26.3, 26.0, 25.6, 22.2.

LC-MS (ESI*): see 2’S epimer.

[a]%? = +14.25° (c = 3.2, CHCL).

IR v[cm™] see 2’S epimer.

HR-MS (ESI*) exact mass calculated for C,H3oN; [(M+H)*]: m/z = 312.2434; found: 312.2483.
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2.28. Synthesis of protected amino ester adduct 38

HO,C NHBoc

37 CO,Bn

NiCl, glyme
dtbbpy
Ir[dF(CF3)ppylo(dtbbpy)PFe
Cs,CO3

blue light
DMF, 20 °C, 24 h

38 COBn
To a 1 dram vial was added N-Boc-2-bromolycodine (31, 15.0 mg, 35.6 pmol, 1.0 equiv), N-Boc-O-Bn-glutamic acid
(37,18.0 mg, 53.4 pmol, 1.5 equiv), Ir[dF(CFs)ppyl.(dtbbpy)PFs (0.4 mg, 0.4 pmol, 1 mol%) and Cs,COs (17.4 mg, 53.4
pmol, 1.5 equiv). The vial was evacuated and back-filled with N, and anhydrous DMF (1 mL) was added. A stock
solution NiCl, glyme (1 mg, 3.7 umol) and dtbbpy (2 mg, 7.1 pmol) in anhydrous DMF (950 uL) was prepared. The
light blue cloudy solution was sonicated until it became completely clear. An aliquot of the Ni/dtbbpy stock solution
(95 uL) was then added to the vial containing the other reactants (delivering 1 mol% NiCl, glyme and 2 mol% dtbbpy
to the reaction). The resulting mixture was sparged with N, for 20 min, the septa cap was taped, and the vial was placed
in a Merck photoreactor equipped with a 450 nm module (100% intensity, 1000 rpm stir rate, 21 °C set temperature)
for 19.5 hours. The resulting brown suspension was diluted with EtOAc (15 mL) and water (15 mL), phases were
separated, and the aqueous phase was extracted with EtOAc (2 x 15 mL). The combined organic extracts were washed
with brine (20 mL), dried over MgSO,, filtered, and concentrated in vacuo to provide a yellow oil. The crude product
was purified by column chromatography (0.7 x 10 cm SiO,, eluted with 40 mL 4:1 hexanes/EtOAc, followed by 50 mL
1:1 hexanes/EtOAc) to yield the product 38 as a yellow oil (15.3 mg, 84% yield). The product is a mixture of epimers
as determined by NMR spectroscopy. The epimers can be separated via SiO, column if desired.

H NMR (600 MHz, CDCls, 21 °C) & [ppm] 8.34 (br s, 1H), 7.53—7.49 (m, 1H), 7.37—7.31 (m, 5H), 5.12-5.11 (m, 2H),
5.03 (br s, 0.5H), 4.97 (br s, 0.5H), 4.71 (br s, 1H, NH), 4.09-4.05 (m, 1H), 3.21 (dd, J = 18.9, 7.3 Hz, 1H), 2.75-2.71
(m, 2H), 2.48-2.40 (m, 2H), 2.36-2.28 (m, 1H), 2.14-2.12 (m, 1H), 2.09-2.04 (m, 2H), 1.88—1.82 (m, 2H), 1.73-1.70
(m, 1H), 1.59—1.56 (m, 1H), 1.52-1.51 (m, 9H), 1.48—1.44 (m, 1H), 1.40 (br s, 9H), 1.35-1.30 (m, 2H), 1.26-1.13 (m,
2H), 0.83 (d, ] = 6.4 Hz, 1.5H), 0.82 (d, ] = 6.4 Hz, 1.5H).

BC NMR (151 MHz, CDCl;, 21 °C, for peaks where epimers resolve, the chemical shift for the second carbon peak is
indicated in parentheses) & [ppm] 172.89 (172.84), 156.60, 156.38 (156.34), 155.18, 144.90, 136.75, 136.37, 135.85
(135.83), 132.50, 128.73 (2C), 128.47 (128.46), 128.44 (128.41, 2C), 80.00, 79.97, 66.73 (66.69), 64.06 (64.02), 52.26
(52.24), 48.34, 44.39 (44.30), 43.67, 43.03 (43.01), 34.30, 31.59, 31.41, 31.22 (31.19), 28.71 (28.70, 3C), 28.45 (3C), 27.69
(27.66), 26.68, 25.71, 22.47.

LC-MS (EST"): m/z = 634 (100, M+H").

[a]%? = +63.8° (c = 0.63, CH,CL).

IR v[cm™] 3400, 2974, 2926, 2868, 1701, 1515, 1455, 1389, 1365, 1271, 1251, 1157, 980, 741, 699.

HR-MS (ESI*) exact mass calculated for Cs;Hs:N3O4 [(M+H)*]: m/z =634.3851; found: 634.3853.
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2.29. Synthesis of lycopladine F (9)

Pd/C
H, (500 psi)
F3CCO.H

s10 CO,Bn lycopladine F (9)  CO,H

Coupling product 38 (mixture of epimers, 15.3 mg, 24 pumol, 1.0 equiv) was concentrated in a 1 dram vial. Stock
solutions of phenol (4 M, 455 pL, 1.8 mmol) and MesSiCl (4 M, 153 pL, 0.61 mmol) in anhydrous CH,Cl, were added
in this order and the sealed vial was stirred at 21 °C for 20 min. The solution was cooled to 0 °C, aq. HCI (0.5 M, 750
uL) was added and the mixture was washed with MTBE (6 x 1 mL). The pH of the aqueous phase was adjusted to >10
with sat. aq. K;CO; and extracted with MTBE (3 x 1 mL). The organic extracts were dried over MgSO,, filtered, and
concentrated in vacuo to afford the crude product S10 as a clear oil, which was analyzed by NMR spectroscopy and
telescoped to the debenzylation without further purification.

IH NMR (600 MHz, CDCl, 21 °C) & [ppm] 8.32 (d, J = 2.2 Hz, 0.5H), 8.28 (d, ] = 2.3 Hz, 0.5H), 7.74 (d, ] = 2.3 Hz,
0.5H), 7.70 (d, ] = 2.3 Hz, 0.5H), 7.37—7.26 (m, 5H), 5.11-5.10 (m, 2H), 3.96-3.92 (m, 1H), 3.13 (dd, ] = 18.6, 7.3 Hz,
1H), 2.78-2.74 (m, 1H), 2.70 (d, ] = 18.6 Hz, 1H), 2.41-2.35 (m, 3H), 2.10-2.07 (m, 1H), 2.05-2.00 (m, 2H), 1.79-1.75
(m, 1H), 1.59-1.49 (m, 7H), 1.46-1.43 (m, 1H), 1.36-1.31 (m, 1H), 1.21-1.13 (m, 3H), 0.78 (d, ] = 6.3 Hz, 1.5H), 0.77
(d,] = 6.3 Hz, 1.5H).

BC NMR (151 MHz, CDCl;, 21 °C, for peaks where epimers resolve, the chemical shift for the second carbon peak is
indicated in parentheses) & [ppm] 173.27, 157.97 (157.91), 145.70 (145.47), 138.88 (138.81), 136.20, 136.07, 131.37,
130.95, 128.73 (2C), 128.39 (2C), 66.46, 56.29 (56.25), 53.54 (53.35), 51.65 (51.61), 44.90, 43.99, 41.57 (41.54), 35.21,
34.54, 33.94, 31.44 (31.38), 28.13, 26.35, 26.00, 22.22.

In a 1 dram vial, crude benzyl ester S10 (assuming 24 umol) and palladium on activated charcoal (0.5 mg, 5% w/w)
were taken up in anhydrous MeOH (500 pL), and trifluoroacetic acid (TFA) (2 pL, 24.4 pmol, 1.0 equiv) was added to
the suspension. The vial, capped with a septa lid through which a large needle was inserted, was placed in a
hydrogenation bomb at 500 psi hydrogen pressure. The suspension was stirred at 21 °C (900 rpm) for 3 h before the
pressure was released and the reaction was filtered through a plug of Celite (moistened with MeOH). The plug was
washed with 3 x 1.0 mL MeOH and the collected filtrate was evaporated under reduced pressure to yield a 1:1 epimeric
mixture at C2’ of lycopladine F (9) as a white solid (7.8 mg, 71% yield over two steps, calculated as the mono TFA salt)
(1:1 mixture of 2’S and 2’R epimers). CDCl; was deacidified by passing through a plug of basic alumina (Brockmann
I) before dissolving the product for NMR analysis. Note: Omitting TFA from the debenzylation procedure yielded a
product for which the NMR spectra did not match the spectra detailed in the isolation report.”

H NMR (600 MHz, CD;0D, 21 °C) &4 [ppm] 8.61 (d, J = 2.0 Hz, 0.5H), 8.58 (d, J = 2.0 Hz, 0.5H), 8.25 (d, ] = 2.1 Hz,
0.5H), 8.17 (d, J = 2.1 Hz, 0.5H), 4.50 (m, 1H), 3.29-3.19 (m, 2H), 2.99-2.90 (m, 1H), 2.84 (d, J = 19.3 Hz, 0.5H), 2.83
(d, ] = 19.4 Hz, 0.5H), 2.43-2.29 (m, 5H), 2.09 (br d, J = 12.4 Hz, 1H), 1.94-1.84 (m, 4H), 1.74 (br d, J = 13.5 Hz, 1H),
1.62 (dd, J = 12.0, 12.0 Hz, 1H), 1.47 (ddd, J = 13.0, 12.9, 3.4 Hz, 1H), 1.38—1.22 (m, 2H), 0.89 (d, J = 6.6 Hz, 1.5H), 0.88
(d, ] = 6.6 Hz, 1.5H).
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BC NMR (151 MHz, CD;OD, 21 °C, for peaks where epimers resolve, the chemical shift for the second carbon peak is
indicated in parentheses) & [ppm] 175.24 (175.19), 160.81 (160.76), 149.38 (149.08), 134.19 (133.82), 132.30, 130.99
(130.90), 62.65 (62.64), 53.81 (53.78), 48.18 (48.15), 43.39 (43.35), 42.45, 41.93 (41.89), 35.13 (35.11), 33.87, 30.83
(30.78), 29.81 (29.79), 26.98 (26.93), 25.00, 23.84 (23.82), 21.71 (21.69).

F NMR (565 MHz, CD;0D, 21 °C) & [ppm] -77.02.

LC-MS (ESI*): m/z = 344 (70, M+H"), 385 (9, M+MeCN+H").

[a]%? = +9.7° (c = 0.39, MeOH).

IR v [cm™] 3400-3300, 2950-2650, 1671, 1429, 1201, 1135, 838, 800, 722.

HR-MS (ESI+) exact mass calculated for C,0H3N;O, [(M+H)*]: m/z = 344.2333; found: 344.2331.

Characterization data in agreement with material isolated from natural sources."
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3. Supplementary Results

3.1.

Photocatalytic dehydrogenation of N-Boc-a-obscurine (S3)

Table S1. Screening of conditions for the photocatalytic dehydrogenation of $3.

Me

photocatalytic H

dehydrogenation 7 N

N~Boc =

23

Entry Redox mediator Oxidant (eq) Solvent Conv. (%) NMR-yield XX (%)

1 Cu(MeCN)4BF < Na35,0s (5.5) H.0/acetone 1:1¢ 43¢ <1
2 Ag(NO)sb< Na2S20s (5.5) H.O/acetone 1:1¢ >99¢ <1
3 Riboflavin tetraacetate (NH.)25205 (4.0) H>O/MeCN 1:1 >99¢ 11
4 Riboflavin tetraacetate K>5,05 (4.0) H>O/MeCN 1:1 >99 24
5 Ir[dF(CF3)ppy]a(dtbpy)PFs (NH2),5,05 (4.0) H,O/MeCN 1:1 >99¢ 51
6 Ir[dF(CF3)ppyl2(dtbpy)PFe (NH2);5:05 (1.4) H,O/MeCN 1:1 >99¢ 35
7 Ir[dF (CF3)ppyl2(dtbpy)PFe (NH2),5:05 (2.7) H,O/MeCN 1:1 >99¢ 40
8 Ir[dF (CF3)ppyl2(dtbpy)PFe (NH2);5,08 (5.5) H,O/MeCN 1:1 >99¢ 38
9 Ir[dF (CF3)ppyl2(dtbpy)PFe (NH2),5,05 (4.0) H,O/MeCN 1:1 >99 41
9 Ir[dF(CF3)ppyl2(dtbpy)PFe (NH2),5,05 (4.0) H,O/MeCN 2:1 76 27
10 Ir[dF (CF3)ppyl2(dtbpy)PFe (NH2),5,05 (4.0) H,O/MeCN 1:2 >99 23
1 Ir[dF (CF3)ppyl2(dtbpy)PFe Na25,0s (4.0) H,O/MeCN 1:1 >99 51
12 Ir[dF (CF3)ppyl2(dtbpy)PFe K>S205 (4.0) H,0/MeCN 1:1 >99 57
13 Ir[dF (CF3)ppyl2(dtbpy)PFs (3.5 mol%) K>5,05 (4.0) H,O/MeCN 1:1 >99 14
14 Ir[dF (CF3)ppyl2(dtbpy)PFs (14 mol%) K>5,0s (4.0) H,O/MeCN 1:1 >99 45
15 none (NHa)2520s (4.0) H.O/MeCN 1:1 <1 <1
16 Ir[dF (CF3)ppylz(dtbpy)PFe’ (NH2),5,05 (4.0) H,O/MeCN 1:1 6 <1
17 Ir[dF(CF3)ppyl2(dtbpy)PFs Air (open vessel) H>O/MeCN 1:1 >999 <1

“General conditions: N-Boc-a-obscurine S3 (10 mg, 27 umol, 1.0 eq), oxidant (given eq), redox mediator (7 mol%) in the respective solvent (1.0
mL). Sparge with Nz for 15 min. After irradiation with blue light (450 nm, 800 rpm, Merck photoreactor) at 21 °C for 20 min, the reaction mixture
was extracted with CHClz (2 x 500 pL, phase separation through centrifugation), the extracts dried over MgSO4 and evaporated under reduced
pressure. Yields and conversion were measured by 'H-NMR in CDCl; using ethylene carbonate (s, 4.52 ppm) as external standard. 40 °C for 1 h
45 min without light irradiation. 2.7 eq. of redox mediator. 500 pL solvent. °45 min reaction time. /in the dark. 9Only decomposition of starting

material was detected.
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3.2. Biocatalytic oxidation methods

Table S2. Screening of biocatalytic conditions towards a chemoselective piperidine C-N bond oxidation of N-desmethyl-o.-
obscurine (5) and Boc-protected derivative (S3). Enzymes were selected based on their ability to oxidize C-heteroatom bonds
in their substrate portfolio (references given).

Entry Substrate Biocatalyst Conditions? Ref Result
1 5 Monoamine oxidase from A. niger (MAO-N); variants A 4
D5,D9and D11

2 Pyranose oxidase (PyrOx); 2 homologues A =

3 Long-chain fatty alcohol oxidase (LCFAO) A =

4 Hexose oxidase (HexOx) A 1’

5 Galactose oxidase (GOx); variants M1, M3 and M3-5 A 16-18

6 Gulose Oxidase (GulOx); 2 homologues A = . .

no reaction, recovery of starting

terial

7 Hydroxymethylfuran oxidase (HMFO) A 19 materia

8 Berberine bridge enzyme from E. californica (EcBBE) B 20

9 PQQ-dependent dehydrogenase from D. mutans D 2

10 Laccase / TEMPO C 2

1 N-Boc-5 (S3) Laccase / TEMPO C 2

12 Horseradish peroxidase (HRP) E s

“Conditions: A Substrate (10 mM), KPi-buffer (100 mM, pH 7.5, 0.5 mL) saturated with Oz, DMSO (10% v/v), lyophilized E. coli whole cells
containing the het. expressed oxidase (20 mg/mL), catalase from bovine liver (1 mg/mL), 30 °C, 250 rpm (horizontal), 24 h; B Substrate (10 mM)
, Tris-HCl buffer (50 mM, pH 9.0, 1.0 mL), MgCl> (10 mM), DMSO (10 %v/v), lyophilized purified BBE_Ec (3 mg/mL), catalase (1 mg/mL), 37 °C, 250
rpm (horizontal), 21 h; C Substrate (10 mM), citrate buffer (100 mM, pH 5.5, 1.0 mL), DMSO (10% v/v), TEMPO (2.5 mM), laccase T. versicolor (10
mg/mL), 37 °C, 250 rpm, 22 h; D Substrate (5 mM), Tris-HCI buffer (100 mM, pH 7.5, 1.0 mL) saturated with Oz, PQQ (0.1 mM), KsFe(CN)s (20 mM),
DMSO (10 % v/v), lyophilized E. coli whole cells containing the het. expressed dehydrogenase from D. mutans (20 mg/mL), 30 °C, 250 rpm
(horizontal), 24 h; E Substrate (10 mM), citrate buffer (100 mM, pH 5.5, 1.0 mL), glucose (50 mM), DMSO (10% v/v), HRP (30 U), glucose oxidase
(30 U), 30-37 °C, 250 rpm, 25 h.
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3.3. Synthesis of trans-8-oxo-7-phenyl-1-azabicyclo[4.2.0]octan-7-yl acetate (S13)

Me (0]
@
Acz0, DMAP 1)
pyridine Ph
CHClj3, 21 °C H

rac-32 rac-S13
Racemic trans-a-hydroxy-f-lactam 32 (333 mg, 1.53 mmol, 1.0 equiv) was dissolved in anhydrous CH,Cl, (2.5 mL)
followed by addition of pyridine (612 uL, 7.65 mmol, 5.0 equiv) and N,N-dimethylaminopyridine (DMAP, 9.34 mg,
0.076 mmol, 0.05 equiv). The mixture was cooled to 0 °C and acetic anhydride (722 pL, 7.65 mmol, 5.0 equiv) was
added dropwise over the course of 5 min. The reaction mix was allowed to warm to r.t. and was stirred over night, after
which TLC (hexanes/EtOAc 1:2, Reproqd = 0.4, UV, KMnOy) confirmed full consumption of 32. Sat. aq. NaHCO; (5 mL)
was added carefully, and the reaction was stirred at r.t. for another 30-60 min until gas evolution ceased. The mixture
was extracted with CH,CL, (3 x 5 mL) and the combined organic extracts were washed with 1 M aq. HC], sat. aq.
NaHCOs and brine (5 mL each). The organic phases were dried over MgSO,, and the oily residue was purified by silica
gel chromatography (hexanes/EtOAc 1:1) to afford racemic ester S13 as colorless oil (362 mg, 91% yield).
H NMR (300 MHz, CDCL) & [ppm] 7.59-7.53 (m, 2H), 7.43-7.31 (m, 3H), 3.93 (ddd, ] = 16.7, 12.4, 4.5 Hz, 2H), 2.88
(td, J = 12.7, 4.2 Hz, 1H), 2.09 (s, 3H), 1.84-1.69 (m, 2H), 1.67-1.56 (m, 1H), 1.51-1.11 (m, 2H), 0.91-0.73 (m, 1H).
13C NMR (125 MHz, CDCL) & [ppm] 169.6, 162.9, 133.5, 129.0, 128.5 (2C), 128.4 (2C), 92.7, 60.5, 39.0, 27.1, 24.2,
22.0,21.5.
HR-MS (ESI*) exact mass calculated for C;sH;sNO; [(M+H)*]: m/z = 260.1281; found: 260.1274.
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3.4. Synthesis of trans-8-oxo-7-phenyl-1-azabicyclo[4.2.0]octan-7-yl butyrate (S14)

nPrCOCI
DMAP, pyridine

CHClg, 21 °C

rac-32 rac-S14
Racemic trans-a-hydroxy-f-lactam 32 (25.0 mg, 115 pmol, 1.0 equiv), DMAP (0.7 mg, 5.7 umol, 5.0 mol%) and
pyridine (30.0 pL, 575 umol, 5.0 equiv) were dissolved in anhydrous CH,Cl, (120 pL) and cooled to 0 °C.
Butyrylchloride (60.0 pL, 575 pmol, 5.0 equiv) was added dropwise over the course of 5 min and the reaction mix was
allowed to warm to r.t. After stirring overnight, TLC (hexanes/EtOAc 1:2, Reproq = 0.4, UV, KMnOy) confirmed full
consumption of 32. Sat. aq. NaHCO5 (500 pL) was added carefully, and the reaction was stirred at r.t. for another 15
min until gas evolution ceases. The mixture was extracted with CH,Cl, (3 x 750 uL) and the combined organic extracts
were washed with 1 M aq. HCI, sat. aq. NaHCO; and brine (750 pL each) (phases separated by centrifugation). The
organic phases were dried over MgSO,, and the yellow oily residue was purified by silica gel chromatography
(hexanes/EtOAc 1:1) to afford racemic ester S14 as colorless oil (30.1 mg, 91% yield).
H NMR (300 MHz, CDCLs) 8 [ppm] 7.60-7.53 (m, 2H), 7.40~7.31 (m, 3H), 3.93 (td, ] = 14.5, 13.0, 4.5 Hz, 2H), 2.88
(td, J=12.7, 4.2 Hz, 1H), 2.33 (t, ] = 7.4 Hz, 2H), 1.84-1.68 (m, 2H), 1.63 (q, J = 7.4 Hz, 3H), 1.49 - 1.16 (m, 2H), 0.99-
0.79 (m) superimposed on 0.90 (t, ] = 7.4 Hz, 5H total).
13C NMR (125 MHz, CDCL) & [ppm] 172.4, 163.0, 133.7, 129.0, 128.5 (2C), 128.4 (2C), 92.6, 60.6, 39.0, 36.4, 27.1,
24.2,22.0,18.3,13.7.
HR-MS (ESI") exact mass calculated for C,;H,,NO; [(M+H)*]: m/z = 288.1594; found: 288.1588.
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3.5.

Enzymatic kinetic resolution of the S-lactam coupling partner

All lipase- and esterase preparations used in kinetic resolution experiments were obtained from Sigma Aldrich and

used as received:

Esterase from porcine liver (PLE, 20 U/mg and 69.3 U/mg, respectively)

Lipase A from Candida antarctica immobilized on immobead 150 (CalA, 1.59 U/mg, recombinant from A.

oryzae)

Lipase acrylic resin from Candida antarctica (CalB, > 5 U/mg, recombinant from A. niger)

Amano lipase PS-IM immobilized on diatomaceous earth (no activity given)

Lipase from Candida rugosa (CRL Type VII, 1.117 U/mg)

Pankreatin from porcine pancreas (4 x USP specifications, no activity given).

Table S3. Screening of hydrolases for the hydrolytic kinetic resolution of esters S13-S14.%

(o]
esterase/ HO,
lipase . Ph* N
Tris-HCI pH 9.5 H
37°C,18h
rac-S$13: R = Me (5,9)-s13 (R.R)-32
rac-S14: R = "Pr (5,9)-s14
Entry Enzyme R e.e.of S13/S14 (%) e.e.of 32 (%) Conv. (%) Selectivity E**
1 Lipase A from Candida antarctica (CalA) Me 1(5.5) 3 (RR) 22 1
2 Lipase A from Candida antarctica (CalA) n-Pr 2(S,S) 2 (RR) 9 1
3 Esterase form porcine liver (PLE) Me 94 (S,5) 8 (R,R) 20 3
4 Esterase form porcine liver (PLE) n-Pr 1 1 93 1
5 Amano-Lipase PS Me <1 2 13 n.c
6 Amano-Lipase PS n-Pr 1 1 17 1
7 Lipase from Candida rugosa (CRL) Me <1 <1 13 n.c
8 Pancreatin from hog pancreas Me <1 1 14 n.c

“Conditions: Enzyme preparation (3.0 mg/mL) Tris-HCl buffer (100 mM, pH 9.5), substrate (50 mM), 37 °C, 24 h.
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Figure S1. pH-Dependence of the PLE-catalyzed hydrolytic kinetic resolution of racemic acetate $13. Conditions: PLE (100 U),
substrate $13 (50 mM) in the respective buffer system with 10% v/v ‘BuOH. PLE was omitted in enzyme blanks. Pronounced
background hydrolysis (grey points) leading to erosion of selectivity was observed with increasing pH. Highest selectivities were
observed in a KPi-buffer system at pH 7.3 (E = 7, conv. = 60%).
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Figure S2. Effect of organic co-solvent on the PLE-catalyzed hydrolytic kinetic resolution of acetate S13. (®): Selectivity; (m):
Conversion. Conditions: PLE (100 U), substrate $13 (50 mM) in KP-buffer (50 mM, pH 7.3) with 10% v/v of the respective co-
solvent (unless otherwise noted). Highest selectivities were observed with 15% v/v ‘BuOH (E = 7, conv. = 11%).
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Table S4. Screening of hydrolases for the acylative kinetic resolution of racemic trans-a-hydroxy-B-lactam 32.%

esterase/
lipase

organic solvent

rac-32 (RR)-32 (5,5)-s13

Entry Enzyme Solvent ee.of 32 (%) e.e.of S13 (%) Conv. (%) Selectivity E
1 Lipase B from Candida antarctica (CalB) MTBE <1 <1 <1 n.cb

2 Amano-Lipase PS MTBE 1 3 (RR) 1 1

3 Lipase A from Candida antarctica (CalA) MTBE 3 (RR) 40 (S,S) 7 2

4 Lipase A from Candida antarctica (CalA) 1,4-dioxane 1 52(S,5) 8 3

5 Lipase A from Candida antarctica (CalA) n-hexane 2 4 (S,S) 19 1

6 Lipase A from Candida antarctica (CalA) j-octane 1 16 (S,S) 22 1

7 Lipase A from Candida antarctica (CalA) toluene 2 37(5,5) 8 2

“Conditions: a-Hydroxy-A-lactam 32 (5.0 mg, 23 pmol), enzyme preparation (2.0 mg/mL) and isopropenyl acetate (12.5 pL, 115 pmol, 5.0 eq) in
anhydrous solvent (1.0 mL); incubation for 24 h (250 rpm, 37 °C). Extraction with EtOAc (2 x 1 mL), dry over MgSOs, evaporate solvent under
red. pressure, re-dissolve in n-hexane/PrOH 9:1 for HPLC analytics. °n.c. = not calculated.

(R,R)-alcohol J\M

(S,5)-acetate

(R,R)-acetate JKJ\J
biotransformation M\J

T T T T T T T T - T L T T
0 2 4 6 8 10 12 14
t, (min)

Figure S3. HPLC-analytics for ester S13 and alcohol 32. Separation of all product- and substrate isomers was performed on a
Shimadzu VP series HPLC system equipped with a DAD using a Daicel Chiralcel IB column with an isocratic mixture of
hexanes/PrOH (9:1) as eluent. (S,S)-alcohol 32: 7.9 min, (R,R)-alcohol 32: 8.5 min, (5,5)-ester $13: 11.0 min, (R,R)-ester S13: 12.0
min.
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4. Comparison of NMR spectroscopic data for synthetic and isolated alkaloids

Table S5. Comparison of 'H- and '*C NMR spectroscopic data for casuarinine H (2)°

NH,
&4 (ppm) éc (ppm)
Position Lit. Found* Lit. Found*
1 - - 164.9 165.0
2 6.44,d (9.2) 6.43,d (9.3) 118.9 119.2
3 7.76,d (9.2) 7.76,d (9.4) 140.3 140.4
4 - - 120.5 120.5
5 - - 143.7 143.9
6 3.06,dd (18.8,7.1) 3.06,dd (18.9,7.1) 29.9 30.0
2.51,brd (18.8) 2.51,d(18.8)
7 2.30,m 2.29,m 34.2 343
8 1.75,brd (12.8) 1.74,d (13.3) 425 42.6
1.29,ddd (12.8,12.7,3.7) 1.29,ddd (12.8,12.8,4.1)
10 5.23,dd (16.8,1.8) 5.23,dd (17.0, 2.1) 117.2 1173
5.14,dd (10.4, 2.0) 5.13,dd (10.2,2.1)
11 5.62,ddd (16.8, 10.4,9.6) 5.62,ddd (16.9, 9.8, 9.8) 1373 1374
12 2.14,dd (9.6, 2.9) 2.15,dd (9.0, 2.5) 49.9 50.0
13 - - 54.8 54.8
14 1.64,dd (12.0,3.9) 1.65,dd (11.7, 3.6) 52.2 524
1.09,dd (12.0, 12.0) 1.10,dd (12.1,12.1)
15 1.40, m 141, m 26.3 26.5
16 0.85,d (6.4) 0.85,d (6.4) 21.7 219
N-H 13.32,brs 13.25,brs - -

“Coupling constants in parentheses (J) are given in Hz. ®Isolated natural product measured in CDCls at 400 MHz ('H) and 100 MHz (**C).
Synthetic sample measured in CDCls at 500 MHz ('H) and 151 MHz ("*C).
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Table S6. Comparison of 'H- and '*C NMR spectroscopic data for 8,15-dihydrohuperzine A (3)°

|
15 H

e o
10 \1I|3,4\3//2
NH,
4 (ppm) & (ppm)
Position Lit Lit. Found? Lit. Lit. Found?
1 - - - 165.0 164.2 164.9
2 6.40,d (9.4) 6.41,d (9.5) 6.41,d (9.4) 116.8 117.2 1171
3 7.82,d (9.4) 7.82,d (9.5) 7.82,d (9.4) 139.5 139.4 139.6
4 - - - 122.2 1221 1223
5 - - - 144.5 143.6 144.4
6 2.71,d (18.3) 2.62,d(17.8) 2.69,d (18.1) 34.4 34.5 34.6
3.02,dd (18.3,7.1) 3.00,dd (17.8,7.7) 3.01,dd (18.2,7.3)
7 3.32,brs 333, m 333, m 30.6 30.7 30.7
8 1.27-1.13, m 1.20, dt (12.6, 4.0) 1.19,dt (12.8,4.4) 42.7 42.7 42.8
10 1.66,d (6.7) 1.67,d (6.7) 1.67,d (6.7) 123 12.2 124
11 Not reported 5.51,9(6.7) 5.50,q(6.7) 1113 111.2 1114
12 - - - 144.5 144.5 144.6
13 - - - 55.1 54.8 55.1
14 Not reported 1.05,1(12.0) 1.05,t(11.9) 51.2 51.2 513
1.80-1.57, m 1.78,brt (10.2) 1.72,brd, (12.2)
15 1.80-1.57, m 1.60, m 1.60 (m) 26.5 26.5 26.6
16 0.81,d (6.3) 0.83,d (6.5) 0.82,d (6.5) 214 213 215
13" (NH2) Not reported Not reported 1.64-1.53,brs - - -
1 (NH) 11.4-10.9, brs Not reported 12.83,brs - - -

“Coupling constants in parentheses (J) are given in Hz. ®Synthetic sample measured in CDCl; at 300 MHz.2 “Isolated natural product measured

in CDCl; at 600 MHz ("H) and 150 MHz (**C)."® “Synthetic sample measured in CDCls at 600 MHz ('H) and 151 MHz ("3C).
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Table S7. Comparison of 'H- and '*C NMR spectroscopic data for lycoplatyrine B (4)*

,\15 H
AT
104 1,12\1I|3,4\ _2
NH,
1 (ppm) dc (ppm)
Position Lit. Found* Lit. Found*
1 - - 171.5 171.2
2 243, m 2.48-2.40, m 311 31.2
3 2.26, m 227, m 19.8 19.9
2.42,m 2.48-2.40,m
4 - - 113.9 114.2
5 - - 129.8 129.6
6 1.72,d (18.0) 1.71,d (18.1) 30.1 30.2
243, m 2.48-2.40, m
7 211, m 2.13,m 344 346
8 1.21, brt (14.0% [ax] 1.25-1.20, m 42.8 43.0
1.68, m [eq] 1.68-1.64, m
10 5.11,dd (10.0, 2.0) 5.13,dd (10.2,2.2) 1183 1183
5.19,dd (17.0, 2.0) 5.21,dd (17.1,2.1)
11 5.79,dt(17.0,10.0) 5.81,dt(17.1,9.8) 1383 138.4
12 2.03,dd (10.0, 2.8) 2.04,dd (9.4, 3.0) 54.8 55.0
13 - - 53.1 53.0
14 0.89, m [ax] 0.89,m 46.9 471
1.68, m [eq] 1.68-1.64, m
15 1.66, m 1.68-1.64, m 26.9 27.0
16 0.87,d (6.0) 0.89,d (6.1) 219 220
N-H 7.66,brs 7.17,brs - -

“Coupling constants in parentheses (J) are given in Hz. %Isolated natural product measured in CDCl; at 400 MHz ('H) and 100 MHz (*C).
‘Synthetic sample measured in CDCl; at 600 MHz ('H) and 151 MHz (*3C). “Coupling constant determined from homonuclear decoupling

experiments.
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Table $8. Comparison of 'TH NMR spectroscopic data for lycoplatyrine A (8).

.,
L
1o NH SN

Position Lit. (major isomer)® Found (2'S epimer)* Lit. (minor isomer)? Found (2'R epimer)*

1 8.33,d (2.0) 8.32,d(2.1) 8.36,d (2.0) 8.37,d (2.0)

3 7.77,d (2.0) 7.74,d (2.0) 7.76,d (2.0) 7.72,d (2.0)

6 2.70,d (18.6) 2.69,d (18.6) 2.70,d (18.6) 2.69,d (18.6)
3.14,dd (18.6,7.2) 3.13,dd (18.6,7.1) 3.14,dd (18.6,7.2) 3.13,dd (18.1,7.1)

7 2.09, m 2.08, m 2.09, m 2.08, m

8 1.34,td (12.4, 3.8) [ax] 1.33,td (12.3,3.8) 1.34,td (12.4, 3.8) [ax] 1.33,td (12.4,3.8)
1.77, m [eq] 1.82-1.64, m 1.77, m [eq] 1.84-1.64, m

9 2.43, m [ax] 242, m 2.43, m [ax] 241, m
2.79, m [eq] 2.79,m 2.79, m [eq] 2.83-2.74, m

10 1.56,m 1.56-1.47, m 1.56,m 1.61-1.47, m
1.56,m 1.56-1.47, m 1.56,m 1.61-1.47, m

11 1.19, m [ax] 1.27-1.12, m 1.19, m [ax] 1.28-1.12, m
1.53, m [eq] 1.56-1.47, m 1.53, m [eq] 1.61-1.47, m

12 1.61, m 1.60, dt (12.4,2.9) 1.61, m 1.61-1.47, m

14 1.19, m [ax] 1.27-1.12, m 1.19, m [ax] 1.28-1.12, m
1.46,d (10.2) [eq] 1.44,d(10.3) 1.46,d (10.2) [eq] 1.44,d (10.4)

15 1.22,m 1.27-1.12,m 1.22,m 1.28-1.12,m

16 0.77,d (5.9) 0.76,d (6.0) 0.78,d (5.9) 0.77,d (6.1)

2 3.63,d(9.2) 3.61,d(10.5) 3.63,d(9.2) 3.62,d (10.0)

3 1.53,m 1.56-1.47, m 1.53,m 1.61-1.47, m
1.81,m 1.82-1.64, m 1.81,m 1.84-1.64, m

4 1.53,m 1.56-1.47, m 1.53,m 1.61-1.47, m
191, m 1.90,m 191, m 1.90,m

5 1.55,m 1.56-1.47, m 1.55,m 1.61-1.47, m
1.67,m 1.82-1.64, m 1.67,m 1.84-1.64, m

6 2.80,m 279, m 2.80,m 2.83-2.74,m
3.21,dd (11.6, 1.6) 3.20,d (11.6) 3.21,dd (11.6, 1.6) 3.20,d (11.5)

Chemical shifts (&) are given in ppm, coupling constants in parentheses (J) are given in Hz. ®1.3:1 Mixture of epimers isolated from natural

sources measured in CDCls at 600 MHz.2 “Synthetic samples of individual epimers (>95:5 d.r.) measured in CDCls at 500 MHz.
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Table $9. Comparison of 3C NMR spectroscopic data for lycoplatyrine A (8).

i
=15
7,/162[5"“\\1

Mo LA A K

1I1/ ~I3/ NLZ \Zl,z \I

1o\g,NH 8, -°
Position Lit. (major isomer)® Found (2'S epimer)* Lit. (minor isomer)? Found (2'R epimer)*
1 145.54¢ 145.89 145.72¢ 145.67
2 138.54¢ 138.76 138.59¢ 138.83
3 131.10¢ 131.15 131.33¢ 131.38
4 135.68¢ 135.93 135.56¢ 135.81
5 157.40¢ 157.73 157.55¢ 157.55
6 35.01¢ 35.15 35.05¢ 35.28
7 33.71¢ 33.88 33.74¢ 33.92
8 43.807 44.00 43817 43.99
9 41.347 41.50 41.447 41.61
10 27.72¢ 27.92 27.67¢ 27.99
1 26.25 26.34 26.15 26.35
12 44.497 44.69 44,559 44.78
13 56.29¢ 56.36 56.33¢ 56.30
14 51.25¢9 51.50 51.37¢ 51.64
15 25.80¢ 25.93 25.81¢ 25.96
16 22.05¢ 22.22 22.07¢ 22.24
2 59.82¢ 60.01 59.94¢ 60.14
3 34.92 35.27 34.92 35.22
4 25.27¢ 25.46 25.29¢ 25.49
5 25.71¢ 25.93 25.744 25.96
6’ 47.73 47.92 47.73 47.92

Chemical shifts (&) are given in ppm.®1.3:1 Mixture of epimers isolated from natural sources measured in CDCls at 150 MHz.2 ‘Synthetic

sample of individual epimers (>95:5 d.r.) measured in CDCls at 125 MHz. “Signals annotated as interchangeable among epimers.

543



8’/15
L
5 12/‘} ~6—7 7 3, 1 2 4 3
§ 11' N—H \—/ H
mvww} T N e Wm
2'R-epimer
MMW i Jl‘w M! w‘; “Lvul'l‘r“ w""' v”vvvﬁwﬂ..':vl'mll" " ’WI"'M'JW"‘MA"'.'A‘{' 'V‘V‘V'Al '|“M‘|"‘v‘|‘v‘|‘r..lm“ g -‘-J
epimeric mixture at C2°
M}-fwa: \ T T } } LWN««W
T T L T T T T T T T T T T T V‘ T T T T T T T T T T : T T T T : 1I T
159 157 155 153 151 149 147 145 143 141 139 137 135 133 131 129
(5] 13 14 6 12 8 9
RAM I NNy NN A AL A AR A AR A A A Wwwwm» WMWNWW'E
TP | TR —— MWUWW
r T T T T T T T T T T T T T T T T T T - 1
61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41
sl
3'6 7 10 1115 4 16
i A M AN Pttt i oot o vaw«w
37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20
f1 (ppm)

Figure S4. Overlay of *C-NMR spectra (125 MHz, CDCls) of pure C2’ epimers (>95:5 d.r.) and an epimeric mixture of 8 obtained

from coupling N-Boc-2-bromolycodine (31) with racemic lactam 32.
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Table $10. Comparison of 'H- and *C NMR spectroscopic data for lycopladine F (epimeric mixture at C2') (9)°

16

,8\1I5
H“jz/‘(:fi( N:\ l 3. Eal)
1|1’ ‘1I3’ N7 \2I" S4” " 0H
10\9/NH NH,
Sn (ppm) & (ppm)
Position Lit. Found* Lit. Found*
1 8.59,5;8.61,s 8.61,d (2.0); 8.58,d (2.0) 149.4 175.24;175.19
2 - - 1323 132.30
3 8.24,5;8.16, s 8.25,d (2.1);8.17,d (2.1) 133.8 133.82;134.19
4 - - 131.0 130.99; 130.90
5 - - 160.8 160.81; 160.76
6 3.28, m 3.29-3.19,m 35.2 35.13;35.11
2.82,d(19.2);2.83,d (19.2) 2.83,d(19.4); 2.84,d (19.3)
7 235, m 2.43-2.29,m 339 33.87
8 1.87, m 1.94-1.84, m 43.4 43.39;43.35
1.47,ddd (13.2,12.6, 3.6) 1.47,ddd (13.0,12.9,3.4)
9 3.28, m 3.29-3.19,m 41.9 41.93;41.89
2.94,ddd (13.2,12.6, 3.6) 2.99-2.90, m
10 1.88, m 1.94-1.84, m 23.8 23.84;23.82
11 1.73,brd (13.2) 1.74,brd (13.5) 25.0 25.00
134, m 1.38-1.22, m
12 2.09, brd (12.6) 2.09,brd (12.4) 424 42.45
13 - - 62.7 62.65; 62.64
14 1.89, m 1.94-1.84, m 48.2 48.18;48.15
1.63,dd (12.0, 12.0) 1.62,dd (12.0, 12.0)
15 1.23,m 1.38-1.22, m 27.0 26.98; 26.93
16 0.87,d (6.6); 0.88, d (6.6) 0.88, d (6.6); 0.89, d (6.6) 21.7 21.71 (21.69)
2 4.50,m; 451, m 4.50, m 53.8 53.81;53.78
3 2.38,m 2.43-2.29,m 304 30.83;30.78
4! 242, m 2.43-2.29,m 29.8 29.81;29.79
2.36,m 2.43-2.29,m
5 - - 175.8 175.24;175.19

“Coupling constants in parentheses (J) are given in Hz. ®1:3.5 mixture of 2'R and 2'S epimers isolated from natural sources measured in CD;0D
at 600 MHz. In cases where the diastereomers resolve, the signal for the minor diastereomer is listed second.?® “Synthetic sample of epimeric
mixture (1:1 d.r.) measured in CDsOD at 600 MHz ('H) and 151 MHz (3C). In cases where the diastereomers resolve, the signal for the second

diastereomer is also given.
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26. Sample of 3 isolated from natural sources: Ishiuchi, K.; Kubota, T.; Hayashi, S.; Shibata, T.; Kobayashi, J., Lycopladines F and
G, new CisN»-type alkaloids with an additional C.N unit from Lycopodium complanatum. Tetrahedron Lett. 2009, 50, 4221~
4224.
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6. NMR Spectra
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