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The Environmental Influences on Child Health Outcomes (ECHO) program  

 
The ECHO Program supports multiple longitudinal studies using existing cohorts to investigate how 
environmental exposures — including physical, chemical, biological, social, behavioral, natural and built 
environments — influence child health and development. The studies focus on five key pediatric 
outcomes that have a high public health impact: pre-, peri-, and postnatal outcomes; upper and lower 
airway; obesity; neurodevelopment; and positive health. See https://www.nih.gov/research-
training/environmental-influences-child-health-outcomes-echo-program for greater details.  
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The Children’s Respiratory and Environmental Workgroup (CREW)  
 

CREW is funded by the ECHO program and consists of 12 individual cohort studies and 3 scientific 
centers. The overall goal of CREW program is to develop a better understanding of how early life 
environmental exposures and host factors interact to promote the development of specific asthma 
endotypes.  
 
CREW Cohorts 
 
CCAAPS: Cincinnati Childhood Allergy and Air Pollution Study  
Gurgit K. Khurana Hershey*, Cincinnati’s Children Hospital, Cincinnati, OH 
Patrick H. Ryan*, Cincinnati’s Children Hospital, Cincinnati, OH 
Jocelyn M. Biagini Myers, Cincinnati’s Children Hospital, Cincinnati, OH 
Jeffrey W. Burkle, Cincinnati’s Children Hospital, Cincinnati, OH 
Kristi Curtsinger, Cincinnati’s Children Hospital, Cincinnati, OH 
Zachary Flege, Cincinnati’s Children Hospital, Cincinnati, OH 
Taylor Groeschen, Cincinnati’s Children Hospital, Cincinnati, OH 
Kristina Keidel, Cincinnati’s Children Hospital, Cincinnati, OH 
Grace K. LeMasters, Cincinnati’s Children Hospital, Cincinnati, OH 
David Morgan, Cincinnati’s Children Hospital, Cincinnati, OH 
Liza Murrison, Cincinnati’s Children Hospital, Cincinnati, OH 
Krista Tensing, Cincinnati’s Children Hospital, Cincinnati, OH 
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Christopher Wolfe, Cincinnati’s Children Hospital, Cincinnati, OH 
 
CCCEH: Columbia Center for Children’s Environmental Health   
Rachel L. Miller*, Icahn School of Medicine at Mount Sinai, New York, NY 
Howard Andrews, Columbia University Medical Center, New York, NY  
Julie Herbstman, Columbia University Medical Center, New York, NY 
Lori Hoepner, Columbia University Medical Center, New York, NY 
Jacqueline Jezioro, Columbia University Medical Center, New York, NY 
Xinhua Liu, Columbia University Medical Center, New York, NY 
Frederica Perera, Columbia University Medical Center, New York, NY 
Matthew Perzanowski, Columbia University Medical Center, New York, NY 
Judyth Ramirez, Columbia University Medical Center, New York, NY 
Kylie Riley, Columbia University Medical Center, New York, NY 
Janelle Rivera, Columbia University Medical Center, New York, NY 
Deliang Tang, Columbia University Medical Center, New York, NY 
 
Childhood Allergy Study (CAS)  
Dennis Ownby,* Augusta University, Augusta, GA 
Christine C Johnson,* Henry Ford Health System, Detroit, MI 
Edward M. Zoratti,* Henry Ford Health System, Detroit, MI 
Nonna Akkerman, Henry Ford Health System, Detroit, MI 
Sharon Hensley Alford, Henry Ford Health System, Detroit, MI 
Geraldine Birg, Henry Ford Health System, Detroit, MI 
Shirley Blocki, Henry Ford Health System, Detroit, MI 
Suzanne Havstad, Henry Ford Health System, Detroit, MI 
Amelia Jones, Henry Ford Health System, Detroit, MI 
Christine LM Joseph, Henry Ford Health System, Detroit, MI 
Judith McCullough, Henry Ford Health System, Detroit, MI 
Charlotte Nicholas, Henry Ford Health System, Detroit, MI 
Edward Peterson, Henry Ford Health System, Detroit, MI 
Gina Stouffer, Henry Ford Health System, Detroit, MI 
Cathey Strauchman Boyer, Henry Ford Health System, Detroit, MI 
Karen Wells, Henry Ford Health System, Detroit, MI 
Ganesa Wegienka, Henry Ford Health System, Detroit, MI 
Kimberley Woodcroft, Henry Ford Health System, Detroit, MI 
Shirley Zhang, Henry Ford Health System, Detroit, MI 
 
COAST: Childhood Origins of Asthma  
Robert F. Lemanske, Jr.*, University of Wisconsin-Madison, Madison, WI 
Daniel J. Jackson*, University of Wisconsin-Madison, Madison, WI 
James E. Gern, University of Wisconsin-Madison, Madison, WI 
Carole Ober, University of Chicago, Chicago, IL 
Ronald E. Gangnon, University of Wisconsin-Madison, Madison, WI 
Yury Bochkov, University of Wisconsin-Madison, Madison, WI 
Elizabeth Anderson, University of Wisconsin-Madison, Madison, WI 
Julia Bach. University of Wisconsin-Madison, Madison, WI 
Rebecca Brockman-Schneider, University of Wisconsin-Madison, Madison, WI 
Kirsten Carlson-Dakes, University of Wisconsin-Madison, Madison, WI 
Douglas DaSilva, University of Wisconsin-Madison, Madison, WI 
Mark DeVries, University of Wisconsin-Madison, Madison, WI 
Susan Doyle, University of Wisconsin-Madison, Madison, WI 
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Michael D. Evans, University of Wisconsin-Madison, Madison, WI 
Kristine Grindle, University of Wisconsin-Madison, Madison, WI 
Lance Mikus, University of Wisconsin-Madison, Madison, WI 
Tressa Pappas, University of Wisconsin-Madison, Madison, WI 
Victoria Rajamanickam, University of Wisconsin-Madison, Madison, WI 
Kathy Roberg, University of Wisconsin-Madison, Madison, WI 
Lisa Salazar, University of Wisconsin-Madison, Madison, WI 
Anne Marie Singh, University of Wisconsin-Madison, Madison, WI 
Ronald Sorkness, University of Wisconsin-Madison, Madison, WI 
Christopher Tisler, University of Wisconsin-Madison, Madison, WI 
Rose Vrtis, University of Wisconsin-Madison, Madison, WI 
 
EHAAS: Epidemiology of Home Allergens and Asthma Study  
Diane R. Gold*, Harvard School of Public Health, Boston, MA 
Soma Datta, Harvard School of Public Health, Boston, MA 
Sharon O’Toole, Harvard School of Public Health, Boston, MA 
Conner Fleurat, Harvard School of Public Health, Boston, MA 
Leanna Farnham, Harvard School of Public Health, Boston, MA 
 
IIS: Infant Immune Study  
Anne L. Wright*, University of Arizona, Tucson, AZ 
Fernando D. Martinez*, University of Arizona, Tucson, AZ 
Paloma Beamer, University of Arizona, Tucson, AZ 
Dean Billheimer, University of Arizona, Tucson, AZ 
Heidi Erickson, University of Arizona, Tucson, AZ 
Brian Hallmark, University of Arizona, Tucson, AZ 
Marilyn Halonen, University of Arizona, Tucson, AZ 
Nathan Lothrop, University of Arizona, Tucson, AZ 
Wayne Morgan, University of Arizona, Tucson, AZ 
Amber Spangenberg, University of Arizona, Tucson, AZ 
David Spies University of Arizona, Tucson, AZ 
Debra A. Stern, University of Arizona, Tucson, AZ 
 
INSPIRE: Infant Susceptibility to Pulmonary Infections and Asthma Following RSV Exposure  
Tina V. Hartert*, Vanderbilt University Medical Center, Nashville, TN 
Niek Achten, Vanderbilt University Medical Center, Nashville, TN 
Alyssa Bednarek, Vanderbilt University Medical Center, Nashville, TN 
Steven M. Brunwasser, Vanderbilt University Medical Center, Nashville, TN 
Teresa M. Chipps , Vanderbilt University Medical Center, Nashville, TN 
Alexandra Connolly, Vanderbilt University Medical Center, Nashville, TN 
Kaitlin Costello, Vanderbilt University Medical Center, Nashville, TN 
Marian Dorst, Vanderbilt University Medical Center, Nashville, TN 
William D. Dupont, Vanderbilt University Medical Center, Nashville, TN 
Roxanne Filardo-Collins, Vanderbilt University Medical Center, Nashville, TN 
Rebecca Gammell, Vanderbilt University Medical Center, Nashville, TN 
Tebeb Gebretsadik, Vanderbilt University Medical Center, Nashville, TN 
Kayla Goodman, Vanderbilt University Medical Center, Nashville, TN 
Emma Larkin, Vanderbilt University Medical Center, Nashville, TN 
Jessica Levine, Vanderbilt University Medical Center, Nashville, TN 
Zhouwen Liu, Vanderbilt University Medical Center, Nashville, TN 
Christian Lynch, Vanderbilt University Medical Center, Nashville, TN 
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Megan Mccollum, Vanderbilt University Medical Center, Nashville, TN 
Patricia Minton, Vanderbilt University Medical Center, Nashville, TN 
Paul E. Moore, Vanderbilt University Medical Center, Nashville, TN 
Sarah Osmundson, Vanderbilt University Medical Center, Nashville, TN 
R. Stokes Peebles, Vanderbilt University Medical Center, Nashville, TN 
Christian Rosas-Salazar, Vanderbilt University Medical Center, Nashville, TN 
Theresa Rogers, Vanderbilt University Medical Center, Nashville, TN 
Pat Russell, Vanderbilt University Medical Center, Nashville, TN 
Kedir Turi, Vanderbilt University Medical Center, Nashville, TN 
Kim B. Woodward, Vanderbilt University Medical Center, Nashville, TN 
Pingsheng Wu, Vanderbilt University Medical Center, Nashville, TN 
Suman R. Das, Vanderbilt Technologies for Advanced Genomics, Nashville, TN 
Meghan H. Shilts, Vanderbilt Technologies for Advanced Genomics, Nashville, TN 
James D. Chappell, Vanderbilt Infectious Diseases, Nashville, TN 
Zhengzheng Tang, University of Wisconsin, Madison, WI 
Larry J. Anderson, Emory University, Atlanta, GA 
Tatiana Chirkova, Emory University, Atlanta, GA 
Samadhan J. Jadhao, Emory University, Atlanta, GA 
 
MAAP: Microbes, Allergy, Asthma and Pets 
Edward M. Zoratti*, Henry Ford Health System, Detroit, MI 
Christine C. Johnson*, Henry Ford Health System, Detroit, MI 
Stacey Bellemore, Henry Ford Health System, Detroit, MI 
Kevin Bobbitt, Henry Ford Health System, Detroit, MI 
Homer Boushey, University of California, San Francisco, CA 
Brent Davidson, Henry Ford Health System, Detroit, MI 
Salvatore Finazzo, Henry Ford Health System, Detroit, MI 
Suzanne Havstad, Henry Ford Health System, Detroit, MI 
Kyra Jones, Henry Ford Health System, Detroit, MI 
Albert M. Levin, Henry Ford Health System, Detroit, MI 
Nicholas Lukacs, University of Michigan, Ann Arbor, MI 
Susan Lynch, University of California, San Francisco, CA  
Erik Mann, Henry Ford Health System, Detroit, MI 
Dennis Ownby, Augusta University, Augusta, GA  
Alexandra Sitarik, Henry Ford Health System, Detroit, MI 
Anthony Wahlman, Henry Ford Health System, Detroit, MI 
Ganesa Wegienka, Henry Ford Health System, Detroit, MI 
Kimberley Woodcroft, Henry Ford Health System, Detroit, MI 
Shirley Zhang, Henry Ford Health System, Detroit, MI 
 
TCRS: Tucson Children’s Respiratory Study  
Fernando D. Martinez*, University of Arizona, Tucson, AZ 
Anne L. Wright*, University of Arizona, Tucson, AZ 
Paloma Beamer, University of Arizona, Tucson, AZ 
Dean Billheimer, University of Arizona, Tucson, AZ 
Lydia De La Ossa, University of Arizona, Tucson, AZ 
Brian Hallmark, University of Arizona, Tucson, AZ 
Marilyn Halonen, University of Arizona, Tucson, AZ 
Silvia Lopez, University of Arizona, Tucson, AZ 
Nathan Lothrop, University of Arizona, Tucson, AZ 
Wayne Morgan, University of Arizona, Tucson, AZ 
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Amber Spangenberg, University of Arizona, Tucson, AZ 
David Spies, University of Arizona, Tucson, AZ 
Debra A. Stern, University of Arizona, Tucson, AZ 
 
URECA: Urban Environment and Childhood Asthma Study  
Robert A. Wood*, Johns Hopkins University, Baltimore, MD 
Meyer Kattan*, Columbia University Medical Center, New York, NY 
Gordon Bloomberg*, Washington University School of Medicine, St Louis, MO 
Leonard Bacharier*, Washington University School of Medicine, St Louis, MO  
George O’Connor*, Boston University School of Medicine, Boston, MA 
William Busse*, University of Wisconsin, Madison, WI 
James E. Gern*, University of Wisconsin, Madison, WI 
Cynthia M. Visness*, Rho, Inc, Chapel Hill, NC 
Irma Bauer, Washington University School of Medicine, St Louis, MO  
Patrice Becker, National Institute of Allergy and Infectious Diseases, Bethesda, MD 
Yury Bochkov, University of Wisconsin, Madison, WI 
Richard Budrevich, Rho, Inc, Chapel Hill, NC 
Agustin Calatroni, Rho, Inc, Chapel Hill, NC 
Michelle Cootauco, Johns Hopkins University, Baltimore, MD 
William Cruikshank, Boston University School of Medicine, Boston, MA 
Amy Dresen, University of Wisconsin, Madison, WI 
Janet Durrange, Washington University School of Medicine, St Louis, MO  
Angela Freie, Washington University School of Medicine, St Louis, MO  
Lisa Gagalis, Boston University School of Medicine, Boston, MA 
Peter Gergen, National Institute of Allergy and Infectious Diseases, Bethesda, MD 
Edlira Gjerasi, Boston University School of Medicine, Boston, MA 
Diane Gold, Harvard Medical School, Boston, MA 
N Gonzalez, Boston University School of Medicine, Boston, MA 
Kristine Grindle, University of Wisconsin, Madison, WI 
Patrick Heinritz, University of Wisconsin, Madison, WI 
Kellie Hernandez, University of Wisconsin, Madison, WI 
Daniel Jackson, University of Wisconsin, Madison, WI 
Katy Jaffee, Rho, Inc, Chapel Hill, NC 
Jaqueline Jezioro, Columbia University, New York, NY 
Paul Jones, Johns Hopkins University, Baltimore, MD 
Carolina Jordan, Boston University School of Medicine, Boston, MA 
Clint Koerkenmeier, Washington University School of Medicine, St Louis, MO  
Carin Lamm, Columbia University, New York, NY 
Howard Lederman, Johns Hopkins University, Baltimore, MD 
Aviva Lee-Parritz, Boston University School of Medicine, Boston, MA 
Stephanie Leimenstoll, Johns Hopkins University, Baltimore, MD 
Stephanie Lovinsky-Desir, Columbia University Medical Center, New York, NY 
Jennifer Martin, Rho, Inc, Chapel Hill, NC 
Elizabeth Matsui, Johns Hopkins University, Baltimore, MD 
Herman Mitchell, Rho, Inc, Chapel Hill, NC 
Valerie Morgan, Washington University School of Medicine, St Louis, MO 
Tressa Pappas, University of Wisconsin, Madison, WI 
Marcela Pierce, Columbia University, New York, NY 
Penny Price-Johnson, Boston University School of Medicine, Boston, MA 
Kimberly Ray, Washington University School of Medicine, St Louis, MO  
Megan Renneberg, University of Wisconsin, Madison, WI 
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Neisha Rivers, Mount Sinai School of Medicine, New York, NY 
Yael Sadovsky, Washington University School of Medicine, St Louis, MO  
Hugh Sampson, Mount Sinai School of Medicine, New York, NY  
Megan Sandel, Boston University School of Medicine, Boston, MA 
Dena Scott, Johns Hopkins University, Baltimore, MD 
Renee Sharp, Washington University School of Medicine, St Louis, MO  
Ernestine Smartt, National Institute of Allergy and Infectious Diseases, Bethesda, MD 
Christine Sorkness, University of Wisconsin, Madison, WI 
Brandy Stoffel, University of Wisconsin, Madison, WI 
Rhoda Sperling, Mount Sinai School of Medicine, New York, NY 
William Taylor, Rho, Inc, Chapel Hill, NC 
Elizabeth Tesson, Washington University School of Medicine, St Louis, MO  
Kathy Thompson, National Institute of Allergy and Infectious Diseases, Bethesda, MD 
Alkis Togias, National Institute of Allergy and Infectious Diseases, Bethesda, MD 
Marina Tuzova, Boston University School of Medicine, Boston, MA 
Lena Wang, Boston University School of Medicine, Boston, MA 
Lisa Wheatley, National Institute of Allergy and Infectious Diseases, Bethesda, MD 
Nitsa Whitney, Columbia University, New York, NY 
Frank Witter, Johns Hopkins University, Baltimore, MD 
Rosalind Wright, Harvard Medical School, Boston, MA 
Melissa Yaeger, Rho, Inc, Chapel Hill, NC 
Perri Yaniv, Columbia University, New York, NY 
Patricia Zook, Rho, Inc, Chapel Hill, NC 
 
WHEALS: Wayne County Health, Environment, Allergy and Asthma Longitudinal Study  
Christine C. Johnson*, Henry Ford Health System, Detroit, MI 
Mary Ann Aubuchon, Henry Ford Health System, Detroit, MI 
Charles Barone, Henry Ford Health System, Detroit, MI 
Stacey Bellemore, Henry Ford Health System, Detroit, MI 
Kevin Bobbitt, Henry Ford Health System, Detroit, MI 
Karen Bourgeois, Henry Ford Health System, Detroit, MI 
Homer Boushey, University of California, San Francisco, CA 
Janice Campbell, Henry Ford Health System, Detroit, MI 
Andrea Cassidy-Bushrow, Henry Ford Health System, Detroit, MI 
Brent Davidson, Henry Ford Health System, Detroit, MI 
Jerel Ezell, Henry Ford Health System, Detroit, MI 
Suzanne Havstad, Henry Ford Health System, Detroit, MI 
Kyra Jones, Henry Ford Health System, Detroit, MI 
Christine LM Joseph, Henry Ford Health System, Detroit, MI 
Haejin Kim, Henry Ford Health System, Detroit, MI 
Albert M. Levin, Henry Ford Health System, Detroit, MI 
Dennis Ownby, Augusta University, Augusta, GA 
Alexandra Sitarik, Henry Ford Health System, Detroit, MI 
L Keoki Williams, Henry Ford Health System, Detroit, MI 
Ganesa Wegienka, Henry Ford Health System, Detroit, MI 
Kimberley Woodcroft, Henry Ford Health System, Detroit, MI 
Edward M. Zoratti, Henry Ford Health System, Detroit, MI 
Shirley Zhang, Henry Ford Health System, Detroit, MI 
 
WISC: Wisconsin Infant Study Cohort  
Christine M. Seroogy*, University of Wisconsin-Madison, Madison, WI 
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James E. Gern*, University of Wisconsin-Madison, Madison, WI 
Elizabeth Armagost, Marshfield Clinic Research Institute, Marshfield, WI 
Kathrine L. Barnes, Marshfield Clinic Research Institute, Marshfield, WI 
Casper G. Bendixsen, Marshfield Clinic Research Institute, Marshfield, WI 
Yury Bochkov, University of Wisconsin-Madison, Madison, WI 
Deborah Chasman, University of Wisconsin-Madison, Madison, WI 
Deanna Cole, Marshfield Clinic Research Institute, Marshfield, WI 
Erin Donnerbauer, Marshfield Clinic Research Institute, Marshfield, WI 
Amy Dresen, University of Wisconsin-Madison, Madison, WI 
Michael D. Evans, University of Wisconsin-Madison, Madison, WI 
Terry Foss, Marshfield Clinic Research Institute, Marshfield, WI 
Heather Floerke, University of Wisconsin-Madison, Madison, WI 
Wayne Frome, Marshfield Clinic Research Institute, Marshfield, WI 
Samantha Fye, University of Wisconsin-Madison, Madison, WI 
Ronald E. Gangnon, University of Wisconsin-Madison, Madison, WI 
Kristine Grindle, University of Wisconsin-Madison, Madison, WI 
Tara Johnson, Marshfield Clinic Research Institute, Marshfield, WI 
Matthew C. Keifer, Marshfield Clinic Research Institute, Marshfield, WI 
Tammy Kronenwetter Koepel, Marshfield Clinic Research Institute, Marshfield, WI 
Jennifer Meece, Marshfield Clinic Research Institute, Marshfield, WI 
Vicki Moon, Marshfield Clinic Research Institute, Marshfield, WI 
Brent F. Olson, Marshfield Clinic Research Institute, Marshfield, WI 
Irene Ong, University of Wisconsin-Madison, Madison, WI 
Tressa Pappas, University of Wisconsin-Madison, Madison, WI 
Steve Sigelman, National Institute of Allergy and Infectious Diseases, Bethesda, MD 
Jeffrey J. VanWormer, Marshfield Clinic Research Institute, Marshfield, WI 
Rose Vrtis, University of Wisconsin-Madison, Madison, WI 
 
 
CREW Science Centers and Cores 
 
Administrative Center  
James E. Gern,* University of Wisconsin-Madison, Madison, WI 
Gina Crisafi, University of Wisconsin-Madison, Madison, WI 
Dorothy Floerke, University of Wisconsin-Madison, Madison, WI 
Rick Kelley, University of Wisconsin-Madison, Madison, WI 
 
Biomedical Informatics and Biostatistical Core  
Umberto Tachinardi*, University of Wisconsin-Madison, Madison, WI 
Mark Craven*, University of Wisconsin-Madison, Madison, WI 
Eneida Mendonca, University of Wisconsin-Madison, Madison, WI 
Lisa Gress, University of Wisconsin-Madison, Madison, WI 
Laura Ladick, University of Wisconsin-Madison, Madison, WI 
Adam Nunez, University of Wisconsin-Madison, Madison, WI 
 
Coordinating Center  
Cynthia M. Visness*, Rho, Inc, Chapel Hill, NC 
Samara Dixon, Rho, Inc, Chapel Hill, NC 
Caitlin Suddeuth, Rho, Inc, Chapel Hill, NC 
Jena Tate, Rho, Inc, Chapel Hill, NC 
Melissa Yaeger, Rho, Inc, Chapel Hill, NC 
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Genetics Core 
Carole Ober*, University of Chicago, Chicago, IL 
Chris McKennon, University of Pittsburgh, Pittsburgh, PA 
Daniel Nicolae, University of Chicago, Chicago, IL 
Nathan Schoettler, University of Chicago, Chicago, IL 
Emma Thompson, University of Chicago, Chicago, IL 
 
Geospatial Core 
Diane Gold*, Harvard School of Public Health, Boston, MA 
Brent Coull, Harvard School of Public Health, Boston, MA 
Qian Di, Harvard School of Public Health, Boston, MA 
Heike Gibson, Harvard School of Public Health, Boston, MA 
Jaime Hart, Harvard School of Public Health, Boston, MA 
Peter James, Harvard School of Public Health, Boston, MA 
Marcia Jimenez Pescador, Harvard School of Public Health, Boston, MA 
Itai Kloog, Harvard School of Public Health, Boston, MA 
Weeberb Requia, Harvard School of Public Health, Boston, MA 
Joel Schwartz, Harvard School of Public Health, Boston, MA 
Antonella Zanobetti, Harvard School of Public Health, Boston, MA 
 
Microbiome Core 
Susan Lynch*, University of California-San Francisco, San Francisco, CA 
Katherine McCauley, University of California-San Francisco, San Francisco, CA 
 
University of Manchester Core  
John Ainsworth*, University of Manchester, Manchester, UK 
Philip Couch, University of Manchester, Manchester, UK 
Adnan Custovic, Imperial College, London UK 
Camille Johnson, University of Manchester, Manchester, UK 
Victoria Turner, University of Manchester, Manchester, UK 
 
 
*Principal Investigator, Center or Core Leader 
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Supplemental Methods 

Data Harmonization 

Each CREW birth cohort collected information from their study participants differently. To 

conduct an analysis using data from multiple cohorts first required harmonizing the data to 

derive the same variables for all subjects. This involved addressing differences in questions 

asked, differential length of follow-up, differential length of the recall period, and systematic 

missingness due to study protocols in which participants were not contacted at specific ages.   

Harmonization was an iterative process involving the CREW data coordinating team at the 

University of Wisconsin (UW), together with data managers from each study. For wheeze data, 

two authors (SH, GW) first reviewed all questions used by the cohorts that included the word 

“wheeze.” The individual cohorts then provided multiple records per child – one for each point 

of contact where a wheeze question was included. The questions used by the cohorts are shown 

in Table E3 along with the time frame asked about (3mo, 12mo, or since last spoke). This time 

frame varied substantially as shown in Figure E1. Notably, four of the cohorts regularly asked 

about wheeze several times per year, while the timing of questionnaires for other cohorts was 

more spread out. After reviewing the questions and time distributions, we focused on creating 

harmonized variables indicating whether a child wheezed during each year from birth to age 11. 

For cohorts that asked about wheeze more frequently than one year, subject responses were 

combined, e.g., if there were four wheeze reports three months apart in a year, with 1 ‘yes’ and 3 

‘no’ responses, that would become a single ‘yes’ for the whole 12mo period.  
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Even in cohorts that had very regular follow-up visits, there was still a spread in the actual 

ages of the children when questionnaires were received. In the IIS cohort, for example, the visit 

around year 1 occurred between 11 and 15mo, but those responses ask about the last year and 

can all reasonably be combined under ‘year 1’. A similar mapping was used for all the cohorts, 

such that a range of ages was used for each year variable; these intervals are shown in Table E4. 

In general, the four cohorts that asked questions more frequently than once per year 

(CCCEH, COAST, URECA, EHAAS) had fairly small spreads around convenient time points 

such as 3mo, 6mo, 9mo and 12mo. That fact together with the shorter time periods between 

questionnaires (either 3mo, or ‘since we last spoke’), made it reasonably straightforward to map 

the original wheeze variables to the new harmonized variables. For the other three cohorts 

(CCAAPS, IIS, TCRS), there were longer gaps between questionnaires and a larger spread in 

their timing. To map those responses to the new variables, we considered the time period the 

wheeze question referred to together with the age at which it was asked. For example, if a 

question asked about wheeze in the past 12mo and the questionnaire was completed when the 

child was 25mo old, that question would map to the new year 2 wheeze variable. In some cases, 

we used larger time ranges, for example, in IIS, there is a large spread of questionnaires from 

about 96-132mo, so we mapped responses in the interval 90-102mo to Year 8, 103-114mo to 

Year 9, and 115-126mo to Year 10. Figure E2 shows the number of individuals with records at 

each age by cohort and year after mapping the questions from each cohort to the new variables. 

Data inconsistencies were manually reviewed by the data team in consultation with each 

participating study-specific research team. Data on the harmonized wheeze variable for each 

subject were then returned to each site for final review and approval before being collated into a 
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single data set for analysis. All subjects with three or more data points were included in the 

wheeze latent class analysis. Missing values by cohort are shown in Table E5. 

By combining answers to multiple questions used by the cohorts, a single race/ancestry 

variable was created to categorize each study participant into one of seven groups: African 

American, European American, Caribbean Hispanic, Mexican American, Hispanic-Other, 

Multiple, Other.  

Each included cohort also collected covariate information using a variety of questions related 

to environmental tobacco smoke (ETS) exposure, dog and cat exposure in infancy, and total 

serum IgE. Using the same procedures, the following covariates were harmonized: a variable 

representing maternal smoking during pregnancy (defined as 0=none, 1=1-10 cigarettes/day, and 

2= >10 /day), and binary variables for whether a dog or cat was present in the home during 

infancy. In addition, total serum IgE measurements were collected from many subjects (n=2010), 

often at multiple time points and at ages which varied across cohorts. In order to include all the 

IgE data in our analyses, we first excluded records prior to age 3 (due to rapid increase in IgE 

levels during that period) and then fit a random intercept mixed-effects model to the longitudinal 

trajectories. That model was then used to predict the IgE value at age 6 for each individual with 

at least one data point. The standardized IgE values (z-scores) were then used as covariates in 

subsequent analyses.  

Similar procedures were used to create a harmonized asthma variable. This variable was 

based on parental reports of whether a child had received an asthma diagnosis at any time by a 

physician, and if so, when that diagnosis occurred. For this analysis, subjects with a reported 

asthma diagnosis by age 11 were classified as asthmatics, regardless of whether their symptoms 

remitted. Age 11 was chosen as it covered the same period for which wheeze was assessed. 
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SNP Selection 

The nine SNPs used for this study were chosen based on their previous associations with 

asthma. Because we did not have genome-wide genotypes for all of the CREW cohorts, we were 

limited in the number SNPs that we could genotype across this ~150kb region. Our selection 

approach was, therefore, to start with the 17 SNPs that were the lead SNPs in previous GWAS of 

asthma that were available at the time or were eQTLs for one or more of the genes across this 

extended locus. These 17 SNPs were described in detail in a previous review of the 17q locus 

(Stein et al. 2018). We then selected from among those SNPs those that best captured the LD 

structure among the 17 SNPs in African Americans, using 1000 Genome reference panels. These 

17 SNPs are now shown in Figure E7. SNPs outlined in boxes were selected for genotyping in 

this study. As an example, we selected a SNP in ZPBP2 (SNP #6) because this SNP has been 

shown to directly impact the looping and binding of an enhancer in IKZF3 to the promoter of 

ORMDL3, and is the strongest eQTL for ORMDL3 and GSDMB in blood immune cells. 

Therefore, we did not select SNP #5 in IKZF3 because it was in LD with the ZPBP2 SNP #6 in 

African Americans (r2 = 0.64). Other SNPs were not selected because they were in LD with a 

selected SNP (e.g., #4, #9, and #10 were all in LD with SNP #8) or because the evidence for 

association was limited to populations of European ancestry and only in the context of early life 

ETS exposure (e.g., #7 and #11). This process was guided by extensive knowledge of and 

experience with this locus, and eventually resulted in nine SNPs being chosen for the study.  

Statistical Analyses  

We performed a latent class analysis (LCA) on the harmonized wheeze data to derive 

longitudinal “wheeze phenotypes” as represented by the different latent classes. The goal of the 

LCA was to assess wheezing over time. Thus subjects with only one data point do not provide 
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this information, and subjects with only two data points provide very limited information. 

Further, almost all subjects with only two data points had data limited to the first three years of 

the study, limiting inference about their wheeze patterns over time. For these reasons, study 

participants with fewer than three responses through age 11 were removed from the data set. For 

each remaining subject (n=3786), we constructed a wheezing “trajectory” from the binary yes/no 

variables indicating whether or not the child wheezed in each year of life. We used the R 

package poLCA (1) to discover latent classes. The Bayesian Information Criterion (BIC) was 

used to select the number of classes and is shown in Figure E3, with a minimum at k=4 classes. 

We used this number of classes in all subsequent association analyses.  

To evaluate whether our requirement of three or more data points somehow biased analyses, 

we reran the LCA with all subjects, and with all subjects with two or more data points. In both 

cases, k=4 classes had the minimum BIC, and the resulting latent classes were nearly identical, 

reflecting the limited information in subjects with fewer than three data points. 

Missing data 

Many children could not be evaluated at one or more time points because data collection was 

not conducted in those years or the child’s response was missing. Table E5 provides information 

on total sample sizes and the number of missing values by cohort. To assess the role of missing 

data, we repeated the latent classes analyses in several ways. We reran the LCA using only 

complete cases, up to one missing data point, and up to two missing data points. In LCA, there is 

a general relationship such that the number of classes “chosen” by BIC tends to increase with 

sample size. As we only had n=601 complete cases (i.e. with data for all 11 years), for that LCA 

BIC was lowest for k=3 classes. Allowing up to two missing data points again produced a lowest 

BIC at k=4 classes. When we limited the data to year 10 and chose complete cases, the LCA 
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similarly produced the lowest BIC at k=4 classes. Finally, we found similar results when we 

sequentially removed individual cohorts from the analysis. As the genetic analyses only 

considered EA and AA children, we reran the LCA on those subsets separately. In both cases, 

BIC was lowest at k=4 classes. Overall, we found that LCA is quite robust to missing data, 

partially because only available data are used in the likelihood computations. Results from these 

sensitivity analyses were qualitatively very similar, with results comparable to our main 

Infrequent, Transient, Late-onset and Persistent classes.  

Compositional data analysis (CoDA) 

LCA assigns each participant a posterior probability of class membership for each latent 

class that sum to 1. Because many subjects did not have a high probability (e.g., > 0.80) of 

belonging to any single class, we did not categorize subjects to a single class based on their 

highest posterior probability class. Instead, we used a compositional data analysis (CoDA) 

approach that incorporated the probability of class membership information directly into 

subsequent analyses.  

In this approach, each subject’s wheezing “phenotype” consisted of the vector of posterior 

probabilities. To address the positivity and summation constraints associated with compositional 

data, we used the additive log ratio (alr) transform on the matrix of posterior probabilities of 

latent class membership (2). To compute this for k latent classes, one class is first chosen as the 

reference group, and then log[ Prob(Class j) / Prob(Reference) ] is computed for each of the 

other k-1 wheezing classes. These represent the log-odds of being in each of the non-reference 

latent classes vs. being in the reference class. Each subject is then represented by k-1 correlated 

outcomes corresponding to the log-odds of being classified as Class j versus the Reference class 

(a total of k-1 log-ratios). For computational stability, we set any posterior probabilities less than 
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0.01 to be equal to 0.01 and reclosed the compositions. In two cases (total IgE and asthma), we 

first classified individuals to their posterior mode in order to discuss the percentages of 

individuals in the different groups  

Associations with covariates and genotypes 

We tested for associations between latent class membership and our non-genetic covariates 

using the following multiple regression model for the k-1 log-ratios defined above: 

log[ Prob(Class j) / Prob(Reference) ] ~ a + b1* Sex + b2* Race + b3* IgE + b4* Smoke + b5* 

Dogs + b6* Cats, 

where the IgE variable used the predicted total IgE values at age 6, the Smoke variable encoded 

maternal smoking during pregnancy, and the Dogs and Cats binary variables encoded whether 

the subjects were exposed to dogs or cats in the first year of life.  

We then sought to quantify associations between our wheezing phenotypes and genotypes at 

our nine SNPs (Table E2) selected a priori. Due to ethnicity related differences in linkage 

disequilibrium (Figure 3) structure, we first stratified by our harmonized Race/Ancestry 

variable. Then, for each SNP, we computed additional multiple regressions with a term for 

genotype under an additive model: 

log[ Prob(Class j) / Prob(Reference) ] ~ a + b1* Sex + b2* Genotype + b3* IgE + b4* Smoke.  

Each SNP was considered separately; full results are presented in Table E6. Additional models 

including interactions between smoking and genotype were also considered. Sample sizes were 

too small to draw conclusions about such interactions or in subgroups other than African 

American and European American children.  
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Multiple comparisons and Statistical Significance 

In Table E6 we provide both unadjusted p-values, as well as an indication of whether each p-

value was smaller than two adjusted thresholds, one given by estimating the “effective” number 

of SNPs, and the other given by the conservative Bonferroni correction. For the former, the 

effective number of SNPs, Meff, was determined by the equation 

𝑀𝑀𝑒𝑒𝑒𝑒𝑒𝑒 = 1 + (𝑀𝑀− 1) �1 − Var(𝜆𝜆)
𝑀𝑀

� , 

where Var(𝜆𝜆) is the variance of the eigenvalues of the LD correlation matrix, and M=9 SNPs (7). 

However, following recent recommendations from the statistical community (4,5), we have 

de-emphasized p-values and focused on model-based point estimates and 95% confidence 

intervals together with existing knowledge and LD structure to infer genetic associations. 

Although we performed multiple comparisons in this study, the SNPs were chosen because they 

were previously associated with early-onset asthma in children of European ancestry (see Stein 

et al. 2018 (3) for an extensive review). The idea of this and similar studies is that, by performing 

the same association analysis in a population with less LD between SNPs, only the “important” 

(e.g., functional) SNPs will still associate with the outcome. The other SNPs will no longer show 

an association because the previously observed associations were due to LD. Thus, the "null 

hypothesis" of no association between any of the SNPs and any wheezing phenotypes is not the 

correct null hypothesis. Instead, we expected to find multiple SNPs associated with wheeze 

phenotypes in EA children, and fewer associated in AA children due to the ancestrally-

heterogenous LD patterns at the 17q12-21 locus. We find exactly that as shown in Figure 2. This 

type of analysis was also recently done for the early-onset asthma phenotype by comparing 
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associations in EA and AA children across this same 17q locus with the same resulting lead SNP 

(6).  

Additional Results 

For completeness, in this section we present additional results (Figure E6) from the latent class 

analysis and the relationships between wheezing and the included covariates.  

Overall, boys were more likely than girls to have wheezed by age 11 years (70% vs 61%, p = 

5.1x10-8), and had a higher posterior probability of being in the Transient (20% vs 18%, p = 

2.3x10-7), Late-onset (13% vs 11%, p = 2.4x10-8) and Persistent (14% vs 9%, p = 1.8 x10-10) 

classes than girls. 

Prenatal maternal smoke exposure was associated with increased odds of wheezing. The 

proportion in the Persistent class was double in children of mothers who smoked >10 cigarettes 

per day (heavy smokers) compared with children of mothers who never smoked (23% vs 11%, 

p=4.8 x10-7). The proportion in the Transient class was also greater among the heavily smoke 

exposed (26% vs 19%, 1.4 x10-5). In contrast, the fraction in the Late-onset class was similar 

across the three smoke exposure groups (~12%). The proportions of subjects with mothers in the 

three smoking categories were similar for AA and EA Children. For AA children, 14% of 

mothers smoked, but only 1% were in the “heavy” (>10 cigarettes per day) category. For EA 

children, 9% had mothers who smoked, but 3% were in the heavy category. Thus, while AA 

children had a slightly larger percentage of mothers who smoked during pregnancy, mothers of 

EA children smoked more during pregnancy. 

Total serum IgE, adjusted for age, was also positively associated with wheezing. An increase 

of one standard deviation in (log) IgE resulted in ORs of 1.34, 1.85, and 2.15 for the Transient, 
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Late-onset, and Persistent classes respectively vs Infrequent (all three p < 10-5). Using only well-

classified individuals (i.e., posterior probability > 0.9), the predicted IgE values at age six years 

were similar for the Persistent and Late-onset classes (98 vs 77 IU/ml, p=0.62), but lower (p < 

0.001) for the Transient and Infrequent classes, who showed similar IgE levels (35 vs 36 IU/ml, 

p=0.99).  
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Supplemental Figures 
 
 

 

 

 

Figure E1. The temporal distribution of wheeze records for the seven cohorts included in this 

study. Time in months is shown along the x-axis and the number of records at a given time is 

shown on the y-axis.  
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Figure E2. Number of individuals with harmonized wheeze data from each cohort, in each year. 

The set of records shown in Figure E1 were harmonized and mapped to this new set of wheeze 

variables indicating wheeze or not in each year of life.  
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Figure E3. The Bayesian Information Criterion (BIC) was used to select the number of latent 

classes and achieved its minimum value at k=4 wheeze classes.  
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Figure E4. Histogram of the maximum posterior probability for each subject. Only 67% of the 

subjects had a maximum posterior probability greater than 0.80.   
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Figure E5. The maximum posterior probability for each individual plotted as a function of the 

number of missing values. Although subjects with a lot of missing data tended to have lower 

maximum posterior probabilities, some subjects with complete or nearly complete data were also 

classified this way. 
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Figure E6. Proportions of each latent class by gender (A), race/ancestry (B), and maternal 

smoking during pregnancy (C). The colors correspond to those used in Figure 1: 

Red=Persistent, Yellow=Late-onset, Green=Transient, and Blue=Infrequent.  
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Figure E7. SNPs and LD patterns across the 17q12-21 locus in European and African American 
samples. The numbered SNPs were lead SNPs in previous GWASs of childhood asthma. The 
nine SNPs in this study were chosen to cover the locus based on LD patterns.   
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Table E1. Overview of included cohorts 

 

CCAAPS= Cincinnati Childhood Allergy and Air Pollution Study; CCCEH=Columbia Center for 
Children’s Environmental Health Cohort; COAST=Childhood Origins of Asthma; 
EHAAS=Epidemiology of Home Allergens and Asthma Study; IIS=Infant Immune Study; TCRS=Tucson 
Children’s Respiratory Study; URECA=Urban Environment and Childhood Asthma 
 

 

Table E2. Information about the nine SNPs genotyped in this study. See Stein et al. (2018) and 
Ober et al. (2020) for additional details regarding each SNP. 

 

PGAP3, post-GPI attachment to proteins 3; ZPBP2, zona pellucida binding protein 2; GSDMB, gasdermin 
B; ORMDL3, ORM1-like 3; GSDMA, gasdermin A. 
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Table E3. Questions used by the cohorts to assess wheeze.
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Table E4. Intervals used for each cohort to map the original wheeze questions to the new 
harmonized wheeze variables for each year. For example, in IIS, questions asked between 21 and 
27 months were mapped to the Year 2 variable.  
 

 

 

 

Table E5. Total sample sizes and missing values by cohort. The top row shows the number of 
complete cases (n=601). The cumulative total column shows the number of subjects with up to 
that many missing values. For example, there were n=307 subjects with 2 missing values, and 
n=1511 subjects with <=2 missing values. Individuals with 9 or 10 missing values were excluded 
from the final LCA, representing n=283 and n=354 subjects, respectively. The final total LCA 
sample size was n=3786. Some cohorts had structural missingness, i.e., questionnaires not given 
in some years. 

 

 

Table E6. Results of the genetic association analysis. Odds ratios (OR) use the Infrequent class 
as the comparison. The p-value column is unadjusted. The last two columns show whether the 
unadjusted p-value was below the multiple comparison p-value threshold (in green) given by 
either using the effective number of SNPs (< p_Meff) based on LD (<0.00679 for AA and 
<0.0126 for EA) or the conservative Bonferroni threshold (< p_Bonf = 0.0018 in both cases). For 
example, for rs2941504, no SNPs were significant with Bonferroni, while the Persistent class 
was significant using the Meff cutoff. 
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