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1. Accurately measuring (dQ1/dT)OFF   

The derivative (dQ1/dT)OFF is calculated using a central difference method 

where the closest higher and lower temperatures are used (Equation S1) and more 

weight is given to the closer temperature. As a result, it is not possible to calculate 

(dQ1/dT)OFF for the coldest temperature measured. The hottest temperatures for 

which x-ray scattering patterns were measured (but with a misaligned IR laser) are 

249 K, 258 K and 268 K. As a result, (dQ1/dT)OFF and ∆TQ1 is known for our 

warmest temperature of 244.02 K, but not known for the coldest temperature of 

228.48 K. Fig. S2 illustrates the (dQ1/dT)OFF and ∆Q1 for our measurements. The 

derivative (dQ1/dT)OFF increases on supercooling until a maximum is reached at 

229.4 K. ∆Q1 increases more slowly than (dQ1/dT)OFF on supercooling resulting in 

∆TQ1 to decrease on supercooling. 
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Fig. S1 shows that ∆Q1 for each dataset and (dQ1/dT)OFF. The values of 

(dQ1/dT)OFF can be calculated until the second coldest temperature of 228.9 K. 

We choose to extrapolate this value for the coldest temperature of 228.5 K using a 

linear fit as shown in Fig. S1. 

 

2. Q-range for analysis 

We observe that the heating signal ∆I(Q) = ION-IOFF has a similar shape at 

different temperatures. There are some differences in the heating curve at Q > 2.8 

Å-1 (visible in Fig. 3a). We perform a singular value decomposition (SVD) 

analysis and conclude that more than 65% of the signal variation in the Q-range of 

1.5-2.8 Å-1 is due to the heating component, which was the rationale behind our 

decision to use this Q-range. The area under curve  for ∣∆I(Q)∣ and ∣(dI(Q)/dT)OFF∣ 	  

are	  shown	  in	  Fig.	  S2.	  

	  

3. Comparison of ∆Tarea and ∆TQ1 

Fig. S3 shows a comparison of ∆T obtained from the two different methods as 

mentioned in the main text. Generally, ∆Tarea and ∆TQ1 are close to each other. 

 



4. Spatial overlap 

The data sets were measured in a chronological order with set 1 being the 

earliest and set 3 being the last. The spatial overlap improved with each data set as 

determined by camera images of the near-IR and x-ray beams on fluorescent 

paper. The spatial overlap was checked before and after each data set (ca 12 

hours) and was found to vary within 30-50 µm due to the change in the position of 

near-IR laser relative to the x-rays. This may be due to the change in water vapor 

near the optical components during the data set. Since we cannot monitor the 

position of the IR laser during data acquisition, we assume the position drifts 

negligibly between spatial overlap validation measurements. A 50 µm deviation in 

both x and y directions corresponds to about 12% change in the laser flux, the 

upper limit of the uncertainty in the measurement of Cp using the current method. 

 

5. Cp maxima 

 We observe a maximum in Cp. However, the location of the maximum is 

slightly different for Cp calculated from ∆TQ1 (229.4 K) and that calculated from 

∆Tarea (228.9 K) as shown in Fig. S4. Cp calculated from ∆TQ1 has a maximum at 

the same temperature as maxima in (dQ1/dT)OFF. 

 

6. Comparing dS1/dT 

We calculate the molecular structure factor S(q) from IOFF(q) using the molecular 

form factor of water taken from Wang et al. (1). From S(q), we calculate the 

temperature derivative of the first peak in the structure factor, dS1/dT which is 

shown in Fig. S5. We see that there is a maximum in dS1/dT at 229.4 ± 1 K and is 

very close to the location of the maxima at 230 ± 1 K from previous results (2). 

 

7. Error analysis of Cp 

The error in ∆T (err∆T) is determined from the error in determining ∆TQ1 (errQ1) 

and ∆Tshape (errshape). 
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This errQ1 is directly proportional to the standard error of ∆Q1 in our 

measurements. errshape is directly proportional to the uncertainty in (∆I(Q)/∆T)OFF. 



err1∆T represents the uncertainty of our measurements. We also compare the 

standard error of the mean, err2∆T in determining ∆T. 
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We assume err1∆T and err2∆T to be independent sources of error and the total error 

becomes 𝑒𝑟𝑟∆!,!"! =    𝑒𝑟𝑟1∆! ! + 𝑒𝑟𝑟2∆! ! . The error in Cp (errCp) is 

assumed to be directly proportional to relative error in ∆T (err∆T,tot/∆T) because 

Eflux, 𝛼  and ρ have much smaller variation as compared to ∆T in our 

measurements. The error bars in Ds and Sex in Fig. 6 represent the minimum and 

maximum values of Ds and Sex respectively. They are calculated based on a 

minimum and a maximum value of Cp by adding or subtracting errCp (Cp ± errCp) 

in equation (4) and (5). 

 

8. Temperature estimates 

Table S1 shows the temperature with a lower and upper estimate of its error. It 

also shows the temperature jump, its error and calculated Cp of the measurements. 

The error bars of the temperatures are based on the uncertainty of droplet size, 

speed and the sample holder position. Based on the upper and lower estimates of 

the temperature, we recalculate Cp and still observe the existence of a maximum 

in the measurements. In the case of a lower temperature estimate, the maximum in 

Cp appears to be located at the third coldest temperature instead of the second 

coldest temperature. Thus, we can say that the temperature uncertainty of the 

microdroplets does not affect our conclusions about the Cp maximum for our data 

being located at 229.2 ±  1 (SEM) K. 

 

9. Possible nano-crystals in the droplet 

We acknowledge that there is a possibility that the x-ray scattering pattern 

from nano-crystalline ice could be obscured by the scattering from water and 

remain undetected. To quantify this aspect, we follow an approach similar to that 

in Supplementary section A.2.2 of Sellberg et al. (3). In Sellberg et al. (3), the 

authors simulated the x-ray scattering pattern from randomly oriented 12-nm 

nano-crystals which are illuminated by coherent FEL x-rays. This size was chosen 

because it gave a visually obvious scattering pattern. We rescale the relationship 

of maximum intensity in the angular average vs number of crystals of Fig. S7c 



from Sellberg et al. (3) to our experimental conditions of 1.50 × 109 

photons/µm2/pulse and 6 analogue-to-digital units (ADU) for a photon, shown in 

Fig. S7. Our threshold for ice detection in the data analysis routine is 2.3 × 105 

photons/steradian (sr) which corresponds to 3.8 × 106 crystals. Each 12-nm crystal 

has 17560 water molecules and hence, we conclude that 6.8 × 1010 molecules in a 

droplet can form nano-crystals and still remain undetected in our data analysis 

routine. There are 5.9 × 1013 water molecules in a 15 µm droplet illuminated by an 

x-ray size of 14 µm by 14 µm. This means that 0.11% of the molecules can form 

nano-crystals without being detected from our data analysis routines. This number 

is similar to 0.05% of undetected nano-crystals in Sellberg et al. (3).  

The critical ice cluster radius is estimated using the following formula based 

on the Gibbs-Thomson equation (4) 
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where Tm is the melting point of ice, 𝜎!" is the interfacial tension between the 

liquid and solid phase and Δ𝐻! is the temperature-dependent enthalpy of fusion. 

The values for these quantities are taken from the Supplementary information of 

Amaya et al (5) and yield a 𝑟!    of 1.26 nm at 229 K. Clusters larger than this size 

can grow to form crystals and we estimate the maximum size of a crystal before it 

is detected in the data analysis routine. We know that the scattering intensity 

scales as the square of the number of unit cells in the crystal due to constructive 

interference of coherent scattering. So, a relatively large volume fraction can go 

undetected if it exists as a large number of small-sized crystals (calculated earlier 

as 0.11% for 12-nm crystals). In reality, we have low nucleation rates and high 

growth rate of crystalline ice, which results in a small number of large crystals. 

From our 2-d detector images of weakest ice hits, we estimate around 270 

photons/pixel for a detectable Bragg peak. Each pixel at Q = 1.6 Å-1 covers a solid 

angle Ω of 3.05 × 10-7 sr/pixel. This results in a detectable Bragg peak intensity of 

8.9 × 108 photons/sr, which corresponds to a differential cross-section (dσt/dΩ) at 

the sample of 
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 This differential cross-section must be proportional to the square number of 

primitive unit cells (nc) illuminated by the coherent x-ray beam. Assuming that 

each primitive unit cell has two ice molecules and hence 20 electrons, we can 

calculate the differential cross-section expected for each unit cell (dσc/dΩ) based 

on the Thomson scattering cross-section of an electron (σe).  

 

𝑛! =
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This results in a crystal size of 211 nm in diameter and a volume fraction of 3 

× 10-6 in a 15 µm water droplet. 

We also compute the scattering pattern of water with a small percentage of 

nano-crystals (Fig. S8). We use the structure factor of nano-crystalline ice from 

Fig. 2 of Moore and Molinero (6). We use the molecular form factor (1) to convert 

S(q) to I(q) (coherent differential x-ray scattering cross-section) for nano-crystals. 

We can then compute I(q) for a mixture of liquid and nano-crystals and we 

observe that the scattering pattern with 1 % nano-crystalline ice would result in a 

large shift in the peak in I(q), Q1 to 1.78 Å-1 which we do not observe during our 

measurements. 

 

 

 

 

  



 

 
Fig. S1: ∆Q1 for each of our dataset compared to (dQ1/dT)OFF. 

  



 

 
Fig. S2: The area under the absolute value of the heating curves for the three datasets are 

compared to the area under 
dI(Q)

dT !""
!.!
!!!.! ,. The black line is a power law fit to 

dI(Q)
dT !""

!.!
!!!.! , and the dashed line is a linear fit. These fit values are used in 

equation (3). 

  



 

 

 
Fig. S3: A comparison between ∆TQ1 (circles) and ∆Tarea (cross with gray error bars) for the three 

datasets. Fig. S3(b) is a zoomed version of the Fig. S3(a). 

  



 

 

 
Fig. S4: A comparison between Cp calculated from ∆TQ1 (circles) and ∆Tarea (crosses with gray error 

bars) for the three datasets. 

  



 

 

 

 
Fig. S5: A comparison between maxima in dS1/dT as seen from these results compared to that seen in 

ref. (2). Note that the temperature scale is adjusted for dS1/dT data shown from ref. (2) by accounting 

for a remodeling of the evaporative cooling temperature, due to the rapid increase in Cp seen in these 

measurements. The lines are power-law fits to the respective properties. 

 

  



 

 
Fig. S6: A comparison between the Cp measurements based on a higher estimate and a lower estimate 

of temperature. 

  



 

 

 

 
Fig. S7: Maximum photons/steradian in the angular average of the x-ray scattering pattern of 12-nm 

hexagonal ice crystals that are added coherently 100 crystals at a time. This figure is based on the 

computations of Fig. S7c of Sellberg et al. (3) and rescaled to our experimental conditions. 

  



 

 
Fig. S8: I(q) for supercooled water (228.5 K) calculated by adding small quantities of 

nanocrystals. Peak position (Q1) is shown in the inset. 
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Table S1. 

Temperature of the water droplet and its absolute error, temperature jumps, and the 

calculated Cp of our experiments. This data is plotted in Fig. 3(b) and Fig. 5 of the 

manuscript. 

 

T (K) 
 

absolute error (K) ∆T (K) err∆T,tot (K) Cp (J/gm/K) 
 

Set 1 
244 + 1.2 / -1 0.87 0.04 4.86 

240.7  ± 0.9 0.85 0.07 5.14 
238.3  ± 0.8 0.73 0.07 6.05 
237.9  ± 0.8 0.74 0.06 6.00 
236.3  ± 0.8 0.58 0.04 7.67 
235.0  ± 0.7 0.74 0.02 6.09 
234.0  ± 0.7 0.53 0.01 8.54 

Set 2 
236.3 ± 0.8 1.09 0.10 5.83 
234.2  ± 0.7 0.97 0.08 6.80 
233.0  ± 0.7 0.90 0.08 7.27 
232.1 + 0.7 / -0.6 0.81 0.02 8.14 

Set 3 
231.2  ± 0.6 0.91 0.05 7.94 
230.6  ± 0.6 0.80 0.07 9.01 
229.9  ± 0.5 0.64 0.04 11.49 
229.4  ± 0.5 0.63 0.06 11.76 
228.9  ± 0.5 0.60 0.03 12.35 
229.9  ± 0.5 0.78 0.03 9.37 
228.5  ± 0.5 0.82 0.07 9.08 
228.9  ± 0.5 0.63 0.04 11.86 
232.1 + 0.7 / -0.6 1.04 0.04 7.04 
231.2  ± 0.6 0.93 0.07 7.96 
228.5  ± 0.5 0.74 0.06 10.31 
239.8 + 0.8 / -0.9 1.15 0.12 6.17 
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