**Supporting Information** 

## Synthesis of an Alkynyl Methylglyoxal Probe to Investigate Non-enzymatic Histone Glycation

Qingfei Zheng<sup>1,6</sup>, Igor Maksimovic<sup>1,2,6</sup>, Akhil Upad<sup>1</sup>, David Guber<sup>1,4</sup>, Yael David<sup>1,2,3,5,\*</sup>

<sup>1</sup>Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, United States

<sup>2</sup>Tri-Institutional PhD Program in Chemical Biology, New York, NY, 10065, United States

<sup>3</sup>Department of Pharmacology, Weill Cornell Medicine, New York, NY, 10065, United States

<sup>4</sup>Department of Chemistry, City University of New York, Hunter College, New York, NY, 10065, United States

<sup>5</sup>Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, NY, 10065, United States

<sup>6</sup>These authors contributed equally

\*Corresponding author: e-mail address: davidshy@mskcc.org

## **Supporting Information Table of Contents**

| <ul> <li>Figure S1. Competition treatment of AlkMGO probe and MGO to 293T cells</li> <li>Figure S2. Impacts of AlkMGO-glycation on other histone post-translational modifications</li> <li>Figure S3. LC-ESI-MS analysis of recombinant histones</li> <li>Figure S4. Full gels and uncropped immunoblots</li> <li>Figure S5. HRMS analyses of 2a and 2b</li> <li>Figure S6. NMR analyses of the compounds synthesized in this study</li> </ul> | S3                    |     |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-----|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                | sS4<br>S5<br>S7<br>S8 |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       | S10 |

**Figure S1.** Competition treatment of AlkMGO (**2b**) and MGO to 293T cells. The cells were co-treated with 0.25 mM AlkMGO and gradient MGO, and the histones were extracted and analyzed by in-gel fluorescence imaging and CCB-staining.



**Figure S2.** Impacts of AlkMGO-glycation on other essential histone post-translational modifications. The same samples were used as in Figure 2A, and the histones were extracted and analyzed by western blot with the indicated antibodies illustrating that essential histone post-translational modifications can be influenced by AlkMGO-glycation.





**Figure S3.** LC-ESI-MS analysis of recombinant histones. MS after deconvolution of (A) H2A (M=13964.85 Da), (B) H2B (M=13758.79 Da), (C) H3 (M=15256.95 Da) and (D) H4 (M=11236.80 Da).







Figure S4. Full gels and uncropped immunoblots.







HRMS analysis of **2a** + o-phenylenediamine





HRMS analysis of **2b** + o-phenylenediamine





Figure S6. <sup>1</sup>H and <sup>13</sup>C NMR analyses of the compounds synthesized in this study.





