
 

 
Supplementary Information Appendix for 

CODY enables quantitatively spatiotemporal predictions on in vivo gut microbial 
variability induced by diet-intervention. 
 
Jun Geng1, Boyang Ji1, Gang Li1, Felipe López-Isunza2 & Jens Nielsen1,3,4,5*  
 
 
 
1Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, 

Sweden 
2Departamento de Ingeniería de Procesos e Hidráulica, Universidad Autónoma Metropolitana-Iztapalapa, 

México City, México 
3Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, 

Denmark 
4Wallenberg Center for Protein Research, Chalmers University of Technology, Gothenburg, Sweden 
5BioInnovation Institute, Ole Maaløes Vej 3, DK2200 Copenhagen N, Denmark 

* Jens Nielsen 

Email: jni@novo.dk  
 
 
This PDF file includes: 
 

Supplementary Methods 1 to 9 
Figures S1 to S29  
Tables S1 to S8  
Legends for Datasets S1 to S11 
SI References  

 
Other supplementary materials for this manuscript include the following:  
 

Datasets S1 to S11  



 
 
 

1 
 
 

Supplementary Information Appendix 

Supplementary Methods: 
Supplementary Method 1 | Dynamic models of bacterial biology using enzyme-centric metabolic 
framework (ECMF)…………….………………………………………………………………………….............. 3 
Supplementary Method 2 | Dynamic models of microbial community using the hierarchical resource 
allocation framework (HRAF)…………….……………………………………………………...………..............7 
Supplementary Method 3 | Biomimetic model of the colon using the spatial compartmentalized framework 
(SPCF) …….….…….……….………............................................................................................................9 
Supplementary Method 4 | Evaluation of dynamic bacterial models captured by enzyme-centric metabolic 
framework (ECMF) ………………….…….…....…….………..... …….……….....…………………………….14 
Supplementary Method 5 | Evaluation of hierarchical resource allocation framework (HARF) by comparing 
predictions on community dynamic metabolic behavior and experimental 
data………………………..…….……….………..... …….……….....…….……….....…….…………………...19 
Supplementary Method 6 | Evaluation of HRAF by predicting ecosystem-wide ecological 
interactions………………………………………………………………………………………………..............20 
Supplementary Method 7 | Evaluation of the biomimetic model described by spatial compartmentalized 
framework (SPCF)……………............ .…….……….………......................................................................21 
Supplementary Method 8 | Evaluation of CODY……...……….....…….……….....…………….....................22 
Supplementary Method 9 | PCA for dynamic microbial landscape development……………....................25 
 
Supplementary Figures: 
Fig. S1   | Step by step workflow of CODY…………………………………………...……………………….…26 

Fig. S2-4 | Evaluation of ECMF for bacterial biology….……….............................................................28-30 

Fig. S5-6    | Evaluation of HRAF for the two species consortia ………..…. ………..............................31-32 

Fig. S7-12 | Evaluation of SPCF for colon physiology.….………..........................................................33-38 

Fig. S13      | Microbiota ecosystem and the investigated cohort….. ……............................................39-40 

Fig. S14-23 | Dynamic microbiome reprogramming of infant cohort. ……...........................................41-50 

Fig. S24-25 | PCA analysis for dynamic microbial development………................................................51-53 

Fig. S26-29 | Dynamic microbiome reprogramming of adult cohort……...............................................54-57 

 

Supplementary Tables: 
Table S1 | Summary of abbreviations and representations ……………………..………..…………………...58 

Table S2 | Summary of original GEMs and reduced GEMs …………………….........................................60 

Table S3 | Summary of datasets employed for framework and model evaluations…………………………61 

Table S4 | Metabolic capacity of microbiota ecosystem members……………………………………………62 

Table S5 | Parameters of bacterial biology for the two species consortia……………………………………64 



 
 
 

2 
 
 

Table S6 | Summary of physiological parameters in SPCF evaluation………............................................66 

Table S7 | Summary of literature-based colon physiological parameters…………………..........................67 

Table S8 | Summary of top features in PCA analysis………….……………................................................68 

 
Supplementary References………………………………………………………………………………...69-72 
 
 
Legends for Datasets S1 to S11  
Dataset S1. Metabolic pathway modules of B. thetaiotaomicron.  

Dataset S2. Metabolic pathway modules of B. fragilis.  

Dataset S3. Metabolic pathway modules of B. longum.  

Dataset S4. Metabolic pathway modules of B. adolescentis.  

Dataset S5. Metabolic pathway modules of B. breve.  

Dataset S6. Metabolic pathway modules of E. hallii.  

Dataset S7. Metabolic pathway modules of F. prausnitzii.  

Dataset S8. Metabolic pathway modules of R. intestinalis.  

Dataset S9. Metabolic pathway analysis results of eight microbiome members.  

Dataset S10. Summary of parameters of bacterial biology for monoculture of microbiome 

representatives.  

Dataset S11. Simulation results of monoculture and coculture of two species consortium. 
 

 

  



 
 
 

3 
 
 

Supplementary Methods 

Method 1 | Dynamic models of bacterial biology using enzyme-centric metabolic 
framework (ECMF) 

Process of ECMF construction 

    The detailed process of how the multiscale model of CODY is developed is shown in Fig. S1a. 
In order to investigate how the gut ecosystem evolves and dynamically adapts to environmental 
changes1, we used a cybernetic modeling approach (“Wiener’s theory of cybernetics”, by Norbert 
Wiener 2), to construct dynamic mathematical models for individual bacteria to describe their 
adaptive biology functions. The emergent higher-order interactions and community-level 
microbiota dynamic is described by using a hierarchical resource allocation framework (HRAF, 
Fig. S1b, step3). Therefore, the intrinsic dynamics of the gut microbiota ecosystem could be 
described by integrating ECMF into HRAF. The impact of colon physical forces, diet, and spatial 
structure is described by the spatial compartmentalized framework (SPCF, Fig. S1b, step 4-5). 
By integrating ECFM and HRAF with SPCF, CODY is assembled, and this characterizes how the 
intrinsic dynamics of the gut microbiota is impacted by the structure and physical forces in different 
regions of the colon. In this section, the construction process of ECMF is introduced. The 
construction processes of the other two frameworks are introduced in Method 2-3 (SI Appendix), 
and the assemblage process of CODY is introduced in Method 8 (SI Appendix). The step-by-step 
workflow of ECMF construction is performed for representative species (Fig. S1b, step 2) in the 
gut microbiota ecosystem (Fig. S1b, step 1). This modeling framework not only incorporates the 
stoichiometric information of representative species, but also integrates regulatory machinery by 
postulating metabolic regulation as the controlled response of the organism by adapting to its 
environment 3.  

As can be seen from Fig. 1a and SI Appendix Fig. S1b, ECMF contains two components, i.e., 
metabolism and regulation. The bacterial metabolism is characterized by the repertoire of 
biochemical reactions the bacteria can carry out. In this work, the metabolism for each species is 
derived by using reduced genome-scale metabolic models (GEMs) from published GEMs that 
have been reported in the literature 4, 5. To this end, we used referenced GEMs as the metabolic 
backbone, and removed reactions belonging to irrelevant pathways associated with the interested 
metabolites in this work, which make them mainly confined on the central metabolism, according 
to the central pathways for most of these species. Besides, the signature pathways for individual 
species which has been reported in the literature are added to associated reduced GEMs 6-8. 
More specifically, for the metabolism of Bacteroides (B. thetaiotaomicron and B. fragilis), a 
primitive electron transfer chain using fumarate as the terminal electron acceptor 6 was integrated, 
and the updated metabolic network was checked to involve known reactions from the published 
metabolic network 9. Metabolic networks for Bifidobacterium (B. longum, B. breve and B. 
adolescentis) were compared with published reports 10, 11 and integrated with the F6P-shunt 
pathway. For F. prausnitzii and R. intestinalis, the reduced GEMs were compared manually with 
published metabolic networks 12 with respect to central metabolic pathways and the Bcd/Etf 
complex of the electron transfer chain was introduced. The reduced GEMs of E. hallii was 
compared to the published metabolic network for E. rectale 10 given their closely phylogenetic 
distance. Finally, in order to avoid potential dead ends and gaps, after performing the reduction 
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and integration process, we used the Raven toolbox 13 for all the models to ensure the quality of 
all reduced GEMs of these bacteria. This was done by performing defined metabolic tasks, i.e., 
ensuring the reduced GEMs have no dead-ends, ensuring the reduced GEMs cannot produce 
metabolites from nothing, ensuring each metabolic precursor for growth can be synthesized, and 
so on13. Information on the original GEMs that are referred as the backbone for each bacterium 
is provided in Table S2. All reduced GEMs of the representatives are provided as Dataset S1-8. 

Based on the reduced GEMs which represent the metabolic structure for each species, 
metabolic pathway analysis was implemented to firstly decompose the metabolic network into a 
unique (i.e., non-decomposable) set of all possible and feasible pathways. Given the large 
number of the obtained feasible pathways, metabolic yield analysis 14 was further performed 
which reduced these pathways to an active subset of metabolic pathway modules (MPMs) 
encompassing minimal sets of connected reactions that function at steady state. To ensure that 
the metabolic features of each species are conserved with respect to relevant metabolic yields 
measured in vitro, representation of more than 99% of the original solution space was applied as 
a criterion that must be achieved by convex combination of the MPMs. It is known that the solution 
space of the mass balance equations, i.e., by letting Eq. 2 equals to 0, is a convex hull (see 
equation below). To enable the yield analysis, the solution space was mapped to the yield space 
by normalizing each row of the MPMs with respect to the corresponding substrate uptake flux in 
the same row. Some bacteria may have more than one substrate, such as F. prausnitzii, which 
consumes both hexose and acetate, the reference substrate uptake flux is considered as hexose 
flux. Thus, in the yield space, the substrate column is normalized to 1, and other columns would 
be converted to a ratio compared to the substrate. Consequently, the solution space would be a 
bounded convex hull in the yield space. In the yield space, pathways that contribute negligibly are 
first excluded by examining the impact by removing it. Next, an initial subset of pathways can be 
determined which constitute large enough space in the yield space. Following this, an iterative 
process by assessing the pathway that contribute the most to increasing the area of the yield 
space would be added at one time. A threshold of 0.99 was set to determine when to terminate 
the iterative process. Following this procedure, the number of finally obtained MPMs were largely 
reduced, and the resulting MPMs were used to represent the metabolic features of the individual 
species. 

For each MPM, an aggregated enzyme is allocated to describe the flux through the MPM, i.e. 
the uniquely derived fundamental pathway modules represented metabolic subunits upon which 
we incorporated enzyme-centric regulatory processes. The so called “self-regulated” mechanism, 
that is believed to be retrieved from extended adaptation to evolution15, is regarded as a distinct 
feature of metabolism that endows the microorganism to preferentially promote the synthesis and 
activity of enzymes that catalyze reactions with maximal returns. More specifically, this will allow 
the limited amount of intracellular resources to be optimally allocated to MPMs by synthesizing 
the corresponding enzymes and controlling their activities in a regulated manner such that the 
bacteria growth rate was maximized. Therefore, the regulatory machinery was incorporated in 
such a way to ensure that a fixed amount of intracellular resources allocated economically and 
efficiently in an automatic way to meet the nutrition availability. To this end, two cybernetic 
variables, u and v, corresponding to the optimal control of enzyme synthesis and enzyme activity 
level, were assigned to each MPM. The formulations of these variables are derived based on 
optimal control theory 15. Incorporation of self-regulatory mechanisms into our approach endowed 
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individual consortium members with the ability to specify preferential use of alternative metabolic 
pathways, and thus facilitate metabolic adaptation within the community. The specific uptake rate 
is thus characterized as the weighted sum of corresponding time-specific reaction rates of 
individual MPMs. For each MPM, its associated uptake flux rate is characterized by the regulated 
kinetic formulation adopting Michaelis-Menten functions, which is dependent on the time-specific 
substrate concentration. In together, the specific uptake rate could be viewed as regulated 
resource allocation among different MPMs. Such regulation strategy is dependent on both time-
specific substrate concentrations and the cellular demand function that is captured by inbuilt 
cybernetic variables and metabolic pathways intrinsic properties. Therefore, the specific uptake 
rate is the outcome of cellular regulated behavior, which endows our ECMF to relieve the 
necessity to measure itself a priori. This feature of ECMF thus made it possible to describe the 
species fitness function, particularly when encountering environmental changes. 

ECMF formulations 

    The mass balance equations of the ECMF for single species could be described as the 
following set of equations, 

                                                                                                                  (1) 

                                                                 
(2) 

                                                                     

(3) 

Where Φ̇  is the dynamic changes of state variables.  denotes the vector of extracellular 
metabolite concentrations,  is biomass concentration,  is the vector of intracellular 
metabolite concentrations,  and  are the matrices that stoichiometrically link the flux vector 
( ) to exchange and intracellular fluxes,  is the specific growth rate. Under quasi-steady-state 
approximation, the flux vector can be represented by a convex (nonnegative) combination of 
MPMs, i.e., 

                                                                         (4) 
Where  is the matrix of the metabolic pathway modules, with each column representing 
the relative stoichiometric ratio of each flux through the metabolic pathway modules.  
could be regarded not only as the weights to the MPMs, but also as the vector of fluxes that go 
through the MPMs (mmol/gDW/h). Thus, substitution of Equation (1) with the above relationship 
would give:  

                                                             (5) 

Where represent the stoichiometric coefficients between extracellular metabolites and the 
MPMs. The uptake rate vector of MPMs,  is represented by: 
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Where  denotes the unregulated kinetic form of the uptake rate associated with the j-th 
metabolic pathway module (MPM), following the Michalis-Menten function, which is determined 
by the kinetic parameters of , i.e., 

                                                                                                      (7) 

In Eq. 6,  is the cybernetic variable vector with respect to controlling enzyme activities, is the 
vector of enzyme levels for MPMs which becomes an additional state variable.  is the 
unregulated kinetic uptake rate vector of MPMs which follow Michaelis-Menten forms, which 
depends on the available substrate vector .  is the operator which converts the input vector 
into the diagonal matrix such that, 

                                                   (8) 

                                                       (9) 

Where  is the cybernetic variable controlling enzyme activity of the j-th MPM, and  is the 
associated enzyme levels of the j-th MPM. Following this, the explicit form of  associated with 
the j-th MPM should be as follows, i.e., 

                                                                                              (10) 

The differential equations for the enzyme state variables can be written as 
                                                    (11) 

Where  is the cybernetic variable regulating the induction of enzyme synthesis rate,  and 
are the constitutive synthesis rate and degradation rate.  
The formulations of cybernetic variables and  are derived according to optimal control 
theory15: 

 and                                                               (12) 
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Method 2 | Dynamic models of microbial community using the hierarchical resource 
allocation framework (HRAF) 

The next step is to develop community-level dynamic framework to accommodate multiple 
species interactions (Fig. S1b, step 3). Microbiome assemblages emerging from interspecies 
interactions are highly complex, and constantly interactive with the environment. To characterize 
these features at the community level, a hierarchical framework to describe multi-level resource 
allocation from microbial community to individual members, and further among individual bacterial 
alternative MPMs, is developed, which is termed as HRAF. The “hierarchical” here is used to 
strengthen that the dynamic process of the in vivo microbial-microbial interactions in a system-
level perspective, i.e., how the microbial-microbial interactions are impacted by the intrinsic 
dynamics of individual bacterium, how the resulted dynamic microbial growth further impact the 
common resources variations, and in turn, how the  previous two factors determine the microbial-
microbial interactions. During this three-stage process, each step is not isolated with the others, 
but hierarchically coupled/linked to each other thus collectively characterize how the 
environmental resources determine the higher-order microbial interactions. 

At the first level, microbial-accessible carbohydrates (MACs), such as fiber, resistant starch, 
and human milk oligosaccharides (HMO), are allocated among microbial ecosystem members 
through degradation (Fig. S1b, step 3). The amount of resources allocated to each member at 
this level is dependent on individual bacterial accessibility to MACs components contained in the 
diet (Fig. 1d), i.e., bacterium with higher accessibility will grow with preferential dominance. In this 
process, the degradation rate of the complex carbohydrate was taken into account using Contois 
equation, which was adapted to wide range of organic wastes in anaerobic digestion process and 
therefore regarded as a general model of hydrolysis for complex carbohydrate ( ) degradation 
16, that is described by: 

                                                            (13) 

  Where  denotes the stage variable of site-specific complex carbohydrate abundance.   

denotes the site-specific absolute abundance of specific microbial species.  denotes the 

degradation capacity constant of specific microbial species, and  denotes the hydrolysis 
constants, which are detemrined based on values taken from the literature 17. 

At the second level, the allocated MACs are degraded to simpler forms and metabolized by 
individual bacterium. At this level, the dynamic variations of individual bacterium are determined 
by two impact factors, i.e., the intrinsic dynamics characterized by specific ECMF, and the 
microbial-microbial interactions characterized by the HRAF concept. Microbial-microbial 
interactions occurred dynamically through the exchange of environmental resources or 
byproducts, dependent on the available environmental resource that emerged by collective 
contributions from ecosystem members. During this process, the substrate that act as the main 
substrate is the simpler forms of the carbohydrates that are derived during microbial degradation 
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be derived based the total hydrolysis rate for each species i.e.,  
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                                                                  (14) 

Where  is the rate of generated carbohydrate resources in the common environment that is 
shared by all microbial ecosystem members as given in Eq. 11, with 𝑌!"#,% being the hexose yield 
from degradation of MACs, i.e. the amount of hexose obtained from the carbohydrate.   

At the third level, environmental resources are continuously updated along with microbial 
ecosystem development and through mass transport in the colon, which would further shape the 
first and the second level (associated formulations with respect to the colon physiology impacts 
on environmental resources could be referred in Method 3(SI Appendix)).  

The common resources shared among all ecosystem members are consumed and thus 
dynamically varied, which further impact the metabolic behavior of individual bacteria. The system 
equation for dynamic changes of common resources due to the collective impacts of microbial 
intrisic dynamics, the microbial-microbial interactions as well as the degradation process could 
be summarized as follows, 

                                         (15) 

Where the first term denotes the consumption by the microbial ecosytem (with the negative 
number in corresponding rows indicating the resouce as been consumed), and the second term 
denotes the hydrolysis derived resource amount. 
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Method 3 | Biomimetic model of the colon using the spatial compartmentalized framework 
(SPCF)  
Colon physiology 

    The schematic view of colon physiology is shown in Fig. 1e. In the cross-sectional direction, 
the structure of the colon includes two compartments where microbiota resides, i.e., lumen 
compartment and mucus compartment. In the longitudinal directions, the colon structure 
resembles a hollow tube with a very large internal surface area for nutrients and water absorption 
through the wall-membrane. The large intestine wall is lined with colon epithelium, where the 
secretion of a mucus gel layer is carried out by goblet cells. The polymer-based matrix 
characteristic of the mucus layer enables the attachment of microorganisms and their resistance 
to shear forces. The mucus layer is mainly formed by mucins, which are high molecular weight 
glycoproteins playing an important role in microbial development 18. In the longitudinal direction 
of the colon, due to peristalsis movement engendered by peristaltic muscular contraction and 
relaxation deeper generated by both the circular and longitudinal muscle layer within the bowel 
wall 19, physiological forces thus give rise to the back-mixing of the material flow, which then 
impact the microbiota stability. Water absorption by epithelium cell via diffusion through the colon 
wall membrane contributes to condensing feces. These features would ensure the major function 
of colon, which is to absorb water and digest complicated molecules like polysaccharides that 
cannot be accessed by humans, and release energy metabolites (acetate, propionate, butyrate) 
into the blood circulatory system (BCS) through the mesenteric vein. The collected energy 
metabolites are therefore converged into the hepatic portal vein through BCS and finally 
transported to other organs for energy supply. We constructed a multiscale gut ecosystem, which 
incorporate not only interspecies interaction, but also colon physiology, mass transport and the 
information on the spatial distribution of microbiota.  
Biomimetic model to mimic in vivo colon environment 

    We integrated the intrinsic dynamics of the gut microbiota into the colon environment to 
describe the colon environmental impacts on the microbiota development (Fig. S1b, step 4-5). To 
describe the colon microscopic structure and physiological functions, we constructed a biomimetic 
model of in vivo colon milieu using a tubular bioreactor model, which can be mathematically 
described by well-mixed tanks-in-series reactor model with recycle, which describes the material-
flow from cecum downwards the feces, as well as axial and radial back-mixing effects 
(hydrodynamics) due to peristaltic movements at the colon wall. The spatial compartmentalized 
framework of the biomimetic model of the colon is termed SPCF in this text. 
    To model the inverted U shape of the colon structure in the longitudinal direction (Fig. S1b, 
step 4),  we used four regions lined in two rows of parallel interconnected ideally well-mixed tanks 
of constant volumes, and a ninth region represented as a fed-batch reactor that mimic the rectum 
20. Within each region of the lumen/mucus- compartments, we considered the physical forces in 
the longitudinal direction, including the inflow rate, the dietary intake, the peristaltic movement 
due to periodic contraction of the circular colon muscles, as well as the defecation process.  
    To model the multi-tissue layer structure of the colon in the radial direction (Fig. S1b, step 5), 
the compartmentalized spatial structure of the gut microbiota is considered as residing within 
each region of the lumen and mucus compartments. The physical forces in the radial direction, 
including perfusion between lumen and mucus and water absorption is modeled as mass 
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transport, bacteria detachment from mucus to lumen compartment is modeled to occur at a 
constant rate. Additionally, diffusion of key metabolites between BCS and the four regions of the 
mucus compartment is modeled by representing BCS as a single continuous well-mixed tank, 
which connects the tanks representing the mucus compartment. All relevant parameters were 
determined relying on literature-based knowledge as introduced in the following section. 
Parameters determination to characterize in vivo colon physiology  

    Parameters used to describe the colon physiology were taken as typical values reported in the 
literature (Table S7). The length of the colon has been reported to vary in different populations 21, 

22, but is about 150~160 cm on average for healthy individuals. The diameter of the colon is 
averagely estimated to be about 4.8~6 cm 21, 23. The volume of infant colon was assumed to be 
around one fourth of the reported value for an adult colon. The four well-defined regions of the 
colon were set equally representing the internal lumen space and mucus phases respectively. 
The total flow rate is distributed proportionally into lumen and mucus with a fixed ratio dependent 
on their volume ratio. The diffusion of SCFA from the mucus phase to blood circulation was 
determined by diffusion coefficients using in vitro measurements in rats 24. In the longitudinal 
direction, a constant flow was set to enter the colon each day, in agreement with colon receiving 
about 2L liquid per day 25-27. Due to continuous mass transfer between the lumen, mucus, and 
BCS, the flow rate of each region kept changing over time, depending on both inflow flux and 
radial transport flux from lumen to mucus, which varied over time. The nutrients and metabolites 
in the mucus compartment are not only determined by transport with lumen compartment, but 
also determined by communication with BCS. The permeability constants were determined based 
on the fact that 10% of a semi-solid bolus ultimately reaches the rectum and forming the feces 28, 

29.  
Spatial compartmentalized framework formulation 

    The system governing equations is the same for each compartment, and here therefore just 
shown for one region. Considering compartment k for any the four regions (Fig. 1c and Fig. S7), 
it comprises two rows of interconnected ideal continuous stirred tanks and connected to a third 
ideal continuous stirred tank representing the blood compartment. The smaller tank (vk) in the 
first-row structure represents the mucus phase where residing microbiota is attached to the 
mucus layer, thus protected against detachment by flow shear stresses. jnk is the mass flux of 
component n transferred from vk to VB by perfusion through the wall membrane. Jnk is the net 
mass flux interchange of component n between lumen (Vk) and mucus (vk) due to radial 
concentration gradients between compartments in lumen and mucus. In the second row at the 
bottom, each tank (Vk) represents the lumen region, and conveys most of the material bulk flow, 
and it is here where axial back-mixing takes place as well as bacterial wash out. JWk is the net 
amount of water flux transferred from Vk to vk, and similarly jWk is the amount of water absorbed 
through the wall membrane. Fk-1 and Fk , and fk-1 and fk are to-and-from bulk flows for tanks Vk and 
vk . The back flow due to axial back-mixing in the colon is qk and has same value for all k. Finally, 
for the single tank representing the blood compartment for BCS, FB0 and FB are flows to-and-from 
this compartment. Different species of the microbiota have different residence times in 
compartments Vk and vk where the corresponding reactions occur. We assume that there is no 
change in the value of the density of the medium in lumen and mucus ( =  ), for all 
compartments. Taken together, the four regions of the colon are axially connected and the main 

 ρk ρ
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flow goes from the ascending colon towards the sigmoid colon, with equal amounts of back-mixing 
(qk) of mass from tanks Vk to Vk -1. The ninth region is a fed-batch reactor storing mass leftover 
due to absorptions of metabolites and water. It only opens at fixed time intervals when defecation 
is called for.  
    More specifically, we take the k-th region comprising lumen and mucus compartments, i.e., 
with tank volumes of [Vk, vk]. The two regions have different dynamic features. The mass balances 
for the lumen region, committed to the conditions of constant volume and same back-mixing 
extent between contiguous tanks, thus 

                                  (16) 

Since, 
                                                                    (17) 

And for all k, 

                                                           (18) 

Where JTk is the mass flow of all species n transferred from Vk to vk   

                                                      (19) 

In order to calculate the volume of the mass transport, the concentrations with unit of mM is 
converted to masses based on the molar weight of metabolite denoted by . Parameter km is a 
mass transfer coefficient (1/h). And this equation gives the net mass of metabolite n to be 
transferred from lumen towards the mucus. 
Water absorption in corresponding region is determined by according to 29, where 10% is 
estimated as the achieved concentration of outer space, thus: 

                                                    (20) 
Similarly, in the mucus phase for any k of compartments, the mass balance equation is as 
following, 

                              (21) 

For any k 
                                      (22) 

Where 
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Where 𝜋& (cm/h) represents the permeability coefficient for component n, and is a surface area 
per unit volume at the membrane-wall for permeation. 
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                                        (24)  

Therefore, the outflow in mucus compartment could be written as, 

               (25) 

The mass balance equation of microbiota in mucus is affected by detachement and intrinsic 
dynamics due to emergent properties of microbial ecosystem, 

                                                   (26) 

The metabolites in mucus compartment are determined mainly by mass transport. The dynamic 
changes of the complex carbohydrate could be formulated as following,  

                             (27) 

The mass balance for hexose in the mucus compartment is described by following 
equation, 

                            (28) 

The mass balance for all other metabolites in this compartment is described by following 
equation, 

        (29) 

In the rectum (V5), the feces would be accumulated and stored until defecation occurring, they 
are not removed, i.e., during a very fixed period of time (three times/day during breastmilk-feeding 
period, and one time/day during solid food-feeding period). The mass balance equation for the 
rectum satisfies (recalling that the volume is constant), 

                                                  (30) 

where  denotes the outflow of rectum during defecation process as following,  

                                                     (31) 

It should be noticed that the volume of rectum (V5) is not the same as the volume of feces VFeces 
(rectum content), which is the reason that we differentiate two terms in above equation.  
As the mass of bacteria and metabolites are accumulated in the rectum, we need to know the 
concentrations of these state variables, which however cannot be obtained from the mass 
balance in V5, because it behaves as a fed-batch reactor where microbial reactions still occur.  
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The concentrations of the state variables in the rectum is deduced from the following mass 
balance equation: 

                (32) 

Solving this equation gives, 

                                  (33) 

The mass balance for hexose in the rectum is described by following equation, 

                                     (34) 

The mass balance for all other metabolites in the BCS is described by following equation, 

                               (35)                                

The volume of the blood circulatory system VB is also assumed to be constant, and metabolites 
from all mucus compartment (vk) are collected into VB through wall-membrane permeability and 
are carried away by the portal vein. For the plasma compartment, we formulated the following 
equations to describe each metabolite that is collected to portal vein,  

                                    (36) 
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Method 4 | Evaluation of dynamic bacterial models captured by enzyme-centric metabolic 
framework (ECMF)  

Smaller-scale gut microbial ecosystem  

CODY is not limited to include only a certain number of species in the gut microbiota ecosystem, 
but for demonstration, we constructed a smaller-scale gut microbial ecosystem composed of the 
representative species the human gut microbiota in this study. In order to ensure the reasonability 
and reliability of the prediction results based on this constructed ecosystem, a standard principle 
comprised of three aspects are adopted, which can be schematically illustrated in Fig. S1b (step 
1) and described in detail as below: 

i) The selected species not only represent the most dominant species, but also represent the 
three dominant phyla of the human gut microbiota since they resemble the proportion of the three 
major phyla of original community (Fig. S13). Specifically, the abundance of the smaller-scale 
ecosystem accounts for 20-50% of the three major phyla in the original microbial community.  

ii) The selected species represent the major metabolic capacity of gut microbiota with regard 
to producing the key human-accessible health-promoting metabolites, i.e., all three short-chain 
fatty acids: acetate, propionate, and butyrate, and other microbial associated metabolites, 
including succinate, formate, lactate, and so on.  

iii) Furthermore, in order to ensure CODY predictions on the microbial ecosystem dynamics 
comparable to the original community, the effect of other community members should be 
evaluated as well. This was achieved by scaling the prediction results using the sum proportion 
resembled by the smaller scale ecosystem to the original community.  

Furthermore, in vitro fermentation experimental data are available for these representatives. 
Since monoculture fermentation data of Eubacterium rectale were not available in the literature, 
it was substituted by Eubacteria hallii that is phylogenetically closely related and has been 
demonstrated to have a similar metabolic phenotype as Eubacteria rectale. The most abundant 
twenty species at all three stages were analyzed and compared (Fig. S13). The three dominant 
phyla were denoted by actinobacteria, bacteroidetes, firmicutes in the infant cohort across all 
three stages. The extent to which the ecosystem represents the whole microbiota at each stage 
is summarized as the coverage number, i.e., 19.6%, 35.4%, and 8.3%, respectively. 
Comparatively, the coverage of the three dominant phyla is summarized in Fig. S13b, i.e., 59.8%, 
63.7%, and 55.7% respectively. Moreover, the composition of our ecosystem resembles that of 
the three dominant phyla in the original community very well, thus indicating that our ecosystem 
can represent the systematic behavior of the original community (Fig. S13c-d).  

ECMF construction  

ECMF is composed by two major components, metabolism and regulation process. The ECMF 
for each species is constructed following the pipeline as shown in Fig. 1a and Fig. S1b. The 
metabolism of each of the representatives was derived in two steps. In the first step, backbone 
metabolic networks that is taken from published literatures 6, 10-12, 30 of corresponding species was 
employed and incorporating signature pathways to characterize the repertoire of biochemical 
reactions. More specifically, the metabolism of Bacteroides (B. thetaiotaomicron and B. fragilis) 
relies upon the published metabolic network 9 and integrating a primitive electron transfer chain 
using fumarate as the terminal electron acceptor6. Metabolic networks for Bifidobacterium (B. 
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longum, B. breve and B. adolescentis) were referred to the published report 10, 11, and for the 
Firmicutes species the metabolic networks of F. prausnitzii and R. intestinalis were taken from 
the literature 12 and  the metabolic network of E. hallii was assumed to be similar to that of E. 
rectale for which there is a published network available 10. Through applying convex analysis, the 
metabolic network of each species was decomposed into their metabolic pathway modules 
(MPMs)31. METATOOL v5.132 was employed to firstly decompose the biochemical stoichiometric 
structure into nonnegative combinations of all possible pathways. Instead of searching for an 
optimal solution by maximizing biomass yield from given uptake flux such as FBA, all feasible 
solutions in the null space of stoichiometric matrix were regarded as pathway representatives that 
denote the fundamental structural units of the metabolic network. The obtained pathways are a 
set of thermodynamic feasible metabolic pathways by which all the possible metabolic states can 
be completely described and any feasible flux vector at steady state can be represented by their 
linear combinations.  

In the next step, to avoid overparameterization, the large number of pathways was reduced to an 
active subset of metabolic pathway modules, by which the metabolic features of each species 
were conservatively characterized. By doing this, the number of kinetic parameters is thus much 
less than that of in vitro experimental data points, which eliminates the potential overfitting. The 
yields of the key metabolites that are the products of extracellular metabolites in our studies, i.e., 
acetate, butyrate, propionate, succinate and lactate were taken into account based on in vitro 
experimental data 33-38. The detailed process is described in Method 1(SI Appendix), by using 
metabolic yield analysis 14. Accordingly, ECMF for the representatives characterized their 
signature metabolic capacities. For example, B. thetaiotaomicron and B. fragilis both from 
Bacteroidetes phylum are well known to produce propionate from succinate; B. longum and B. 
adolescentis possess the common F6P-shunt pathways and generate lactate and acetate as the 
major products39. Through applying the metabolic network associated decomposition and yield 
analysis techniques, the metabolic capacity of individual bacterium can be furthest reserved and 
well represented (>99%), which can then ensure its accuracy in characterizing the dynamics of 
individual bacterium metabolism. By viewing each pathway as one lumped biochemical route that 
converts the substrates to products, there is no need to explicitly calculate kinetic parameters for 
the intracellular metabolites. The uniquely derived subsets of MPMs, that incorporates structural 
information of metabolism, are viewed as subunits that can be activated by cellular regulation of 
the corresponding enzymes. In ECMF, the dynamic uptake flux of individual bacterium at each 
time point is viewed as being optimally assigned among MPMs in a regulated pattern. This is 
achieved by introducing two cybernetic variables, i.e., u and v, to depict the cellular regulation 
mechanism. These two variables are formulated based on matching law and proportional law 15, 
in which the “u” is responsible for control on enzyme synthesis and “v” is responsible for control 
on enzyme activity. By doing this, cellular regulation can be achieved by preferentially selecting 
alternative MPMs dependent on the context-specific substrates. The MPMs for all representatives 
and their stoichiometric relationship are all shown in Dataset S9. The regulation machinery was 
integrated and the ECMF models were formulated following the ECMF construction workflow as 
described in Method 1(SI Appendix), following Eq. 1-10. Besides, the sensitivity analysis is 
performed associated with ECMF framework, for individual bacterium. The corresponding results 
indicate that ECMF simulation results are relative invariant to small variations of the kinetic 
parameters (±5%) (Fig. S3). Furthermore, another evidence that there is no overfitting here could 
be seen from the validation process of HRAF. On the other hand, the exclusion of overfitting issue 
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can be further demonstrated by the evaluation process of HRAF. During this process, the dynamic 
and metabolic behavior together with the interspecies interactions of the two-species consortium 
are purely predicted by their kinetic parameters that were identified during the evaluation process 
of their ECMF construction for monoculture, which shows well agreement with the coculture in 
vitro fermentation dataset. Furthermore, the overfitting issue can be avoided as evidenced by the 
consistency between pure prediction results of the integrative CODY framework and the 
metagenomics measurements, where three component frameworks are integrated in a bottom-
up fashion to predict a wholly new dataset. Finally, as an extended demonstration strategy, we 
successfully deployed our CODY to be a visualized and public online application toolbox. This 
online toolbox provided a random combination of diet strategy upon user’s choice. It enables to 
perform corresponding simulations in response to user’s design of different diet combinations, 
and provides the spatiotemporal microbial/metabolite profiles as the output.  
 
ECMF evaluation  

The evaluation of ECMF for representatives was performed by comparing model simulation 
results and in vitro experimental fermentation data 30, 33-37, 40 (Fig. S2). We obtained data from the 
literature using the PlotDigitizer software. Applying the experimental data at t=0 hr as the model 
input, the ECMF model would simulate the sequential profiles for both bacterial growth and 
metabolite production, based on the system governing equations listed in ECMF formulation 
section in Method 1(SI Appendix). Kinetic parameters could be identified for each microbiota 
representative, through parameter estimation by comparing in silico model prediction to the in 
vitro literature fermentation data. For bacterial growth, the standard unit in the dynamic model 
was gram DW/Liter. To convert the in vitro biomass data for specific bacteria with unit of log 
CFU/mL to the data with unit of gram DW/Liter, the data was transformed by multiplying the 
cellular wet weight and the coefficient between dry weight and wet weight. For this we assumed 
that this coefficient was the same as that of E. coli 41. The in vitro experimental data for each 
species were obtained from literature, including B. thetaitaomicron, B. fragilis, B. longum, B. 
adolescentis in vitro experiments with growth on hexose, as well as E. hallii growing under both 
acetate and lactate as substrates 25-29. For B. breve, F. prausnitzii and R. intestinalis, the in vitro 
experimental fermentation data were taken from the literature 34. The parameters related with 
enzyme balance equations were set to be their typical values for each species. A parameter 
sensitivity analysis was performed as shown in Fig. S3a. It can be seen that most kinetic 
parameters of the MPMs are not sensitive by perturbing within the range of ± 5%. However, for 
B. adolescentis and B. fragilis, there are a few parameters which are relatively sensitive, given by 
the relatively large RMSE changes impacted by variations of these parameters. This is due to 
that the associated MPMs are the major metabolic modules through which bacteria grow or 
produce the concerned metabolic products, i.e., acetate, succinate, and the corresponding 
changes can be seen in Fig. S3b. 
In vitro fermentation experimental data for individual bacterium 

The evaluation of ECMF for each species was performed by comparing model simulation results 
and in vitro experimental data. For in vitro experimental validation of B. thetaiotaomicron and 
B.fragilis, the fermentations were performed in a complex medium, allowing good growth of 
human colon bacteria when supplemented with an appropriate energy source33, containing (in 
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grams per liter): bacteriological peptone (Oxoid), 6.5; soy peptone (Oxoid), 5.0; tryptone (Oxoid), 
2.5; yeast extract (VWR International, Darmstadt, Germany), 3.0; KCl, 2.0; NaHCO3, 0.2; NaCl, 
4.5; MgSO4 · 7H2O, 0.5; CaCl2 · 2H2O, 0.45; MnSO4 · H2O, 0.2; FeSO4 · 7H2O, 0.005; ZnSO4 · 
7H2O, 0.005; cysteine-HCl, 0.4; hemin, 0.005; menadion, 0.005. The medium also contained 
H3PO4, 0.5 ml liter-1 and Tween 80, 2 ml liter-1. The pH of the medium was adjusted to 5.80 before 
sterilization (210 kPa, 121°C, 20 min). Fructose was used as the sole energy source, at a 
concentration of 15 g liter-1, sterilized separately and aseptically added to the fermentation 
medium. Fructose was sterilized in an autoclave (210 kPa, 121°C, 20 min). For in vitro 
experimental validation of B. longum, the metabolism of this species was first examined using 
small-scale fermentations (100 ml) in MCB with glucose as the sole added energy source and 
without pH control. Initially, the strains were transferred from storage at 80°C to de Man-Rogosa-
Sharpe medium and incubated anaerobically at 37°C in a modular atmosphere-controlled system 
(MG anaerobic work station; Don Withley Scientific, West Yorkshire, United Kingdom) that was 
continuously sparged with a mixture of 80% N2, 10% CO2, and 10% H2 (Air Liquide, Paris, 
France). After this, the strains were propagated twice in MCB with glucose as the sole added 
energy source and finally added (5% [vol/vol]) to 100 ml of MCB with glucose as the sole added 
energy source. After 24 h of anaerobic incubation at 37°C, colony counts were obtained by plating 
the strains on MCB agar with glucose, and the final pH of the medium was determined. Samples 
were also removed for further analysis. 
For in vitro experimental validation of B.breve, the detailed fermentation process could be found 
in literature data34. For the in vitro experimental validation of E. hallii, the detailed fermentation 
process could be found in literature data 37. The detailed processes are:  Eubacterium hallii L2-7 
was isolated from a 2-year-old healthy infant and grown in YCFA medium containing (per 100 
mL) 0.1 g casitone, 0.25 g yeast extract, 0.4 g NaHCO3, 0.1 g cysteine, 0.045 g K2HPO4, 0.045 
g KH2PO4, 0.09 g NaCl, 0.009 g MgSO4×7H2O, 0.009 g CaCl2, 0.1 mg resazurin, 1 mg haemin, 1 
mg biotin, 1 mg cobalamin, 3 mg paminobenzoic acid, 5 mg folic acid and 15 mg pyridoxamine. 
Final concentrations of the SCFA in the medium were 46mM acetate, 9mM propionate and 1mM 
each of isobutyrate, iso-valerate and valerate. The medium was adjusted to pH 6.7 and placed in 
Hungate tubes that were flushed with CO2 and heat-sterilized. Heat-labile vitamins were added 
after the medium was autoclaved to give a final concentration of 0.05 µg mL-1 thiamine and 0.05 
µg mL-1 riboflavin. The glucose-supplemented medium as a carbon source contained a final 
concentration of 10mM. Each test bacterial strain was inoculated into triplicate tubes and growth 
measured spectrophotometrically as A650nm. The medium was supplemented with 35mM DL-
lactate (pH 6.7±0.1), of which approximately 16 mM were in the L-lactate form. The in vitro 
experiments were carried out in Hungate tubes under anaerobic conditions. Fermentation was 
monitored by synchronous measurements of the OD650nm and concentrations of glucose, 
lactate (DL and L), acetate and butyrate. Concentrations of L-lactate and glucose were 
determined by enzymatic methods. Concentrations of SCFA and DL-lactate were determined by 
capillary GC. D-Lactate was estimated as the difference between total lactate and L-lactate 
concentrations. For in vitro experimental validation of F. prausnitzii and R. intestinalis, the detailed 
fermentation process could be found in literature 30. The detailed processes are:  the strains 
studied were originally isolated from anaerobic roll tubes with M2GSC medium containing 30% 
clarified rumen fluid. All seven strains were, however, able to grow in yeast extract-Casitone-fatty 
acids (YCFA) medium lacking rumen fluid provided that a mixture of sources of carbon and fatty 
acids (SCFA) (giving final concentrations of 33 mM acetate, 9 mM propionate, 1.2 mM iso-
butyrate, 1.0 mM iso-valerate, and 1.0 mM valerate) was added. Medium YCFAGSC contains the 
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following ingredients (per 100 ml): 1 g of Casitone; 0.25 g of yeast extract; 0.2 g each of glucose, 
starch, and cellobiose; 0.4 g of NaHCO3; 0.1 g of cysteine; 0.045 g of K2HPO4; 0.045 g of K2HPO4; 
0.09 g of NaCl; 0.009 g of MgSO4 · 7H2O; 0.009 g of CaCl2; 0.1 mg of resazurin; 1 mg of hemin; 
1 µg of biotin; 1 µg of cobalamin; 3 µg of p-amino benzoic acid; 5 µg of folic acid; 15 µg of 
pyridoxamine; 5 µg of thiamine; and 5 µg of riboflavin. Thiamine and riboflavin were added to the 
medium as filter-sterilized solutions after being autoclaved (121°C, 15 min). Media were prepared 
and maintained under O2-free CO2.  
 
For the evaluation of both monoculture and coculture for B. thetaiotaomicron and B. adolescentis, 
the composition of the base medium per 100 ml, is as follows: 0.25 g yeast extract (BD), 1.0 g 
casitone (BD), 0.4 g NaHCO3 (Merck), 0.045 g K2HPO4 (Merck), 0.045 g KH2PO4 (Merck), 0.09 
g NaCl (Merck), 0.09 g (NH4)2SO4 (Merck), 0.009 g MgSO4 · 7H2O (Merck), 0.009 g CaCl2 
(Merck), 0.1 mg resazurin (Sigma-Aldrich), and 1 mg hemin (Sigma-Aldrich). In addition, the final 
concentrations of following short-chain fatty acids (SCFA) were included (final concentrations): 
acetate (33 mM); propionate (9 mM); isobutyrate, isovalerate, and valerate (1mM each). Finally, 
the volume was adjusted with dH2O in a conical Erlenmeyer flask. The medium was boiled in a 
microwave to dissolve the complex compounds. After the medium cools down, it was 
supplemented with cysteine (0.1 g), followed by boiling under oxygen-free CO2 atmosphere for 
3±4 minutes. After autoclaving at 120 °C for 15 min, filter sterilized solutions of vitamins (1 μg 
biotin, 1 μg cobalamin, 3 μg p-aminobenzoic acid, 5 μg folic acid, 15 μg pyridoxamine, 5 μg 
thiamine and 5 μg riboflavin) per 100 ml of medium. All SCFAs and vitamins were purchased from 
Sigma-Aldrich. The final pH of medium was maintained to 7.2 ± 0.1. In YCGMS medium, carbon 
sources such as glucose (G), maltose (M), cellobiose (C), and soluble starch (S) were added to 
a final concentration of 0.2% (wt/vol) of each. To encourage the growth of the fastidious species, 
simple sugars were added to the medium. This same media was used for the B. adolescentis L2-
32 and B. thetaiotaomicron ATCC 29148 co-culture experiment. All other components were the 
same between the YCFA and YCGMS media.  
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Method 5 | Evaluation of hierarchical resource allocation framework (HARF) by 
comparing predictions on community dynamic metabolic behavior and experimental data 

In order to evaluate whether HRAF enables to characterize the dynamic behavior of the gut 
ecosystem also to investigate how the gut microbiota interact with each other in the dynamic 
manner, we firstly constructed the ECMF models for the individual bacterium that constituted the 
two-species consortium, and further developed the HRAF of their coculture for predictions on the 
dynamic metabolic behavior of their consortia, following the HRAF framework pipeline. All 
associated parameters, including the kinetic parameters and the MPMs of individual bacterium 
within the two-species consortium were taken from that identified from their corresponding ECMF 
models (Table S5). The kinetic parameters in ECMF for each species were estimated by fitting 
model simulation results of growth and product profiles to the in vitro experimental data of each 
species 40. The initial condition was set based on the in vitro coculture experimental data, 
including the substrate and products. There were no parameter fittings involved in these 
simulations, thus, the dynamic metabolic profiles of the consortia were purely predicted for growth 
on a mixture of three substrates, i.e., glucose, maltose and starch, with each being initially 
available at a concentration of 2g/L. The model predictions were simulated based on the system 
governing equations provided in Method 2(SI Appendix). The dynamic interactions of the 
consortia member could be indicated by the growth curve of two species based on the HRAF 
pure predictions on their growth profiles. We further evaluate the HRAF predictions by comparing 
to in vitro fermentation data of the consortia for validation 40. The pure predictions of HRAF on 
both growth profiles and metabolite profiles were compared to in vitro fermentation data from the 
literature 40. The coefficient of determination, i.e., R2 was calculated to evaluate the fidelity of 
HRAF predictions. 
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Method 6 | Evaluation of HRAF by predicting ecosystem-wide ecological interactions 

    In silico community-models for all possible pairwise combinations (two species consortium), 
based on a collection of dynamic metabolic models describing our ecosystem representatives 
and their identified kinetic parameters, were systematically reconstructed and evaluated using a 
community-level dynamic model framework. Correspondingly, bacterial growth profiles in 
monoculture and coculture with other species were predicted for 28 pair-wise combinations. 
Analogous to the community-level model construction, we assumed context-dependent 
environmental resources were shared by any two species within each pair. The community 
medium was defined based on the growth requirements for the two consortium members within 
each pair. To ensure reliable comparison at the system-level, substrates that were utilized by all 
species were standardized to the same level for both pure culture and co-culture simulations, 
among all combinations. The kinetic parameters for each species applied in the community 
models were the same as those identified based on its individual monoculture. For each species, 
its growth capacity in monoculture was used as the baseline, upon which its growth capacity 
within pairwise coculture with other species was compared and used to calculate the interaction 
index (Eq. 35). Four types of interactions were hereby defined based on the interaction index with 
similar concept to previous studies 42, 43, i.e., negative, where two species compete for the shared 
resources (competition, -/-); positive, where the metabolites produced by one species are required 
by another (cooperation, +/+); unequal, including positive/neutral (commensalism, +/0), 
negative/neutral (amensalism, -/0), or positive/negative (exploitation, +/-) where coculture 
produced a synergic co-growth benefit; and neutral, where coculture has no net effect. The 
pairwise interaction index for the i-th combination was defined by fold changes between growth 
capacity in pairwise combinations and the baseline level for each species, i.e. 

                                                             (37) 
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Method 7 | Evaluation of the biomimetic model described by the spatial compartmentalized 
framework (SPCF) 

    We evaluated whether SPCF is able to correctly predict the colonic physiology by comparing 
model simulations with the in vitro experimental setup, TNO intestine model (TIM), that has been 
developed since 1998 and successfully used to simulate many different colon experiments44. We 
evaluated SPCF in two parts. First, we evaluated SPCF’s ability to characterize the colon 
physiology, including transit time and water absorption. In this part, with the same inflow rate and 
volume settings as TIM, SPCF was used to predict the spatiotemporal profiles under multiple 
conditions with different nutrition signals as model input (Figs. S8-10). SPCF showed consistent 
predictions on the outflow rate and transit time (Table S6), as compared to in vitro observations 
of TIM. Besides, our model enables the spatiotemporal profiles at uninterrupted time-scale which 
cannot be achieved by TIM. Rather, TIM only measures the output at the defined sampling outlet. 
We further performed assessment of SPCF’s SCFA production with input of four complex 
carbohydrates (0.25g for each), by assuming a pseudo carbohydrate degradation reaction in each 
compartment of SPCF. The hydrolysis parameters were determined by fitting SCFA yields under 
each carbohydrate (Table S6). Due to the spatiotemporal nature of SPCF predictions, to make 
our predictions comparable with the TIM time-course total output profiles, we calculated the time-
specific SCFA production by taking total account of in vivo site-specific SCFA (including 
ascending lumen, transverse lumen, descending lumen and sigmoid lumen, ascending mucus, 
transverse mucus, descending mucus and sigmoid mucus), blood SCFA and fecal SCFA. The 
resulting time-coursed profiles of both SCFA production and composition under each 
carbohydrate were compared to the TIM in vitro observations (Figs. S11-12).  
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Method 8 | Evaluation of CODY 

CODY formulations 

By integrating the intrinsic dynamic of gut microbiota that is described by ECMF and HRAF, into 
the extrinsic dynamics of the gut microbiota that is the colon environment described by SPCF, 
CODY could be assembled and formulated by integrating the impacts of species metabolites from 
both microbiota and the colon. The mass balance equations for the bacteria and metabolite state 
variables could be described by the following governing equations: 

                                      (38) 

                 (39)  

where denotes the microbiota profiles, and denotes the metabolite profiles. The mathematical 
model of microbiota profiles comprises four components, forward flow ( ), back flow ( ), 
dynamic reaction metabolism( ), and detatchement ( ); while that of metabolite comprises six 
components, besides the three components that are the same as the microbiota, the other three 
terms correspond to a source term ( ), mass transport term from lumen phase to mucus phase 
( ), and membrane permeation from mucus to blood ( ). The state variable vector is defined 
as  for microbiota biomass of functional community members (for the 

breastmilk-feeding period microbial community), and for all involved metabolites, 

where  is the concentration of the complex polysaccharide accessible by microbiota, is the 
hexose that was released by complex carbohydrates and further supported microbiota 
development.  is the vector of concentration of other 
small molecules that are produced by the microbial ecosystem. Furthermore, according to the 
presented formulations for ECMF, HRAF and SPCF in Method 1-3(SI Appendix), the above 
system governing equations could be detailed as below for the J-th microbe and i-th metabolite 
in the k-th colon region by substituting each term, which gives: 

                       (40) 

                 (41) 

Two Longitudinal clinical studies used for demonstrations of CODY 

    We employed two cohorts to evaluate CODY’s predictive power on gut microbiota 
reprogramming under diet-intervention. For the infant cohort, we adopted the time series infant 
gut microbiota consisting of 98 stool samples taken from Swedish healthy full-term breastfed 
infants. Fecal samples at three stages including newborn, aged 4th month and 12th month were 
involved in this study. Shotgun-sequenced samples were analyzed at the meta-OTU level. The 
metagenome sequence data are available at GigaDB (http://gigadb.org/) under the accession 
code ERP005989. For detailed description of this dataset see the published study 1. By removing 
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the infants receiving formula-feeding at newborn and 4th month, we identified 68 breastfed infants 
that were included in our study. For the adult cohort, we adopted the Helsinki hepatic steatosis 
obese adult fecal samples before and after isocaloric carbohydrate-restriction diet intervention. 
Fecal samples available at 0 day at control condition, and 1, 3, 7 and 14 days after diet 
intervention were used to evaluate CODY predictions for this cohort. The relative abundance data 
of microbiota representatives were performed based on their shotgun metagenomics data. The 
fecal SCFA measurement were based on GC-MS detection. Details information could be referred 
to the reported literature 45. 
CODY simulation process 

The nutrient inputs were determined in order to mimic the real-life daily meals. Specific diet 
frequency and composition accessed by the microbiota were described by a pattern-specific 
multiple segmented step-function. The polysaccharides are the microbial resources from 
degrading complex carbohydrates, and the composition was determined for each period. For 
example, in the infant cohort, after birth, HMO, which is the third most abundant solid components 
in breastmilk, with an estimated amount of 14 g/d served as the main nutrient for the gut 
microbiota 46, 47. 1 g/d mucin is estimated to be produced during this period 48. Breastmilk is set 
being fed to infants by 6 times/day ( =3.5). Diet input during this period is shown in Eq. 40, 
whereby S0 denotes for the polysaccharide concentration during this stage. 

                            (42) 

    After diet switching to solid food, the microbial accessible carbohydrates (MACs) became fiber 
and resistant starch, the amount of which is adjusted to half of the amount taken by adults 49. 
Besides, 1.5 g/d mucin glycans are estimated to be produced during this period 48. This is 
equivalent to 80g/L of carbohydrate contained in 0.3L/day of fluid which are allocated among 
three meals ( =5). The diet input during this period is shown in Eq. 41. 

                          (43) 

   The metabolic degradation capacity of representatives differentiated for specific carbohydrate, 
based on literature-based mining. B.fragilis and B.thetaoitaomicron are reported to access bovine 
mucins 50, B.longum is reported to possess certain enzymes degrading mucins51; B.longum is 
well-known in degrading HMO 52, B.fragilis and B.adolescentis shows moderate and weak 
capacity respectively to utilize certain structures of HMO 53, while B.breve hardly degrade HMO54. 
Dietary fibers coming from plant cell walls, with main constituents being hemicellulose, i.e., xylan, 
mannan, xyloglucan, beta-glucan and pectin, can be degraded by B.fragilis, R.intestinalis, and 
F.prausnitzii55, 56; B.thetaiotaomicron is reported to hardly access hemicelluloses and beta-
glucans from fiber57; small portion of other fiber types including inulin (contained in onions, garlic 
and banana 56), fructooligosaccharides could be degraded by B.adolescentis and E.hallii 36. 
B.fragilis, B.adolescentis, B.thetaiotaomicon and E.hallii58 are reported to access certain type of 
resistant starch 50, 56, 59, 60. Consequently, the degradation capacity of all involved carbohydrate 
forms by each consortia member were quantitatively summarized (Table S4). All forms of complex 
carbohydrates were assumed to be degraded to the same extent of hexose that is accessible to 
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all species that require hexose for growth. The degradation capacity of each species was 
determined by their collective ability to degrade all forms of nutrients involved within the 
investigated period. 
    For the obese adult cohort, the MACs were determined based on what was reported in the 
study. The amount of the constitutes, i.e., fiber and resistant starch, was based on the total 
insoluble fiber and resistant starch before and after carbohydrate-restriction 45 (Table S4). The 
diet input during this period was the same as shown in Eq. 41. All the parameters used for CODY 
are shown in Table S6. 
    Defecation process was described by a Dirac function in Eq. 42 to represent that rectum would 
be emptied periodically, with frequency of three times/day during breastmilk-feeding period (

), and one time/day during solid food feeding period ( ). Before the defecation 
process, all wastes containing bacteria, undigested molecules and water would accumulate in the 
rectum continuously. 

                                        (44) 

    CODY enables predictions on both in vivo microbiota reprogramming and in vitro microbiota 
reprogramming reflected in the feces, employing the initial microbiota composition as the baseline 
condition. The newly achieved stable composition was employed as the initial conditions for the 
subsequent simulation by using the diet-intervention strategy as the diet input. We followed this 
workflow to predict the spatiotemporal microbial and metabolite profiles for both infant and adult 
cohort studies.    
    To make our prediction on the feces comparable to the in vitro feces metagenomics 
measurements, we converted the microbial density profiles at the post-stabilized state to the 
relative microbiota composition thus enabling comparison between model predictions and 
metagenomics measurements. The transformation was done according to the following equation, 

                                                         (45) 

Where  denotes the concentration of the bacteria in the final time of the dynamic trajectory, 
and   denotes the total abundance of the ecosystem members with respect to the original 
gut microbiota. 
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 Method 9 | PCA for dynamic microbial landscape development 

    In order to evaluate the phenotypic difference in the dynamic process of microbial growth 
between the lumen phase and the mucus layer we used the HCTSA toolbox to analyze the 
microbial time-series data 61, 62. The analysis was performed as suggested by the toolbox. Based 
on system-level comparison of all microbial temporal trajectories, we firstly identified related 
features that characterize the time-evolved data of microbial growth profiles in the lumen and 
mucus. 7749 features were encapsulated based on the model libraries that have been evaluated 
previously by the HCTSA package. Each feature captured one or more specific properties of the 
time-series data structure (i.e., autocorrelation, entropy, etc.). A filtering step was used to remove 
features related with location or length of the data structure, as well as those features that have 
zero-variances. Each feature was scored based on its ability to classify the three labeled groups, 
i.e., lumen, mucus and feces samples. This step was done by training a one-point split 
identification tree and calculating the accuracy score using following equation: 

                                                            (46) 

where TP, TN, FN, FP are the number of true positives, true negatives, false positives, false 
negatives, respectively. 
    A further non-redundancy step was performed. In this step, all features were firstly ranked 
based on their accuracy score. Next, the representative feature (with the highest accuracy score) 
was chosen for one distinct feature cluster, remaining features with high Pearson’s correlation 
coefficient (>0.9) with the representative features grouped together, or otherwise set as a new 
representative feature of the next cluster. Following this, we obtained all the feature clusters. The 
top ten representative features with the highest accuracy were used for the PCA analysis in Fig. 
4f. The correlation coefficients among the selected features are shown in Fig. S25, illustrating 
that the obtained features are relatively independent from each other. Low correlation coefficients 
between each other indicate that the obtained features are relatively independent with each other. 
The top ten representative features are summarized in Table S8.  
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Supplementary Figures 

 
 

Fig. S1 | Step-by-step workflow of the CODY platform and associated applications. (a) 
Schematic overview of the different components considered in the CODY platform. (b) Detailed 
step-by-step workflow of the CODY construction process. The symbol “#” denotes that the 
associated model was defined using parameter fitting to in vitro experimental data; The symbol 
“*” denotes that the model was reconstructed based on literature mining; The symbol “D” 
denotes that the model was evaluated through pure model predictions, i.e. without reliance on 
fitting or training process. 1-ecosystem members determination; 2-enzyme-centric metabolic 
framework (ECMF) construction process; 3- construction of the community level dynamic 
microbial model using the hierarchical resource allocation framework (HRAF); 4-spatial 
compartmentalized framework (SPCF) construction in the axial direction; 5-spatial 
compartmentalized framework (SPCF) construction in the radial direction. 6- Evaluation of the 
dynamic mono culture microbial model using enzyme-centric metabolic framework (ECMF); 7-
evaluation for community level dynamic models using the hierarchical resource allocation 
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framework (HRAF); 8-Evaluation of the spatial compartmentalized framework (SPCF) by 
comparing to TIM model. 
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Fig. S2 | Model validation results of representatives of bacteria-level dynamic models. (a) 
Lines show model simulations of each metabolite and growth of microbiota representatives, 
namely, Bidifobacterium longum, Bifidobacterium breve, Faecalibacterium prausnitzii, and 
Roseburia intestinalis. (b) Bifodobacterium adolescentis, Bacteroides fragilis, Bacteroides 
thetaiotaomicron, and Eubacterium hallii. In each figure, the solid lines correspond to model 
simulation results and the symbols represent in vitro experimental data taken from the literature.  
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Fig. S3 | Parameter sensitivity for ECMF model simulations of dynamic metabolism for 
monoculture bacterial growth. (a) Bar plots show the variations of root mean square errors 
(RMSE) between model simulation results and in vitro experiment data as each kinetic parameter 
with respect to the kmax, was individually perturbed within the range from (-5%) to (+5%). (b) 
Sensitivity analysis for individual bacterium with the most significantly impacted RMSE condition 
for Bifidobacterium adolescentis (kmax,9), and Bacteroides fragilis (kmax,11). Other cases are not 
shown since the relative impact on RMSE was small. (c) Bar plots show the variations of root 
mean square errors (RMSE) between model simulation results and in vitro experiment data as 
each kinetic parameter (Michalis-Menten constants) was individually perturbed within the range 
from (-5%) to (+5%) by performing the sensitivity analysis for individual bacterium 
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Fig. S4 | Metabolic capacity comparison among representative microbiota members, 
represented by metabolite yield of key metabolites, maximal growth rate, and degradation 
of different complex carbohydrates. Each column corresponds to one species. KM denotes 
the Michaelis-Menten constants, Y denote the yield of different metabolites, 𝜇  denotes the 
specific growth rate under monoculture condition. The subscripts and their corresponding 
meanings are: GLC-glucose, AC-acetate, SUCC-succinate, LAC-lactate, FORM-formate, But-
butyrate, ETH-ethanol, PROP-propionate, BIOM-biomass. The symbol “+” denotes capable to 
utilize, the symbol “#” denotes cannot utilize. The representatives were annotated with different 
colors with respect to their phylum info. Positive value denotes production while negative value 
denotes consumption. Measures used to capture the metabolic capacity properties included 
yields of specific products (succinate, acetate, lactate, propionate, biomass, ethanol), and growth 
capacity, as well as their accessibility to three microbial-accessible-carbohydrates (MACs). The 
color bar was annotated based on the normalized values by dividing the maximal absolute values 
among all representative species. The metabolic capacity is shown for monoculture conditions. 
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Fig. S5 | Evaluation of coculture using in vitro experimental data of two consortia 
members. Comparison of model simulation results on the dynamic metabolic profiles of species-
specific utilization of multiple substrates, production of key metabolites, as well as individual 
bacterial growth to in vitro experimental data. (a) Model validation result of Bifidobacterium 
adolescentis under multiple substrate condition, namely, glucose, maltose and cellobiose. The 
coefficient of determination (R2) ranges 0.94~0.96, for the model goodness evaluation. (b) Model 
validation result of Bacteroides thetaoitaomicron under the same multiple substrate condition. The 
coefficient of determination (R2) ranges between 0.95~0.98, for the model goodness evaluation. 
Lines represent model simulation results; the symbols represent in vitro experimental data. 
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Fig. S6 | HRAF prediction capacity of microbial-microbial interaction calculated based on 
dynamic growth profiles for all possible combinations of two-species synthetic coculture 
(Method 6(SI Appendix)). Predictions on the dynamic growth profiles of monoculture for each 
microbial coculture member are shown in diagonal plots with colored dashed lines. HRAF 
predictions for coculture of all consortia of two-species combinations, are presented as the 
counters of the below triangle plot ruled with eight vertical and eight horizontal lines. The curves 
inside each counter plot denoted prediction results on the dynamic growth profiles of synthetic 
microbial ecosystem members within their consortia. Different species were indicated by 
corresponding line colors. The above triangle presented the calculation results of the microbial-
microbial interaction index corresponding to each two-species coculture of the below triangle. 
Similarly, each counter of the above triangle plot ruled with the same eight vertical and horizontal 
lines denoted the interaction strength, with species lined in the row corresponding to the lower 
part of the interaction index and species lined in the column of each pair corresponding to the 
upper part of the interaction index. Three interaction types are shown based on model predictions 
of interaction indexes, with competition (-/-) as the dominant type (21 out of 28), others are 
nonneutral (five commensalism (+/0), two exploitation (+/-)). Interaction strength is shown as the 
interaction index color bar, with blue color indicating negative and orange color indicating positive. 
Same colors are shown for denoting the species in the diagonal and triangle below. Abbreviations 
of all species are listed as below. Bth: Bacteroides thetaiotaomicron; Bfr: Bacteroides fragilis; Blg: 
Bifidobacterium longum; Bbv: Bifidobacterium breve; Bad: Bifidobacterium adolescentis; Ehal: 
Eubacterium hallii; Fpr: Faecalibacterium prausnitzii; and Rint: Roseburia intestinalis. 
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Fig. S7 | Paradigm of spatial compartmentalized framework that describes colon 
physiology, shown as one region of each compartment. Biomimetic colon model structure 
shown for one region, which is composed by three compartments, i.e., small tank of vk of mucus 
layer in the bottom, tank Vk of lumen compartment in the top, and blood circulation system tank 
outside the membrane. The flow rate of lumen tanks is denoted by Fk, the flow rate of mucus tank 
is denoted by fk, mass transport between lumen and mucus tank is denoted by Jnk back-mixing in 
lumen compartment is denoted by qk, mass transport from mucus to blood circulation system is 
denoted by jnk. Flow rate in the blood circulation system is denoted by FB. 
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Fig. S8 | Evaluation of SPCF by using one-time impulse signal of substrate as input. (a) In- 
and Out- flow rate of the system. Blue line denotes the inflow rate of the model, yellow line denotes 
the outflow rate of the model. (b) Impulse one-time input signal to trace the system. (c) The 
dynamic profiles of how the input signal developed in each lumen- associated compartment. (d) 
The dynamic profiles of how the input signal changes in each mucus- associated compartment. 
(e) The output of the tracer in the feces compartment of fecal metabolites (above), and feces 
volume (below). (f) The dynamic profile of the nutrient signal in SPCF’s blood compartment. 
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Fig. S9 | Evaluation of SPCF by using three-times impulse signal of substrate as input. (a) 
In- and Out- flow rate of the system. Blue line denotes the inflow rate of the model, yellow line 
denotes the outflow rate of the model. (b) Impulse three-times input signal to trace the system. 
(c) The dynamic profiles of how the input signal developed in each lumen- associated 
compartment. (d)  
The dynamic profiles of how the input signal developed in each mucus- associated compartment. 
(e) The output of the tracer in the feces compartment of fecal metabolites (above), and feces 
volume (below). (f) The dynamic profile of the signal nutrient in SPCF’s blood compartment. 
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Fig. S10 | Evaluation of SPCF by using three-step signal of substrate as input. (a) In- and 
Out- flow rate of the system. Blue line denotes the inflow rate of the model, yellow line denotes 
the outflow rate of the model. (b) Impulse three-step input signal to trace the system. (c) The 
dynamic profiles of how the input signal developed in each lumen- associated compartment. (d) 
The dynamic profiles of how the input signal developed in each mucus- associated compartment. 
(e) The output of the tracer in the feces compartment of fecal metabolites (above), and feces 
volume (below). (f) The dynamic profile of the signal nutrient in SPCF’s blood compartment. 
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Fig. S11 | Evaluation of SPCF predictions of SCFA production by using four complex 
carbohydrate at 0.25g for each. (a) In- and Out- flow rate of the system. Blue line denotes the 
inflow rate of the model, yellow line denotes the outflow rate of the model. (b) Total carbohydrate 
input to the system, with 0.25g at the t=0 time-point. (c) Comparison of model predictions on 
SCFA total production and composition under Pectin as carbohydrate. Lines denote model 
predictions for acetate, butyrate and propionate, and their sum (purple lines). Purple dots denote 
total SCFA production obtained in TIM experimental data under 0.25g pectin. (d) Comparison of 
model predictions on total SCFA production and composition under Lactulose as carbohydrate. 
Lines denote model predictions for acetate, butyrate and propionate, and their sum (purple red 
lines). Purple red dots denote total SCFA production observed in TIM experimental data under 
0.25g lactulose. (e) Comparison of model predictions on SCFA total production and composition 
under FOS as carbohydrate. Lines denote model predictions for acetate, butyrate and propionate, 
and their sum (green lines). Green dots denote total SCFA production observed in TIM 
experimental data under 0.25g FOS. (f) Comparison of model predictions on total SCFA 
production and composition under Lactitol as carbohydrate. Lines denote model predictions for 
acetate, butyrate and propionate, and their sum (red lines). Red dots denote total SCFA 
production observed in TIM experimental data under 0.25g lactitol. 
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Fig. S12 | Evaluation of SPCF predictions on SCFA composition profiles (denoted as 
percentage) produced by four complex carbohydrate (at 0.25g for each) through 
comparing SPCF predictions to TIM in vitro experimental data. Grey bars denote SPCF 
predictions, pink bars with error bars denote TIM in vitro experimental data.  
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Fig. S13 | Comparison between microbial ecosystem model encompassing representatives 
and original community of the infant gut microbiota. (a-b) Boxplots show how microbial 
ecosystem model resemble the three most prominent phyla in the infant gut microbiota. (c-d) 
Mean relative abundance plots show how microbial ecosystem resemble the three most 
prominent phyla during each time period. 
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Fig. S14 | Modeled Dynamic evolution profiles of microbiota downstream the luminal colon 
phases, rectum and feces storage. Data is shown to present the modeled dynamic transient 
microbiota biology from newborn to stable colonization under breastmilk-feeding, and then 
switching to solid-food feeding. The diet-switching point is annotated by the arrows in each panel. 
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Fig. S15 | Modeled dynamic evolution profiles of microbiota in the mucus compartments, 
longitudinally from cecum to sigmoid regions. Data is shown from newborn to stable 
colonization under breastmilk, and then switching to solid food. The diet-switching point is 
annotated by the arrows in each panel. 
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Fig. S16 | Evaluation of CODY predictions on feces microbiota configurations under 
breastmilk feeding (4th month) and solid-food feeding (12th month).  (a) R2 between 
microbiota relative abundance (RA) predicted by CODY in the feces compartment as compared 
to in vitro metagenomics measurement of fecal samples, at 4th month. (b) R2 between microbiota 
relative abundance (RA) predicted by CODY in the feces compartment as compared to the 
reference data taken from in vitro metagenomics measurement of fecal samples, at 12th month. 
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Fig. S17 | Evaluation of CODY predictions on the SCFA excretion in the feces and plasma. 
For feces compartment, the unit is mmol/kg feces. For the blood compartment, the unit is mmol/L. 
(a) Evaluation of CODY predictions of the excretion of acetate, propionate, succinate, and formate 
in the plasma (blue lines) and feces (dark red lines) of 4th month infant. Lines denote model 
predictions, filled diamond symbols denote reference data. (b) Evaluation of CODY predictions of 
the excretion of acetate, succinate, propionate, butyrate and formate, in the plasma (blue lines) 
and feces (dark red lines) of the 12th month infant. Lines denote model predictions, filled diamond 
symbols denote reference data.  
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Fig. S18 | Modeled dynamic evolution profiles of microbiota-associated metabolites in the 
ascending and transverse regions of lumen compartments. Data is shown from newborn to 
stable colonization under breastmilk, and then switching to solid food. The diet-switching point is 
annotated by the arrows in each panel. 
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Fig. S19 | Modeled dynamic evolution profiles of microbiota-associated metabolites in the 
descending and sigmoid regions of lumen compartments. Data is shown from newborn to 
stable colonization under breastmilk, and then switching to solid food. The diet-switching point is 
annotated by the arrows in each panel. 
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Fig. S20 | Modeled dynamic evolution profiles of microbiota-associated metabolites in the 
ascending and transverse regions mucus compartments. Data is shown from newborn to 
stable colonization under breastmilk, and then switching to solid food. The diet-switching point is 
annotated by the arrows in each panel. 
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Fig. S21 | Modeled dynamic evolution profiles of microbiota-associated metabolites in the 
ascending and transverse regions mucus compartments. Data is shown from newborn to 
stable colonization under breastmilk, and then switching to solid food. The diet-switching point is 
annotated by the arrows in each panel. 
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Fig. S22 | Modeled dynamic evolution profiles of microbiota-associated metabolites in the 
feces and BCS phases. Data is shown from newborn to stable colonization under breastmilk, 
and then switching to solid food. The diet-switching point is annotated by the arrows in each panel. 
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Fig. S23 | Comparison of the predicted post-stabilized levels of bacteria and SCFA in each 
region of the lumen compartments during breastmilk feeding period. (a) The post-stabilized 
levels of bacteria in each region of lumen colon increase mainly in the proximal colon and maintain 
relatively stable when moving towards the distal colon. (b) SCFA level increase in the proximal 
colon and decrease when reaching the distal colon due to absorption. 
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Fig. S24 | Feature extraction and the pairwise association among the top 10 features, 
performed by using a computational framework for the time-series phenotyping using 
massive feature extraction (hctsa) toolbox to distinguish the dynamic development 
profiles of microbiota with respect to lumen, mucus and feces. Left: Using hctsa to quantify 
and interpret phenotypic difference, the package facilitates massive feature extraction to compare 
over 5000 features of each time series, derived from an interdisciplinary time-series analysis 
literature. The feature matrix contains the result of this feature extraction, where each row 
represents a time series and each column represents a feature that encapsulates some property 
of that time series (e.g., measures of its autocorrelation structure, entropy, etc.). Colored (blue 
and red) labels denote the three types of data: dynamic evolution process of bacteria 
development profiles in lumen, mucus and feces; dark/light labels high/low values of each feature, 
revealing rich structure in the dynamical properties of the dataset. Right: Pairwise correlation 
map among the top 10 features identified by hctsa for distinguishing the two phenotypes of time-
series data. The top 10 features span a wide range of time-series analysis techniques, and form 
sets of high diversity of correlated groups. 
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Fig. S25 | The statistical values corresponding to the top 10 features of three phenotypes 
of time-series data, each bar shows the property value across each phenotype of time-
series data (lumen, mucus or feces), error bar means standard deviation across each 
phenotype of time-series data. The property names and their potential meanings corresponding 
to top ten features are (29, 30): 
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(a) MF_AR_arcov_5_a3: Using time-series dataset to fit a fifth-order Autoregressive model 
applying Matlab Signal processing toolbox, returning third-order coefficient of an autoregressive 
AR(5) model fitted to the time-series dataset; 
(b) MF_AR_arcov_5_a4: Using time-series dataset to fit a fifth-order Autoregressive model 
applying Matlab Signal processing toolbox, return the fourth-order coefficient of an autoregressive 
AR(5) model fitted to the time-series dataset 
(c) MF_AR_arcov_5_a5: Using time-series dataset to fit a fifth-order Autoregressive model 
applying Matlab Signal processing toolbox, return the fifth-order coefficient of an autoregressive 
AR(5) model fitted to the time-series dataset 
(d) MF_CompareTestSets_y_ar_4_rand_25_01_1_ac1s_mean: using the time-series dataset to 
fit a fourth-order AR model which is then used to repeatedly predict 25 times randomly chosen 
subsegments with 10% length and one-step ahead in the test sets, and then return the mean 
autocorrelation coefficient of prediction residuals at lag one phase computed by ‘Fourier’ method. 
(e) MF_CompareTestSets_y_ar_4_rand_25_01_1_ac1s_median: using the time-series dataset 
to fit a fourth-order AR model which is then used to repeatedly predict 25 times  randomly chosen 
subsegments with 10% length and one-step ahead in the test sets, and then return the median 
autocorrelation coefficient of prediction residuals at lag one phase computed by ‘Fourier’ method. 
(f) MF_StateSpace_n4sid_2_05_1_minfpe: Using time-series dataset to fit a second-order state-
space model and then train the first 50% of dataset to predict the rest data with 1 step ahead. 
MF_ResidualAnaysis would return the minfpe value which is the minimal fpe (final prediction 
error) derived by fitting a zero-mean AR model to residuals between modeling fitting and rest 
dataset of 1 step ahead. 
(g) MF_armax_3_1_05_1_minfpe: using time-series dataset to fit an 3-1 order of Ar-max model, 
train the model with 50% portion data and testing the rest portion with 1 step ahead. Returning 
the goodness of model fit in the training data 
(h) MF_armax_2_2_05_1_p3_5: statistical tests on the residuals from using the fitted model to 
predict the testing data. P3_5 means identify any low-frequency trends in residuals from 
proportion of power spectrum in third and fourth 
(i) MF_armax_2_2_05_1_p4_5: statistical tests on the residuals from using the fitted model to 
predict the testing data. p4_5 means identify any low-frequency trends in residuals from 
proportion of power spectrum in fourth and fifth 
(j) MF_armax_2_2_05_1_minfpe: Using time-series dataset to fit a 2-2 order of AR Max model, 
train the mode with 50% portion data and testing the rest portion with 1 step ahead. Returning 
the goodness of model fit in the training data by the minPFE, by fitting a linear model and see if it 
picks up any structure. 
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Fig. S26 | Modeled dynamic evolution profiles of microbiota downstream the luminal colon 
phases, for the adult cohort experiencing diet-intervention. Data is shown to present the 
dynamic transient microbiota development under normal diet and achieve stability, further 
experiencing the diet-intervention treatment, specifically, in the (a) Ascending lumen region; (b) 
Transverse lumen region; (c) Descending lumen region and (d) Sigmoid lumen region. 
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Fig. S27 | Modeled dynamic evolution profiles of microbiota in the mucus compartments, 
for the adult cohort experiencing diet-intervention. Data is shown to present the dynamic 
transient microbiota development under normal diet and achieve stability, further experiencing 
the diet-intervention treatment, specifically, in the (a) Ascending mucus region; (b) Transverse 
mucus region; (c) Descending mucus region and (d) Sigmoid mucus region. 
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Fig. S28 | Modeled dynamic evolution profiles of microbiota-associated metabolites in the 
feces region for the adult cohort. Data is shown development under normal diet and achieve 
stability, further experiencing the diet-intervention treatment, in the feces region. 
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Fig. S29 | Modeled  dynamic evolution profiles of microbiota-associated metabolites in the 
blood compartment for the adult cohort. Data is shown the microbiota-associated metabolite 
profiles under normal diet and achieve stability, further experiencing the diet-intervention 
treatment, in the blood compartment.  
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Supplementary Tables 

Table S1 | Summary of abbreviations used in the main text and the corresponding full names, as 
well as the associated representations.  

Abbreviation Full name Representation 

ECMF Enzyme-centric metabolic 
framework 

Dynamic framework that describe the bacterial biology 
for monoculture 

HRAF Hierarchical resource allocation 
framework 

Dynamic framework that describe the bacterial biology 
for consortia 

SPCF Spatiotemporal 
compartmentalized framework 

Dynamic framework that capture the colon structure 
and physical forces 

CODY 
Multiscale framework for 

computing the dynamics of 
microbiota 

Comprehensive dynamic model that predict the 
dynamic gut microbiota reprogramming 

SCFA Short chain fatty acid The major products of the microbiota 

GEMs Genome-scale metabolic models The representation of microbial metabolism 

MPMs Metabolic pathway modules The active set of metabolic pathways of microbe that 
represent the metabolic capacity 

FBA Flux balance analysis 
A common approach in system biology that identify 

one metabolic pathway with maximal yield, i.e., 
biomass 

BCS Blood circulation system The blood compartment considered in SPCF 

R2 Determination of coefficient Evaluation of the accuracy of model predictions 

MACs Microbial accessible 
carbohydrates Microbial accessible carbohydrates 

TIM TNO intestinal model A classical in vitro experimental setup used to simulate 
human colon environment 

Bth Bacteroides thetaiotaomicron The microbial ecosystem member 

Bfr Bacteroides fragilis The microbial ecosystem member 

Blg Bifidobacterium longum The microbial ecosystem member 

Bbv Bifidobacterium breve The microbial ecosystem member 

Bad Bifidobacterium adolescentis The microbial ecosystem member 

Ehal Eubacterium hallii The microbial ecosystem member 

Fpr Faecalibacterium prausnitzii The microbial ecosystem member 

Rint Roseburia intestinalis The microbial ecosystem member 
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RA Relative abundance Metric of the microbiota composition 
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Table S2 | Summary of information of original genome scale metabolic models (GEMs), the 
referred literature, and information of the reduced GEMs.  
 

Species Information of original GEMs Reduced GEMs 

Name 
Genome-scale 

metabolic 
model 

No. of 
rxns[1] 

No. of 
mets[2] 

No. of 
genes References No. of 

rxns[1] 
No. of 
mets[2] 

No. of 
genes 

B. 
thetaiotao

micron 
iBth801 v1.00 1045 877 801 

Cell Metabolism, 
4;22(2):320-331; Cell 

host & Microbe, 
10(4):336-347 

109 98 79 

B. fragilis 
Bacteroides_fr
agilis_NCTC_9

343 
1045 877 801 

Nature Biotechnology, 
35(1):81-89; Cell host & 
Microbe, 10(4):336-348 

109 98 71 

B. longum 

Bifidobacteriu
m_longum_inf
antis_ATCC_1

5697 
715 610 452 

Nature Biotechnology, 
35(1):81-89; Gene & 

Nutrition, 6(3): 285-304 
89 81 65 

B. breve 

Bifidobacteriu
m_breve_UCC
2003_NCIMB8

807 
715 610 452 

Nature Biotechnology, 
35(1):81-89; Gene & 

Nutrition, 6(3): 285-305 
89 81 68 

B. 
adolescenti

s 
iBif452.V01.00 715 610 452 

Cell Metabolism, 
4;22(2):320-331; Gene & 
Nutrition, 6(3): 285-306 

89 81 68 

E. hallii iEre400 v2 00 450 381 400 
Cell Metabolism, 

4;22(2):320-33; FEMs 
Microbiology Letters, 

294(1):1:8 
100 91 97 

F. 
praustznii 

iFap484.V01.0
0 729 620 484 

Cell Metabolism, 
4;22(2):320-331; J Bac. 

196(18):3289-3302 
87 106 87 

R. 
intestinalis 

Roseburia_inte
stinalis_L1_82 729 620 484 

Nature Biotechnology, 
35(1):81-89; FEMs 

Microbiology Letters, 
294(1):1:8 

87 106 66 

 
Notes: [1] Number of reactions in associated models. 
Notes: [2] Number of metabolites in associated models. 
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Table S3 | Summary of datasets used for evaluation of the three modeling frameworks comprised 
in CODY, as well for evaluation of CODY, which are employed to compare with corresponding 
model prediction results. 

 
Datasets employed for model evaluation 

ECMF HRAF SPCF CODY Monoculture 40 Coculture 40 

Bacteroides 
thetaiotaomicron33 

Bacteroides 
thetaiotaomicron 

Bacteroides 
thetaiotaomicron 

Colon 
physiology63 

Longitudinal metagenomics 
study of dynamic infant gut 

microbiota development 
during first year of life 1 

Bacteroides 
fragilis33 

Bifidobacteria 
adolesentis 

Bifidobacteria 
adolesentis 

SCFA 
production 
in in vitro 

TIM setup44 

Longitudinal metagenomics 
study of dynamic gut 

microbiota changes of 
hepatic steatosis adults 
under diet-intervention 45 

Bifidobacteria 
longum33     

Bifidobacteria 
breve34     

Bifidobacteria 
adolesentis36     

Eubacterium hallii37     
Faecalibacterium 

prausztnii38     

Roseburia 
intestinalis30     
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Table S4 | Metabolic capacity of microbial ecosystem members, including growth rate, production 
of key metabolites and degradation of microbial accessible carbohydrates, where negative values 
mean corresponding metabolites are consumed. The four categories of polysaccharides used 
include: HDP representing host-derived polysaccharides, MDP representing breastmilk derived 
polysaccharide and DDP representing diet-derived polysaccharide, respectively. 

MACs (Microbial-
accessible 

carbohydrates) 

Host-derived 
mucin 

Breastmilk 
oligosaccharide 

Dietary 
fiber 

Resistant 
starch 

Category HDP MDP DDP DDP 

Composition 

4th month 1 g/d 14 g/d - - 

12th month 1.5 g/d - 
12.5 
g/d 

10g/d 

Adult control 2 g/d - 33.2g/d 23.8g/L 

Adult intervention 2 g/d - 19.7g/d 4g/d 

Degradation by microbiota (kd/Kcap) 

B. thetaiotaomicron 3/90 2/50 1/90 1/90 

B. fragilis 10/30 16/40 8/20 8/50 

B. longum 5/30 16/20 2/50 6/30 

B. breve 1/90 1/90 1/90 1/90 

B. adolescentis 2/50 6/30 1/80 5/50 

E. hallii - - 9/60 3/50 

F. praustznii - - 15/30 2/50 

R. intestinalis - - 5/60 8/15 

Metabolic Capacity of microbial species 

Representatives μmax(h-1) Yacetate Ybutyrate Ypropionate 
B. thetaiotaomicron 0.5087 0.65 0 0.08 

B. fragilis 0.4321 0.49 0 0.11 

B. longum 0.5082 1.47 0 0 

B. breve 0.4746 1.02 0 0 

B. adolescentis 0.4347 1.71 0 0 

E. hallii 0.5028 -0.449 0.697 0 

F. praustznii 0.6837 -0.63 1.09 0 
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R. intestinalis 0.6632 -0.899 1.175 0 
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Table S5 | Summary of parameters in mono culture evaluation of two species, i.e., 
B.thetaiotaomicron and B.adolescentis under multiple substrates, i.e., maltose, cellubiose and 
glucose. The parameters are used the same in both the mono culture and coculture of the two 
species in the evaluation of HRAF. The unit of kmax is mM/gDW/h. The unit of KM is mM. 

Substrate-
associted MPMs B. thetaiotaomicon B. adolescentis 

Glucose-
associated 

MPMs 
kmax KM kmax KM 

MPM1 80.0807 10 0.1831 10 

MPM 2 51.8401 10 0.018 10 

MPM 3 21.2521 10 1.8277 10 

MPM 4 0.0042 10 0.0002 10 

MPM 5 20.9395 10 0.0002 10 

MPM 6 25.8386 10 0.0078 10 

MPM 7 24.2382 10 0.5642 10 

MPM 8 13.0745 10 0.4039 10 

Maltose-
associated 

MPMs 
kmax KM kmax KM 

MPM 9 182.3542 50 411.9073 50 

MPM 10 1.8564 50 4.172 50 

MPM 11 23.5593 50 1.8656 50 

MPM 12 0.4113 50 8.3734 50 

MPM 13 53.4456 50 0.2354 50 

MPM 14 0.2271 50 1.0372 50 

MPM 15 4.8425 50 0.6833 50 

MPM 16 182.3542 50 2.5583 50 

Cellubiose -
associated 

MPMs 
kmax KM kmax KM 

MPM 17 38.3886 50 1.529 50 

MPM 18 48.3502 50 0.8782 50 

MPM 19 83.2366 50 1.41 50 

MPM 20 3.4449 50 66.7082 50 

MPM 21 6.8404 50 3.5839 50 

MPM 22 58.8268 50 4.7126 50 

MPM 23 56.5179 50 0.5204 50 

MPM 24 52.1582 50 1.7026 50 
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MPM 25 0.0047 50 79.2421 50 

MPM 26 -  2.1551 50 
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Table S6 | Summary of evaluation results of SPCF by comparing its predictions under different 
scenarios to TIM experimental observations. 
Variables TIM model 44, 63 SPCF colon model 

Simulations 

Volume 0.12 L 0.12L 

Water absorption Dialysis Diffusion 

SCFA absorption Dialysis Diffusion 

Inflow rate 4ml/h 4ml/h 

Outlet flow rate 2ml/h 2ml/h 

Retention time 24~72h63 26~50h 

Peristaltic mixing Computer-controlled Back-mixing 

Sampling position Only one Spatiotemporal 

Carbohydrate fermentation 2.5g/10ml 2.5g/10ml 

Total SCFA produced by FOS in 2hrs 1.69 mmol 1.67 mmol 

Total SCFA produced by Pectin in 2hrs 1.54 mmol 1.59 mmol 

Total SCFA produced by Lactulose in 
2hrs 1.64 mmol 1.71 mmol 

Total SCFA produced by Lactitol in 2hrs 0.52 mmol 0.43 mmol 
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Table S7 | Summary of colon physiology associated parameters used in the SPCF which are 
determined based on literature-based knowledges. 

Model Parameters of colon physiology Symbol Value 

Volume of total lumen phase Vk 0.5 L 

Volume of total mucus phase vk 0.1 L 

Volume of rectum Vrectum [0.05L, 0.15L] 

Volume of Blood phase VB 1 L 

Inflow nutrients flow rate F0 0.1 L/h 

Nutrients concentration during breastfeeding S0 50 g/L 

Nutrients concentration during solid food feeding S0 80 g/L 

Flow rate of blood compartment FB 0.5 L/h 

Thickness of colon wall-membrane that radial dispersion 
passes across av 0.5/cm 

Maximal detachment rate kd [0.01/h, 0.05/h] 

Pseudo-mass transport coefficient accounting for radial 
dispersion km 0.1/h 

thickness of mucus lm 400 µm 

Permeability constant of acetate  0.2*10-8m/s 

Permeability constant of butyrate  0.3 *10-8m/s 

Permeability constant of propionate  0.2 *10-8m/s 

feces density ρ 0.7 g/L 

Back mixing flow rate due to peristalsis movement qk 0.01 L/h 

Integration time step dt 0.01 h 

Simulation time during colonization - 302 h 

Simulation time during maturation - 600 h 

Simulation time for adult normal condition - 302 h 

Simulation time for adult intervention - 600 h 

Bacterial biomass typical molecular weight Mbiom 113 g/mol 

Time interval of two meals t 1 h 

Defecation time period T 5 min 

Molar mass of acetate Mac 59.04 g/mol 

Molar mass of butyrate Mbut 87. 098 g/mol 

,n acp

,n butp

,n propp
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Table S8 | Summary of top features used in PCA analysis for three phenotypic data of dynamic 
trajectories of gut microbiota development, i.e., lumen, mucus and feces. 

Feature name Keywords [3] 

MF_AR_arcov_5_a3 model, fit 

MF_AR_arcov_5_a4 model, fit 

MF_AR_arcov_5_a5 model, fit 

MF_CompareTestSets_y_ar_4_rand_25_01_1_ac1s_mean Model prediction, stationarity 

MF_CompareTestSets_y_ar_4_rand_25_01_1_ac1s_median Model prediction, stationarity 

MF_StateSpace_n4sid_2_05_1_minfpe model 

MF_armax_3_1_05_1_minfpe model 

MF_armax_2_2_05_1_p3_5 model 

MF_armax_2_2_05_1_p4_5 model 

MF_armax_2_2_05_1_minfpe model 

 
Note: [3] The meaning for all features could be referred to the figure legend of the Fig. S25. 
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