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Supporting Information Text
Participants

Participants were recruited online using Amazon Mechanical Turk (AMT). The experiments were approved by the Committee
for Protection of Human Subjects (CPHS) at the University of California, Berkeley and by Princeton University’s Institutional
Review Board (IRB) for Human Subjects under protocol #10859 (Computational Cognitive Science). We obtained informed
consent from all volunteers. Participants took part in the experiment anonymously, and no demographic information was
collected (see (1) for information about AMT workers). For the serial reproduction experiments, compensation was between $1.4
and $1.6, depending on the participant’s performance. Typical participation included 105 trials, and the average time needed
to complete the task was about 12-14 minutes. Participants could take part only once per experiment; however, they could take
part in more than one experiment. A typical experiment included about 100 participants. For the discrimination experiment,
compensation was between $0.75 and $1.0, and typically included 160 trials. For the patch rating tasks, participants received
$1.5 for participating, and completed 136 trials. Participants could take part in as many discrimination and patch rating
experiments as they wished. Fig. S23 presents the exact number of participants in each experiment. The overall number
of participants in all experiments was 9202. We only recruited participants who had 95% or more of their completed HITs
approved.

Stimuli

Stimuli for all 85 experiments are available in an open science database (link: https://osf.io/cza25/), and Fig. S23 presents
a summary of all stimuli used. We used a range of images that included objects, natural scenes, indoor scenes, reachable
scenes (2), man-made and natural objects, and faces. We selected images from databases that also contained human semantic
segmentations and eye-tracking fixations (3) and in some cases, eye-tracking fixations on a variety of perceptual tasks (3, 4).

Experiments 1-4 (Fig. 1): Serial reproduction experiments with shaded shapes. We used an image of a uniform gray circle,
triangle, square, and pentagon, as previous work explored biases using simple geometric shapes (e.g (5)).

Experiments 5-11 (Fig. 1): Serial reproduction experiments using natural images. All the natural images we used were obtained
from the PASCAL-S dataset, a subset of the PASCAL VOC 2010 segmentation challenge dataset (3, 6-10). We selected this
database as it provided annotations of segmented regions in the images as well as free-fixation eye movement data. We used
grayscale versions of these images so that the red point used in the experiments would be clearly visible. We used seven images
depicting an airplane, a boat in a harbor, a bird on a branch, a horse, a room, a human face, and a lighthouse.

Experiments 12-16 (Fig. S15): Serial reproduction experiments using semantic segmentations of natural images. The PASCAL-
S dataset contains human-generated segmentation maps (11). The segmented regions were rendered to an image with the same
dimensions as the original images, with each segmented region shown in a unique shade of gray. We used segmented images
that corresponded to the natural grayscale images used in experiments 5-11, although they were not available for the face and
lighthouse images.

Experiments 17-27 (Fig. 3, Fig. S7): Visual discrimination experiments. We used the same shape and natural images used in
experiments 1-11.

Experiments 28-29 (Fig. S17): Serial reproduction experiments using images with illusory corners. We used the image of the
shaded square manipulated with a smooth gradient such that the upper right corner vanished into uniform white. We also used
the image of the human face modified such that a gradient erased the right side of the image.

Experiments 30-32 (Fig. S9A-B): Serial reproduction experiments: precision manipulations. We used the airplane image used
in Experiments 5-11, as well as two versions of the image with reduced contrast and added Gaussian noise.

Experiments 33-34 (Fig. S9C-D): Serial reproduction experiments: payoff and Markovian assumption manipulations. We used
the plane image used in Experiments 5-11.

Experiments 35 (Fig. S9B): Serial reproduction experiments: delay manipulation. We used the plane image used in Experiments
5-11.

Experiments 36 (Fig. S20): Serial reproduction experiments (within-subject design). We used the pentagon shape image used
in Experiments 1-4.

Experiments 37 (Fig. S21): Serial reproduction experiments (within-subject design). We used the plane image used in Experi-
ments 5-11.

Experiments 38-45 (Fig. S18, Fig. S19): Serial reproduction experiments: comparisons to fixation maps. We used a subset of
8 images from the database of images used by (4), for which eye-movement fixation maps were available for a free-viewing task,
a cued object search task, and a saliency search task.
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Experiments 46-61 (Fig. S19): “Graspability” and “meaning” map experiments. We used the same images used in Experiments
38-45.

Experiments 62-68 (Fig. S10): Forward and backward noise masking experiments, blank encoding, and blank reproduction
manipulations. We used the lighthouse image from Experiments 5-11, as well as a blank grayscale rectangular image with the
same aspect ratio as the lighthouse image.

Experiments 69-72 (Fig. S16): Center of mass (COM) model comparison. We used two grayscale versions of landscape images
used in prior work studying spatial memory biases (12-14), as well as grayscale versions of the two images containing only
uniform segmented regions corresponding to distinct RGB profiles rather than the original image textures.

Experiments 73 (Fig. S11): Serial reproduction experiments: Temporal encoding manipulation with complex shape images.
We used a 19 -sided regular shaded polygon (a uniform gray region with the same inner gray values as the shapes used in
experiments 1-4).

Experiments 74-85 (Fig. S11): Serial reproduction experiments: Spatial complexity manipulation with complex regular poly-
gon images. We generated shaded regular polygons with 3, 4, 5, 7, 9, 11, 15, 19, 21, and 25 edges, as well as a shaded circle
such that all spanned the same area and were the same uniform gray as the stimuli used in experiments 1-4.

Procedure

Experiments 1-16, 28-45, and 62-85 were programmed using the Dallinger platform for laboratory automation for the behavioral
and social sciences (15). The discrimination and patch ratings experiments were programmed as Amazon Mechanical Turk
experiments using JavaScript.

Experiments 1-4 (Fig. 1): Serial reproduction experiment with shaded shapes. Participants were presented with an image of a
gray shape with a red point initialized somewhere on the image (both inside and outside the shape boundaries) for 1000 ms.
The initial locations were sampled from a uniform distribution over the image. Participants were instructed to reproduce the
exact location of the point relative to the image. Overall positions of the displays, including the point and image, were shifted
by a random horizontal and vertical offset between 0 and 80 pixels on the screen canvas so that participants could not track
the absolute positions of the points. The canvas dimensions were 590 by 590 pixels. The response was then sent to another
participant who performed the same task. A total of twenty iterations were completed for each chain. We terminated each
experiment after approximately 12 hours. As a result, the number of total chains varied between experiments (250-577 chains
see Fig. S23). Most results were obtained by aggregating the results of two separate experiments containing about 250 chains
each. Typical participation included 105 trials, and the average time needed to complete the task was about 12-14 minutes. A
typical experiment included about 100 participants. Fig. S23 presents the number of participants in each experiment. For the
serial reproduction experiments, compensation was between $1.4 and $1.6, depending on performance. Participants could take
part only once per experiment; however, they could take part in more than one experiment. We only retained the chains that
were full, and discarded any chains that did not reach twenty iterations.

Experimental trials. Following ten practice trials, there were 95 experimental trials. Only a given shape or image was presented
throughout an experiment in both the practice and experimental trials. For each of the 95 experimental trials, the presentation
time was 1000 ms. Participants were given trial-by-trial feedback regarding their accuracy. If their responses were within a box
around the presented (“objective”) location to be remembered that was 8% percent of the width and height subtended by the
shape, they received a small monetary bonus and positive feedback (a message in green: “This was accurate”). If not, they
received no additional bonus and were presented with negative feedback (a message in red: “this was not accurate”). Incorrect
trials were discarded from the experiment, and the corresponding node in the transmission chain was randomly reassigned
to another participant; this was done to eliminate the possibility of false responses by bots (16) and discourage inattentive
participants. Participants could take part only once within each chain (see Fig. S1).

Practice trials. Practice trials were identical to the experimental trials, except that the margin of error was reduced to a box that
was 5% of the width and height subtended by the shape image, and the presentation time was 4000 ms. In these trials, the
point location was randomized uniformly within the image.

Experiments 5-16 (Fig. 1, Fig. S17, and Fig. S15): Serial reproduction experiments using natural images, and image segmen-
tation maps. The procedure was identical to Experiments 1-4 except that due to the increased task difficulty, allowable margins
of error were 7% for the practice trials and 15% for the experimental trials.

Experiments 17-27 (Fig. 3 and Fig. S7): Visual discrimination experiments. We used the exact same stimulus images that were
used in the serial reproduction experiments with the natural images. For the shape images, we used versions that were reduced
in size to limit the number of trials required to obtain full d’ maps (although we preserved the aspect ratios of the gray shapes
in the images). We produced a regular grid of point locations that spanned the full area of each of the images. The grid points
were 7 pixels apart. During the task, participants saw an image presented for 1000 ms with a red point placed over it (Fig. 3B).
Following a 1000 ms delay with a blank screen, the image reappeared with the point either in the same exact location relative
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to the image or in a shifted position (the durations of the display were identical to those in the serial reproduction experiments).
In the “shifted” condition, the shifted point was offset by 6 pixels somewhere along a circular radius around the original point
location, sampled at random. The second display remained for 1000 ms on the screen and was followed by a 2AFC (“red dot
same”, or “red dot shifted”). Participants could take as long as they liked to choose a response, although they had to complete
the experiment within one hour before the HIT expired. We obtained responses from a total of 20 participants for each grid
point, and for each condition (“same” or “shifted”). The full instructions at the start of the experiment were as follows: “In
this experiment, you will see two images presented one after the other (the gray triangles below). These images will have a red
dot placed over them. Your task is to determine if the red dot is in the same spot relative to the image for both images in the
pair, or if the red dot appears displaced the second time it is presented. NOTE: The displays will be displayed at random
positions on the screen, even in cases when the red dot is placed in the EXACT SAME spot over the image! So part of the
challenge is to ignore the random shifting of the overall display, and focus on the RELATIVE positions of the dots in relation
to the images, ignoring the random overall displacements. Finally, in the actual experiment, the image will be a natural black
and white photograph instead of the gray triangle in these instructions.” For the discrimination experiment, compensation was
between $0.75 and $1.0, and typically included 160 trials. Participants could take part in as many discrimination experiments
as they wished.

Experiments 28-29 (Fig. S17): Serial reproduction experiments using images with illusory corners. The procedure was identical
to the one used for Experiments 1-4 for the square with an illusory corner, and identical to the one used for Experiments 5-11
in the case of the face with the illusory eye.

Experiments 30-32 (Fig. S9A-B): Serial reproduction experiments: precision manipulations. We manipulated encoding preci-
sion through either stimulus manipulations, or a timing manipulation for one of the natural images (the plane image). For the
timing manipulation, we reduced the encoding time during the presentation phase from 1000 ms to 200 ms. For the stimulus
manipulations, we kept the original encoding time of 1000 ms during the presentation phase, but we changed the stimulus
image by (1) reducing the contrast of the stimulus image, or (2) adding Gaussian noise to the stimulus image (see Fig. S9A-B).
Aside from these changes, the transmission chains were identical in design to the one that produced the original finding for the
same image (See Fig. S9E).

Experiments 33-34 (Fig. S9C-D): Serial reproduction experiments: context manipulations. We manipulated the context in two
ways: (1) by interleaving the experimental trials with trials in which point locations were presented in random locations (to
test carry-over effects and the Markovian assumption), and (2) by introducing a payoff in the task. The payoff manipulation
examined whether a monetary incentive can alter participant response patterns. We enforced uniformity by adding dummy
trials between each of the trials in which a point location sampled from a uniform distribution over the image was presented. In
the payoff manipulation, we rewarded correct responses that were within 2.5% of the width and height subtended by the image,
and to the right of the true point location with double the normal bonus (correct responses to the left of the true location
were only awarded the normal bonus). We provided trial-by-trial feedback indicating that the response was awarded double
the normal bonus or just the normal bonus. The instructions at the beginning of the experiment also indicated that correct
responses that were to the right of the true location would be awarded double.

Experiments 35 (Fig. S9B): Serial reproduction experiments: delay manipulation. The design was identical to the design used
in Experiments 5-11 except that the delay phase was extended from 1000 ms to 2000 ms.

Experiments 36 (Fig. S1B and Fig. S20): Serial reproduction experiments (within-subject design). We used a fully within-
subject design, where each participant was assigned a set of chains to complete in full (rather than the between-subject design
in which participants only participated in a chain once).

Experiments 37 (Fig. S1B and Fig. S21): Serial reproduction experiments (within-subject design). The design was identical to
the within-subject design used for experiment 36.

Experiments 38-45 (Fig. S18, Fig. S19): Serial reproduction experiments: comparisons to fixation maps. The procedure was
identical to the one used for Experiments 5-11.

Experiments 46-61 (Fig. S19): “Graspability” and “meaning” map experiments (Fig. S19). We used the procedure described
by (17-19) to generate dense “graspability” and “meaning” maps for 8 images in the database of images used by (4) for
which detailed eye-movement fixation patterns were available. To do this, we extracted a 20 by 20 grid of fine-scale circular
image patches from each of the images, and a 12 by 12 grid of coarse-scale circular image patches from the same images.
The patches were extracted from high-resolution versions of the images that were full-color 2430 by 2430 pixel images. The
diameter of the fine-scale patches was 256 pixels, and the diameter of the coarse-scale patches was 442 pixels (see Fig. S19A).
We presented each of the patches along with a small thumbnail of the full image that included a green circular marker over
the image to indicate where the patch was extracted from, for context. Participants either rated the “informativeness or
recognizability” of the image content revealed by each of the patches using a Likert scale (1 = “Very low recognizability”, 2 =
“Low recognizability”, 3 = “Somewhat low recognizability”, 4 = “Somewhat high recognizability”, 5 = “High recognizability”, 6
= “Very high recognizability”), or they rated the “graspability” of the image content revealed by each of the patches (also
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using a Likert scale, see Fig. S19B). Participants rated a total of 136 random patches from a given image per experiment, and
we obtained judgments from 10 unique participants for each image patch over AMT. Participants were paid $1.5 for their
participation.

Experiments 62-68 (Fig. S10): Forward and backward noise masking experiments, blank encoding, and blank reproduction
manipulations. The procedure was nearly identical to the one used for Experiments 5-11. In the case of the forward and
backward masking experiments, the differences were the following: the encoding time was reduced from 1000 ms to 300
ms. In addition, we introduced 500 ms forward and backward noise masking to the encoding phase. The noise sequences
were composed of random 1/f “pink” noise images that were the same dimensions as the natural and blank images. In one
experiment, the lighthouse image was used during the encoding and reproduction phase, in the second, the lighthouse image
was shown during the encoding phase, but replaced with a blank uniform gray frame during the reproduction phase. In the
case of the blank encoding and blank reproduction manipulations, the encoding time was also manipulated from 1000 ms to
300 ms, but with no noise masking during the encoding phase. In the first experiment, we used the lighthouse image during
the encoding phase, followed by the blank uniform gray frame during the reproduction phase. In the second, the order was
reversed. Finally, we repeated the experiment using only uniform gray frames as a control experiment (shown for 1000 ms) as
well as using the lighthouse image throughout with a 300 ms encoding time.

Experiments 69-72 (Fig. S16): Serial reproduction experiments: landscape images. The procedure was identical to the one
used for Experiments 5-11.

Experiments 73 (Fig. S11): Serial reproduction experiments: Temporal encoding manipulation with complex shape images.
The procedure was identical to the one used for experiments 1-4, except that the encoding time was changed from 1000 ms to
300 ms).

Experiments 74-85 (Fig. S11): Serial reproduction experiments: Spatial complexity manipulation with complex regular poly-
gon images. The procedure was identical to the one used for experiments 1-4.

Statistical Analysis

The Jensen-Shannon Divergence (JSD). In order to compute the distance between distributions we used the Jensen-Shannon
Divergence (JSD). The JSD of two distributions P and @ is defined by the following;:

1 1
JSD(P,Q) = LKL(P|| M)+ LKL(@Q || M)
where M = (P + Q) and KL (P1||P,) is the Kullback-Liebler (KL) divergence:

P1 (S)
P2 (S)

The JSD is symmetric, and bounded between 0 and 1. It is equal to 0 when P, = P».

ds

KL(P1HP2):/P1(5)IOg2

Between-subject and within-subject serial reproduction designs. Our main findings were obtained using a strictly between-
subject design (see Fig. S1A). In this design, AMT participants could only participate in a chain once (each trial corresponded
to a node inside a different chain). We also completed two within-subject serial reproduction experiments. In these cases,
participants were assigned full chains, and completed all the iterations for their assigned chains (see Fig. S1B). We show the
results for all iterations of the chains for both designs, and for both a shape and a natural image in Fig. S20A-B, and Fig.
S21A-B. The within-participant design requires that each participant complete entire chains, so for an experiment with 100
trials, that limits the number of chains to only 5. This means that each participant reconstructs point locations shown in a very
restricted part of the space. The task then becomes obviously biased in a few spatial locations which may appear repetitive to
a participant, since the same 5 points repeat in approximately the same places. However, when a participant completes trials
in a fully between-subject design he/she participates only once per chain and is allowed to participate in 100 different chains
initialized in 100 unique random locations in the image (for 100 trials). This makes the task more engaging and potentially
explains the reduced noise in this case.

Encoding precision manipulations, payoff, and other manipulations. We completed direct manipulations of encoding precision
using the serial reproduction paradigm for one of our natural images (airplane image). We also completed a payoff manipulation
and a uniformity manipulation to test the Markovian assumption.

Encoding precision manipulations. We manipulated encoding precision in two ways: by reducing the encoding time during the
presentation of the point location from 1000 ms to 200 ms, or by (1) reducing the contrast of the stimulus image, or (2) adding
Gaussian noise to the stimulus image (see Fig. S9A-B). We found that these manipulations had a significant effect on the
structure of the resulting priors (Fig. S9F-G), which appear simplified relative to the original finding using the same image
(Fig. S9F). We confirmed this quantitatively using the Jensen-Shannon-Divergence (JSD), and the following analysis: We
started by obtaining 1000 split-half random sample pairs of the data from the original experiment (1000 unique partitions of
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the chains). This yielded 1000 data pairs of approximately 250 unique chains (two equal sized random partitions of the full 500
chains). We then fit a KDE to the data in the 20th and final iteration of each of the two partitions for all 1000 pairs, yielding
1000 KDE pairs. We then computed the JSD between each of the pairs, which yielded 1000 JSD values. This distribution
provides a measure of the internal consistency and variation of the KDEs of the original data. In order to test if the encoding
precision manipulations had an effect on the structure of the priors, we repeated the same procedure described above, except
that instead of comparing KDEs fit to random splits of the original data, we compared KDEs fit to random partitions of
the original data to KDEs fit to random partitions of the data obtained from the manipulations. This yielded a distribution
of 1000 JSD values for each of the experimental manipulations, each providing a measure of how much the manipulations
produced distributions that diverged from the original distribution of point locations in the 20th iteration of the chains. We
then obtained 1000 JSD differences by subtracting each of the 1000 JSD values for each of the manipulations from the 1000
JSD values obtained from split-half samples of the original data. Finally, we tested whether each of these distributions of
differences were significantly different from 0 (see Fig. S9G). We found that JSD differences for the 200 ms encoding time,
contrast, and Gaussian noise stimulus manipulations were significantly different from 0 in all cases (p < 0.001). We applied the
Bonferroni correction to adjust for multiple comparisons.

Payoff and other manipulations. We tested the effect of introducing a payoff manipulation Fig. S9C-D. In addition we tested the
Markovian assumption by interleaving experimental trials with trials that have a uniformity prior on point locations throughout
the chains. This way, if contextual information from previous trials is important we expected to measure a change in the
structure of the prior. We found that neither manipulation produced significant changes in the structure of the priors when
compared to the original findings. We evaluated this quantitatively using the JSD measure in the same way that we evaluated
the effect of the encoding precision manipulations (see section above for details).

Testing Deviation from a Uniform Distribution Using JSD Distance (Fig. S5). To quantitatively test whether the distribution
of seeds as well as the subsequent iterations deviated significantly from a uniform distribution over the image, we computed
the mean JSD distance between the parametric KDE from all experimental points of a given iteration and KDEs of points
sampled from a uniform distribution over the image. To evaluate statistical significance, we created two randomized data sets
where the same number of points as in the experimental data were sampled from a uniform distribution. We then computed
the JSD between the KDEs of these two data sets. This was necessary because the JSD between two distributions is always
non-negative, and therefore any distribution evaluated from a finite number of points would have a non-zero distance from
a uniform distribution. As expected, the JSD distance between the initial seeds and uniform samples was not significantly
different from the null distribution. The data for the first iteration deviated significantly from a uniform distribution for
the triangle, square and pentagon (p = 0.035, 0.001, 0.004), but not significantly for the circle (p = 0.09). However, for
all subsequent iterations (iterations 2-20) the distributions significantly differed from uniform (p < 0.001 for all shapes and
iterations. We applied the Bonferroni corrections for multiple comparisons. Similarly, the JSD distances between the initial
seeds of natural images (Experiments 5-11) were not significantly different from the null distribution (p > 0.13 for the face,
lighthouse, bird, room, plane, horse, and boat images); marginally significant for iterations 1-4 (p = 0.001-0.3 for the 7 images);
and highly significant for iterations 5-20 (p < 0.001 for all iterations and images, Bonferroni correction applied). Fig. S6 shows
the results for natural images, and shapes (Experiments 1-11). Fig. S20A and S21A show the distributions of points for all 20
iterations for the pentagon shape, and a natural image, respectively.

Transmission Chain Convergence Analysis (Fig. S5 and S6). To assess whether the transmission chain process converges within
20 iterations, we used three methods: distributional distance between each iteration and the last iteration, distributional
distance between adjacent iterations, and copying accuracy.

JSD distance between each iteration and the last iteration. This method is used to assess whether the last iteration is characteristic of
a converged state. If the chain converged we expect the distance to the last iteration to decrease and stabilize as the iteration
number approaches the final iteration (the distance between iteration 1 and 20 should be larger than the distance between
iteration 5 and 20, and so on). For each of the 20 iterations and initial seeds we computed the parametric KDE as explained in
the Methods section. We then computed the JSD distance between each iteration and the last iteration. In other words, we
tested the difference between JSD distances of pairs of iterations (For example, we compared the distance between the two last
iterations (19 and 20) with the distance between iteration K and 20 (K = 0 is the initial seeds). We then tested whether these
differences were significant, and when they ceased to be significant). To test for statistical significance, we randomized 1000
datasets by sampling the data for all iterations with replacement and computing the distance between the KDEs fit to the
bootstrapped data from different iterations. Bonferroni corrections were applied in all cases.

The JSD distance between iteration 1 and 20 was significantly larger than the one between iteration 19 and 20 for all
experiments (p < 0.001 for the shapes and the natural images). However, the distance decreases with a monotonous trend (see
Fig. S5). The distance between iteration m and 20 was not significantly different from the distance between iteration 19 and
20 for all m > K where K was 18, 16, 15, 18 for the circle, triangle, square and pentagon; and K = 12, 12, 13, 11, 10, 11, 13
for the face, lighthouse, bird, room, plane, horse and boat images).

JSD distance between subsequent iterations. In this method, we compared the distance between pairs of subsequent iterations
(comparing the distance between iterations 1 and 2 to the distance between iterations 2 and 3, and so on). At a converged
state of the process we expect that the distance between subsequent iterations will not significantly change. We found that
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for geometric shapes, the distance between iteration 0 and 1 was significantly different from the distance between iteration
19 and 20 for the triangle and pentagon (p < 0.001, p = 0.001) but not significant for the circle and square (p = 0.371, p =
0.121), corrected for multiple comparisons). The distance between iteration m and m-+1 was not significantly different from
the distance between iteration 19 and 20 for all m > K where K was larger than 1 for all the shapes. Note that the results for
the natural images did not show a significant decrease in this metric for all iterations, indicating a gradual change with fixed
temporal dynamics. The results of this analysis are shown in Fig. S5.

Copying accuracy. In this method we computed the copying accuracy using the root of the mean squared Euclidean distances
between stimulus and response vectors. To test for significance, we randomized 1000 datasets by sampling with replacement
from the experimental data and computing the copying accuracy for each iteration. The results of this analysis are also shown
in Fig. S6. We found that for geometric shapes, copying accuracy of the first two iterations was significantly different from the
copying accuracy for the last iterations, for the circle, square, triangle, and pentagon (p = 0.044, p < 0.001, p < 0.001, p <
0.001). The copying accuracy of iteration m and m-+1 was not significantly different from the copying accuracy of the last
iterations for all m > K where K was 5, 15, 15, 9 for the circle, square, triangle, and pentagon respectively). Note that as the
results of the analysis of JSD distances between subsequent iterations show, the copying accuracy for natural images did not
reveal a significant decrease, suggesting that the average step size of the process stabilized right from the beginning.

In a regime where there are numerous nearby landmarks in the scene (as with natural images), copying accuracy does not
necessarily decrease with additional iterations, as the bias is approximately related to the distance between the current point
and the nearby landmark. In the case of shape images however, where there are only a few landmarks (vertices that can be far
from a point location to be remembered) the analysis shows a systematic decrease in the copying accuracy for the first few
iterations.

Temporal Encoding Manipulation (Fig. S11). We predicted that using shorter exposure times would force participants to use
more compact internal representations. When participants were presented with a 19-sided regular polygon shape for 300 ms,
their shared internal representation tended towards a pattern of biases that was more similar to the results for the circle
when compared to the results obtained for the 19-sided polygon using a 1000 ms presentation duration. We obtained 1000
bootstrapped samples of the final iteration results with replacement for both manipulations and compared the KDEs fit to
these samples with KDEs fit to 1000 bootstrapped samples of the final iteration of the circle result. We found that the JSDs
of the results for the 300 ms encoding time manipulation (average JSD =0.1647 , SD = 0.011) were smaller than the JSDs
between the results for the 1000 ms manipulation (average JSD = 0.2336, SD = 0.012, p < 0.001), indicating that reduced
encoding time for a complex polygon does indeed result in a simpler pattern of biases that is closer to the pattern for the circle
(Fig. S11). This finding is consistent with a theoretical prediction of the efficient encoding theory, namely that constraints on
encoding resources will result in simplified internal representations rather than simply noisier versions of the representation
obtained without reductions in encoding time.

Complexity Manipulation (Fig. S11). The apparent increase in peaks in visual memory KDEs for more complex regular polygons
led us to consider changes to the internal representation in the limit, as the regular polygons become more complex and start
to approximate a circle. Using the same bootstrapping procedure used for quantifying the differences in JSD for the temporal
encoding manipulations, we compared the JSDs obtained from comparing the final results for each of the regular polygons
to the final results for a circle of the same area as the polygons. We found that the JSDs obtained for the 21-sided and the
25-sided polygons (average JSD = 0.137, SD = 0.009, and average JSD = 0.075, SD = 0.007) were significantly different from
each other (p < 0.001), as were the JSDs obtained for the 15-sided and 17-sided polygons (average JSD = 0.275, SD = 0.013,
average JSD = 0.205, SD = 0.011, respectively, p < 0.001), and the JSDs obtained for the triangle and diamond shape (average
JSD = 0.624, SD = 0.009, average JSD = 0.672, SD = 0.004, p < 0.001). Overall, the pattern shows a near-monotonic decrease
in the JSD means as the shape complexity increases, indicating that as polygons acquire more edges, the resulting memory
biases begin to resemble those obtained for a circle. This finding is also in line with predictions of the efficient encoding model,
which theorizes that limits in encoding resources will result in simplified internal representations rather than just noisier ones.

CAM bootstrapping reliability analysis (see Fig S14). We compared the internal reliability of the transmission chain results with
the predictions of the CAM for one of our images (the plane image). To do so, we used a variant of bootstrapping. This variant
aims to (a) simulate different amounts of chains: this is done by bootstrapping with replacement, and (b) avoid overfitting in
each of the methods: this is done by separating the data into training and testing split-half datasets. In the procedure, we
start by performing a random split of the data, keeping one split-half as the testing dataset and the other split-half as the
training dataset from which we sample with replacement and fit the cAM. The exact analysis is described below:

To compare the internal reliability of the chain results to the CAM estimates, we did the following 1) we computed the correlation
between KDEs fit to the data in the last iteration of two random partitions (splits) of the data (KDE split-half reliability). 2)
We then compared that correlation to the correlation between a KDE fit to the data in split 1 to a CAM estimate fit to the
data in split 2. We varied the number of K chains sampled from the chains in split 2 to fit the CAM from the stimulus and
response pairs in iteration 1 of the chains. We also used the same K chains in split 2 to fit a KDE when computing the KDE
split-half reliability estimates. For each value of K, we computed the correlation to the KDE fit to the data in the last iteration
of the 250 chains in split 1 to the cAM and KDE estimates obtained from the K chains in split 2. Finally, we repeated the
analysis for each value of K 100 times by obtaining 100 random partitions (splits) of the chains. This procedure is illustrated
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in Fig. S14A. It shows, for a given random partition of the data into two equal splits, the model fitting and comparison that
we completed to compare the internal reliability of the serial reproduction chain estimates to estimates made using the CAM.
Fig. S14B shows the results comparing the internal reliability of the KDEs fit to random splits of the data, as well as the
reliability of the CAM estimates, using 5, 10, and 20 prototypes, for each value of K samples from the 2nd partition of 250
chains. The shaded error bars correspond to 100 random partitions of the full chains into two equal parts. The x-axis in the
graph (Fig. S14B) is normalized according to the number of participant trials used for the estimation (equating for the fact
that the serial reproduction estimates are made from multiple iterations, and therefore more data). This analysis shows that
the serial reproduction results are significantly more internally reliable than the CAM estimates for all values of K, even when K
is large. In other words, even when the two methods are equated for the amount of data used, the serial reproduction results
produce more reliable estimates. This indicates that using the CAM fit to the data in the first iteration of the chains cannot
produce estimates of the modes in the prior that are as reliable as those obtained using serial reproduction.

Calculating d'. d’ scores were computed for each image, and for each condition (“same” or “shifted” condition in the discrimination
task) by calculating the False Alarm (FA) rate (the number of times a given label was selected when the image shown was not
an instance of that label, over the number of times that the presented images were not instances of that label), and the HIT
rate (the number of times that a given label was selected when the image shown was an instance of that label, over the number
of times that all the presented images were instances of that label). d’ is given by: d' = Z(HIT) — Z(FA) where the function
Z(p),p € [0,1], is the inverse of the cumulative distribution function of the Gaussian distribution.

Model Comparisons: Predicting the Spatial Memory KDE using Local Image Features (Fig. S17, Fig. S15). We extracted local
gradient-based corner and edge features using the Canny edge detector, and the Harris corner detector (20-22). We used
all allowable parameter ranges and the OpenCV implementation (23) as explained in detail below. We then computed the
correlations between the feature maps and the final spatial memory KDEs obtained for the natural images. For each feature
detector, we performed a detailed grid search of all the parameter settings within the ranges that are specified for these
algorithms. In addition, we added a smoothing parameter (the standard deviation of an isotropic Gaussian kernel that was
convolved with the final feature map). We searched for the maximally predictive parameters for a given feature detector as
measured by its peak correlation to the concatenated KDEs. The reported result was the one that provided the best correlation
among all searched parameters including the smoothing parameter. We selected the parameters that were optimal for predicting
the final spatial memory KDEs for all images represented as a single concatenated matrix of each of the individual KDEs,
using the corresponding concatenated feature maps. For the other features (centers of mass (CoM), fixations, segmentation
image KDEs, discrimination d’ maps), there were no parameters aside from the smoothing parameter, which was determined
based on which provided the best correlation to the concatenated matrix of the final spatial memory KDEs for the images for
which fixations and segmentation maps were available. We then obtained the predictions for each of the individual KDEs
using the optimal parameter settings obtained for the concatenated matrix of all KDEs. When testing whether feature maps
produced significantly different predictions (correlations to the prior KDEs across all the images), we compared the correlations
of the concatenated feature maps to the concatenated image KDEs, and used 1000 bootstrapped samples of the data in the
final iteration of the chains to estimate the standard deviation for each of the feature predictions. In addition to showing the
results for the individual images, we report significant differences between the predictors across all images where applicable in
the main text.

Edges. For each image, we extracted 2,400 Canny edge maps, each corresponding to the feature map for a unique set of
parameter settings (20). The Canny edge detector has four parameters: the first and second threshold for the hysteresis
procedure, the aperture size of the Sobel filter (which computes the gradient in the image), and the norm of the gradient
magnitude (either an L2 norm or an L1 norm). Increments of 10 within a range of 0 to 190 were used for the first and second
parameters, three aperture sizes (3, 5 and 7 pixels) were used for the third parameter, and a Boolean setting indicating which
norm to use for computing the magnitude was used for the fourth parameter.

Corners. We obtained 280 feature maps for the Harris corner detector (21). As with the Canny edge maps, each corresponded
to a unique set of parameter settings from a grid search for its three parameters: the size of the neighborhood considered for
corner detection, called the “block size”, the aperture size for the Sobel derivative operator, or “k-size”; and a free parameter
used in the Harris detector equations. For our evaluation, we varied the block size between 2 and 9 pixels, the Sobel filter
aperture size between 1 and 7 pixels, and the final free parameter between 0.01 and 0.13 at increments of 0.02 (The appropriate
range for this parameter setting specified in the documentation for the OpenCV implementation (23)).

Segmentation maps. A subset of the natural images (all except the face and lighthouse images) which were obtained from the
PASCAL-S images came with segmentation maps (11). We used these images and obtained KDEs using our serial reproduction
task using the maps instead of the original images, and compared the results to our original KDEs obtained from using the
original grayscale natural images.

Centers of mass. We computed centers of mass of the segmented regions by averaging the coordinates of the pixels contained in
each segmented region.
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Fixations. Fixation data for the small set of images used were obtained from the PASCAL-S dataset. As explained in (10), for
each image, 8 subjects performed a “free-viewing” task for 2 seconds. The eye gaze data was recorded using an Eyelink 1000
eye-tracker, at a sampling rate of 125Hz.

Disattenuated correlations. For the correlations presented in Fig. S17, we computed disattenuated correlations to account for
measurement error in the KDEs and discrimination accuracy maps. Given samples X and Y of two random variables X’
and Y’ with correlation r,, and a known (internal) reliability measure for each (., and ry,), the estimated disattenuated
correlation between X’ and Y is given by 7./, = \/% For the prior estimate reliability, we computed r;, as the mean
correlation of 100 pairs of KDEs fit to 100 random partitions of the data in the last iteration of the chains) for each of the
images. For the discrimination maps, we computed 7y, as the mean correlation of 100 pairs of maps generated from 100 random
partitions of the data for each of the images. As for the features that were generated from deterministic algorithms, with no
measurement noise (harris corners, and canny edges), the reliability measure 7y, was set to 1.

“Meaning” and “Graspability” image patch model comparison (Fig. S19). We used the procedure described by (18, 19). For
each of the tasks (“meaning” and “graspability”), we started by averaging the 10 participant responses for each of the patches,
and across each of the patch scales (fine and coarse grid scales). Next, we applied a smoothing factor (using Matlab’s imgaussfilt
function to each of the patches. We selected the smoothing factor that maximized the correlation of the maps to the KDEs we
obtained for the same images. In addition, we simulated the center bias in overt attention by down-weighting the edges in the
maps (using a Gaussian kernel with a fixed standard deviation centered in the image). This procedure is illustrated in Fig.
S19C, and examples are shown in Fig. S19D and E.). Finally we computed disattenuated correlation matrices containing all
pairwise correlations of the meaning and graspability maps, free fixation, object search, saliency search eye-movement maps,
and spatial memory KDEs. For the disattenuated correlations, we used reliability estimates obtained for each of the maps by
averaging the correlations between 100 random splits of the data (split-half reliability measures). Example results are shown in
Fig. S19E and G. Fig. S191 shows the average over all 8 images. The results replicate the findings by (18, 19), revealing that
meaning maps with the center bias were predictive of the attention maps. However, we show that none of the maps (with
or without the center bias) were strongly predictive of the spatial memory KDEs, nor were the attention maps with optimal
smoothing applied to find the maximal correlation of each map to the KDEs.

Discrimination Map Estimation from Grid 2AFC Responses (Fig. 3 and S7). We created a regular 2D grid of point locations
over each image (natural images in Experiments 5-11, as well as the shaded shapes from Experiments 1 and 4). The points
were separated by 7 pixels in both the horizontal and vertical dimensions. For each point, we generated trial pairs: “same’
and “shifted” conditions where a point was either presented twice in the same location over the image, or it was shifted in the
second presentation somewhere over the circumference of a circle of radius 6 pixels centered on the original point location.
Each experiment contained 160 trial pairs chosen at random from the full grid of trial pairs. We obtained d’ values for each of
the discrimination grid points by using the 2AFC responses obtained for each as explained above (see section on calculating d’).
We then convolved the grid of raw d’ values with a Gaussian kernel to maximize the correlation to the corresponding KDE
values at the same point locations. We imputed missing values as the average of the four nearest neighbor values on the grid.
Next, we generated full d’ map estimates by interpolating the missing values between the grid points using cubic interpolation.
Fig. S7 shows the results including the raw d’ grid point values, the smoothed d’ grid point values before the interpolation, and
the smoothed d’ interpolated maps (discrimination accuracy maps) for two natural images. Also shown are the smooth d’ maps
obtained for the shape images.

i

Models

In our serial reproduction experiment, the reconstruction becomes the basis of another iteration and this process is repeated. We
assume that participants use only the current point location as a basis for their perceptual decision (the Markovian assumption,
see Discussion). Formally, the transmission chain can be described in terms of a sequence of random variables:

...—>St—>Tt—>RtISt+1—>... [1]

where St, Ty and R; are the veridical location, sensory encoded representation, and the inferred location at step t, respectively
(see Fig. S2, and Fig. S4). The inferred location in our model is assumed to be sampled from the posterior P(S|T’), which
depends on both the prior and the likelihood: P(S|T) & P(T|S)P(S), as schematically illustrated in Fig. S2 and Fig. S4. Fig.
2A shows the combined effect of encoding P(T'|S) and decoding P(R|T). Near a mode in the prior, the posterior becomes
distorted, and its mode is shifted towards the mode of the prior. The net effect of both encoding and decoding produces a
bias (this is shown in Fig. 2A and C). Far from a mode in the prior, the posterior becomes less distorted, and as a result the
reproduction bias is smaller (Fig. 2A and C). Without any further assumptions, one can show that the chain approximates a
Gibbs sampler on the joint distribution of 7" and S, and that it converges to a sample from the prior p(S) (see methods for a
direct proof and discussion of a similar but not identical model (24)). This is significant, because it means that distributions of
visuospatial memory priors can be approximated directly by iterating the task.

However, Bayesian perception leaves open the question of the exact form of the likelihood and the prior. In the case of fixed
encoding, in its simplest form the likelihood is additive, constant over the image, and Gaussian:
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p(T =t|S =s) = G(t,s,0° - I), 2]

where o is the noise and I is the identity matrix, and G(z, u, ) is the Gaussian probability density evaluated at point x with
mean g and covariance matrix . This implies that the noise’s covariance structure is the same regardless of location (Fig.
S4D). The net effect of encoding and decoding (the reconstructed point) results in a small bias (see Fig. 2A). Note that
the only degree of freedom of the model is the magnitude of the noise o since we assume that the prior is given and can be
estimated from the data of the final iteration of the transmission chains.

Having a variable prior and a fixed likelihood implies that discrimination ability is reduced near the modes of the prior and
increased between the modes. This “perceptual magnet effect” is due to the contraction of the inferred locations towards the
modes of the prior (Fig. 2A). This effect can be evaluated independently of the serial reproduction results through experiments
of discrimination accuracy using the same stimuli, where the effect predicts a negative correlation between prior density in the
serial reproduction experiment and discrimination accuracy in the discrimination experiment.

An alternative to the fixed encoding model, is a variable precision model where precision varies over the image. A simple
non-Bayesian version of this model assumes that a reproduction is a symmetric Gaussian variable with precision 1/0(s) that
varies from location to location in the image:

p(R=r|S =s)=G(r, s,a(s)2 1), (3]

This model captures variable precision over the image because of changes in o (s), which predicts increased discrimination
accuracy in the “absorbing states,” which are the regions in the image where o(s) is smallest. As such, the symmetric variable
precision model is a non-Bayesian model (there is no inference step), and the reproduction distribution is explicitly specified a
priori. This model explains the transmission chain results as a random walk with absorbing states near the landmarks, where
o(s) is smallest. This model has predictions that deviate from the Bayesian models with respect to single-trial biases: It does
not predict that responses will tend to be oriented towards the nearest landmark. However, we discuss evidence indicating that
single-trial biases are clearly present in the data (Fig. S3). This calls for a model that can produce both variable precision and
single-trial biases.

One option is to extend the non-Bayesian model by specifying an additional variable bias function b(s) for each point in the
image:

p(R=r|S=s)=G(r,s +b(s),0(s)* - I), [4]

However this model requires specifying both b(s) and o(s), increasing the number of parameters of the model significantly,
as both these functions need to be defined for all locations in the image. In addition, this model is not comparable with the
fixed-precision model described above and often used in previous Bayesian accounts of spatial memory biases (25).

However, there is a relatively recent Bayesian formulation of variable precision that captures “anti-Bayesian” phenomena
(26, 27), namely improved discrimination near the modes of the prior. This formulation predicts both non-zero single-trial
biases and variable precision without adding any additional degrees of freedom to the model. This model was described for the
one-dimensional case in (26, 27) and extended in the present work to higher-dimensional cases. The model predictions are
constrained because the model makes a strong assumption regarding the relation between the likelihood and the prior.
According to this model, perceptual biases emerge because of variations in internal noise (precision) due to a non-isotropic
likelihood function (Fig. S4C). Moreover, this model provides an alternative account of the prior’s origin. A prior distribution
over locations in an image may result from selective allocation of coding resources to different visual regions during encoding, a
process that produces a transformed internal representation. We assume that an initial sensory parsing of an image is used to
determine a coordinate transformation F, which maps Euclidean distances to an internal coordinate system (psychological
space) in just-noticeable difference (JND) units (see Fig. 2C and Fig. S4A-C). A perceived point location in this psychological
space F(T) becomes the following in the external coordinate system:

T = F Y (F(S) +n), [5]

where F(S) is the deterministic function and n ~ N (0,02 - I).

The transformation F' can be interpreted as one that efficiently maps Euclidean distance units into Just-Noticeable-Difference
(JND) distance units, and the inverse F~' transforms the internal representation back into a Euclidean coordinate representation
(see Fig. 20C).

Fig. 2C illustrates why the “uniform” internal space (in JND units) produces a shift toward the (landmark). In internal space,
the posterior is symmetric and Gaussian. However, when it is projected to external space it becomes biased towards the
mode because the higher density region accumulates mass closer to the landmark. As a result, the averaged reproduction is
shifted toward the landmark (left side of Fig. 2C). Far away from the mode (right side of Fig. 2C), the distortion is much less
pronounced and the bias is smaller.

This geometry also explains why discrimination is higher near the landmarks (modes): because pairs of points are perceived to
be farther apart in internal units when they are near a mode, as opposed to far from a mode (even when the pairs of points are
the exact same distance apart in Euclidean distance units), they are also easier to discriminate given some perceptual noise
magnitude o. This is illustrated in Fig. 2C. More specifically, near a landmark the posteriors are narrow in external units
(with only a small bias toward the mode). The net result is increased discriminability (despite a small bias towards the mode).
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Far away from the mode, the distortion is less pronounced and the posterior densities are more dispersed, resulting in reduced
discriminability. Note that of the two competing effects—the bias, and the reduction in variance, the reduction in the variance
is the dominant effect, which is why discrimination increases. This prediction is not obvious a priori, and comes from the
specific mathematics described here. In the case of fixed encoding, there is no variance shrinkage and therefore the net effect is
a reduction in discrimination accuracy, since point locations with equal variance that are perceived to be closer together will be
harder to tell apart.

The transformation F' can also be interpreted as one that efficiently maps the external coordinate system (Euclidean space
Fig. S4B) into an internal coordinate system (psychological space Fig. S4B) in just-noticeable difference (JND) units. (This
“internal geometry” is illustrated in Fig. S4A-B). In the context of our task, the intuition is as follows: Efficient variations
in internal noise encode some visual regions (visuospatial anchors) with higher resolution, resulting in a dilation of these
regions. In internal units, where regular intervals correspond to units of just-noticeable difference, perceptual noise is isotropic
and Gaussian. However, because of the inverse F'~!, the transformation of the isotropic perceptual noise into physical space
results in a non-isotropic likelihood (see Fig. S4B). This idea is similar to how variations in perceptual sensitivity are reflected
in neural representations such as the somatosensory homunculus (28) or retinotopic map (29), where increased resolution
is imparted to physical extremities or areas in the visual field that are over-represented by the brain. Note that given the
prior, the only degree of freedom of this model is the variance of the noise o, because the transformation F' can be uniquely
determined from the prior, and vice-versa. In addition, the transformation F' determines the likelihood function p(7T'|S) (via
equation 5), and the posterior p(S|T") (see methods for formula for the posterior). From this we can compute the reproduction
P(R|S) which is displayed in Fig. 2C.

To summarize, both models assume an initial step that processes the image content. In the case of the fixed-encoding model,
this step generates a belief state of the point locations (prior). This prior is then used during perceptual inference. In the case
of the efficient-encoding model, the initial processing step is used to produce an internal coordinate transformation during
encoding. This coordinate transformation then determines perceptual inference during decoding.

Notably, the fixed-encoding model predicts a negative correlation between the prior and discrimination sensitivity measured
in a discrimination task (Fig. 2D), and (26, 27). In contrast, the efficient-encoding model predicts a positive correlation
in the very same experiments (Fig. 2E). We evaluated the models by fitting both to the results of the serial reproduction
experiments and testing their discrimination accuracy predictions. We found that the efficient-encoding model predicts detailed
discrimination accuracy maps, and higher accuracy in the modes (See Fig. 3).

Fixed-encoding model. Given a prior, the fixed-encoding model has one degree of freedom o, which corresponds to the noise
(in (26) this refers to low-level sensory noise). In this case, the likelihood is p(T = t|S = s) = G(t,s,0” - I), where I is the
identity matrix and G(z, u,X) is the pdf at point = of a Gaussian distribution with mean p and covariance matrix ¥. Given
the likelihood and the prior and the noise magnitude the dynamics of the model are fully determined from the equations in
methods subsection “Bayesian model of serial reproduction and discrimination experiments” and can be computed numerically
as explained below.

Efficient-encoding model. We assume that the prior and likelihood originate from a coordinate change given by: T'= F~'(F(S)+n),
where F' is a deterministic function mapping Euclidean (veridical) coordinates into an internal coordinate system in which the
prior is uniform, the likelihood is symmetric and Gaussian, and n ~ N(0, el I). In our case we are given the prior from the
transmission chain p(S) and we would like to compute the transformation F and the likelihood P(T'|S). In the transformed
space, the likelihood is symmetric, isotropic and Gaussian. In the external coordinate system given by F~! (see Fig. S4B) the
likelihood is given by:

p(T =1t|S =5)=p(F Y (F(S)+n)=1t|S =s)

2 (6]
=G(F(t),F(s),0” - I)
In the one dimensional case, F' is the cumulative distribution associated with the prior p(S) (as computed in (26)): F(z) =
f; p(S = s)ds. The prior can be computed from the transformation by taking the derivative.
In this paper, we generalize this approach to the two-dimensional case. For simplicity, we assume that the prior is a probability
density with a compact support in R?. We assume that F' is a mapping from Euclidean space to a Riemannian manifold
F :R? — M where areas and distances on the manifold dilate and contract such that the prior becomes uniform (Fig. S4A-B;
(30)). In this case, we can compute F from the prior (and vice versa) from noticing that the probability associated with
a differential area is invariant under coordinate transformations: p(S’ = s')dsids; = p(S = s)dsids2, where S = F(9).
Consequently, if we choose:

ds; = \/P(S = s)ds; (7]

we obtain a uniform distribution in the latent space.
We model noise in the transformed space by computing a Gaussian distribution in the transformed coordinate system by
defining the following probability density function (30)

p(s1,82) =k - exp (dwt(shs?) ), 8]
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where dist(s1,s2) is the geodesic distance between s and s1 on M, k is a normalization constant, and o is the standard
deviation of the noise. o is the only degree of freedom of the model (given the prior). The inverse transformation of this isotropic
distribution by F~! is typically asymmetric and non-isotropic (Fig. S4B), and its local variability is inversely proportional to
the prior density. In other words, the precision is higher in high-density regions under the prior.

Numerical computation of the likelihood function of the efficient-encoding model. We compute the likelihood p(T|S) expressed in the
discrete set ({@i},_; _ ya) of N* points (where d is the dimension). In the one-dimensional case, F' is the cumulative
distribution of p(S) and can be expressed as F(z;) = X,<;p(S = z;). From equation 6 we can compute the likelihood:
p(T = x;|S = x;) = G(F(z;), F(x;),0? - I). In the two-dimensional case, we define a regular grid on R%. We use a fixed
resolution within a finite domain that includes the support of p(S). Using a technique similar to Isomap (31), we compute a
graph in which each grid point s; ; is associated with the 4, j location within the regular grid. We define local distances on the
graph d(s;,j, Si+1,5) = d(Si,5,8i,j+1) = \/P(S = s5,5). This provides a discrete estimate to Equation 7 . We then estimated the
geodesic distance dist(s;,;, sk,1) as the shortest path on the grid using the Floyd-Warshall algorithm (31). After all pairwise
distances were computed, we computed the probability density implied by equation 8 numerically, noting that the unit area
dA(s;,;) was dilated by exactly a factor of p(s; ;). This results in the following explicit formula for the likelihood of the model:

P(F(S = 505)|F(S = sx)) = k- exp <””(20)> p(sis) 9]

where k is computed to satisfy the normalization constraint. This computation fully specified the likelihood function. We then
compute the posterior by Bayesian inference. Because this model significantly contracts areas with very small density under
the prior, this could cause numerical instabilities. Therefore, we modified the prior used for the numerical computation slightly.
Instead of the prior measured from the transmission chain experiment (P(S)), we used p’(S), given by p'(S) = ¢ - max(e, p(9)),
where ¢ is a normalization constant. In our simulations, ¢ was determined to be 1/100 of the maximal value of a uniform
density function over the domain of p(S), ¢ was determined by numerical integration. Note that p’(S) and P(S) only deviate
slightly in low probability areas of the space.

Efficient coding and previous work. Wei and Stocker (26, 32) derive the formula for the transformation F' based on principles of
efficient coding. According to their approach, the sensory encoding T of the stimulus S is determined by a trade-off between
preserving as much information as possible (maximizing the mutual information) and a limitation on the capacity of sensory
encoding (the constraint on the Fisher information). An optimum is achieved when this trade-off results in a coordinate system
change in which the Fisher information is constant. This means that the coding noise is a result of an efficient compression of
information that maximally preserves the natural statistics in the prior during the coding process.

Formally, we denote by J(S) the Fisher information:

J(S =s)= / <8l”p(T ;;'S = S)> p(T =t|S = s)dt [10]

Wei and Stocker (26, 33) show that the mutual information between the stimulus and the sensory representation I(S;7T) can
be maximized under the following constraints:

Cz/\/J(S:s)dSSCo, [11]

where Cj is some limited capacity if S has the following form: 7' = F~'(F(S) + n). The end-result of this analysis is that in
the transformed space the prior is uniform. This simple result has an additional justification: in the transformed space the
prior is non-informative (it is a Jeffreys prior see (34)). This holds true since if F' maps the prior to a uniform distribution then
the Fisher information is also constant (26) which satisfies the condition for a Jeffreys prior:

P(F(5)) o< /|det(J(5))] [12]

Discrimination simulations (Fig. 3D). In this analysis, we take as a starting point an estimate for the prior (taken from the last
iteration of the transmission chain experiment) in order to predict the results of a separate discrimination experiment. Note
that each model (fixed and efficient-encoding) has in this case just one degree of freedom (the magnitude of the model’s noise
o). From this we can compute the d’ values for the entire image numerically using Equation 7.

In order to produce the simulated d’ predictions for Fig. 3D, we performed a grid search over the range of o = 0 — 0.08
(relative to an image size of 1). For each value we computed the prediction of the discrimination map and the correlation
between the last iteration of the chain experiment and the simulated discrimination experiment. Error bars (blue and red
regions) show the standard deviations of the predictions over all the images for each model. Due to edge artifacts produced by
the fixed-encoding model’s predictions, we exclude values within 6 pixels from the edges of the model predictions as well as the
empirical d’ maps in order to make a fair comparison between the models and the data. We then recomputed the adjusted
correlations between the simulated and real discrimination data and the priors for each of the images, and this reduced the
measured correlations for the empirical data (which were in the range r = 0.45 — 0.63, see green line in Fig. 3D). However,
the correlations between the empirical d’ data and the priors after this adjustment were still highly positive (p < 0.001 via
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bootstrapping), matching the efficient-encoding model predictions. The correlations of the efficient-encoding model with the
exclusion were similar to the ones without the exclusion.

Importantly, both models provide a good fit to the empirical chain dynamics given the prior when iterated forward twenty
times (Fig. 3A and SI Appendix Fig. S8). Specifically, with the right noise magnitude, both models predict the convergence
speed to the prior measured as the Jensen-Shannon divergence (see section on the JSD for formal definition) distance to the
prior at each iteration (Fig. S8D), and show consistency with each iteration of the KDE maps for each iteration. To compute the
convergence speed of the model data to the prior we estimate the vector of JSD distances {c}};=o,1,...,20 between each simulated
distribution of each iteration P]{, and the prior P: c;- = JS’D(PJ{, P), where iteration 0 is defined as the initial distribution of
the stimulus at iteration 1. Similarly, we can compute the convergence speed for the real data {c;};=o,1,...,20 (see Fig. S5 and
SI Appendix for other convergence measures). Fig. S8D shows a plot of this vector for the face image. We fit each model
by varying o so that the Lo distance between the entire vector of distances is minimized: score(PJ{) =Yj=01,.,20(cj — Cj)2,
where ¢ and ¢’ are the data and model distances from the prior (for all iterations). We performed a grid search over the
noise magnitude. The best fits are displayed in Fig. 3A and SI Appendix Fig. S8. However, only the efficient-encoding
model predicts positive correlations between the serial reproduction results and the discrimination experiments (Fig. 3 and SI
Appendix Fig. S8A-C). Note that the correlations predicted from the efficient-encoding model were slightly larger than the ones
predicted by the empirical discrimination data, possibly due to the empirical reliability of the discrimination map estimates
(see analysis of disattenuated correlations in the results section). We also cannot rule out that some small discrepancy between
the model predictions and the empirical results are due to perceptual factors that were not modeled in the simulation, such as
interference between the memory traces of the stimulus images in the trial sequence or production noise. It is worth noting
that the fixed-encoding model with the noise magnitude fitted to the results from the serial reproduction experiments predicts
discrimination accuracy maps that deviate from the actual data by simulating a much smaller dynamic range in d’ values, and
significant edge artifacts. Neither the data nor the efficient-encoding model produced these artifacts (see SI Appendix Fig. S8).

Analysis of consistency of the response bias. Single-trial biases correspond to people’s tendency to produce responses that are
consistently biased towards a nearby landmark, and that as a result, nearby responses tend to point in the same direction
towards the landmark. The symmetric variable precision model predicts that responses are unbiased with respect to the
stimulus. Single-trial biases have the following implication for our results: we denote by B the difference between a response R
and a stimulus S. From equation 3, we see that B will be a random sample with 0 mean. If the symmetric variable precision
model is accurate, this means that if we take neighboring data points in our experiment, we should expect that the difference
between the stimulus and response locations will NOT produce response vectors that point in the same direction as they are
expected to be independent samples from B (Fig. S3B). On the other hand, if there is a bias (equation 4), where b(s) is a
sufficiently large bias parameter that can vary from place to place in the image, we should expect that nearby points with
similar b(s) will be biased approximately toward the same direction, for example towards a nearby landmark (see Fig. S3A).
To quantify the presence of single-trial biases, we first binned all the data points into bins that subtended 0.04 of the image
width and height. We used all the data across all iterations and within each bin we averaged the bias (the differences between
response locations and stimulus locations). We only considered bins that contained at least 4 response and stimulus pairs
where the estimates are reliable. According to the symmetric variable precision model, we expect these averages to have a
random direction and as a consequence, that average responses of adjacent bins will be uncorrelated. However, if there are
large single-trial biases then we would expect a different behavior. We would expect the average bias difference vectors in
adjacent bins to be pointing consistently in approximately the same direction.

Fig. S3C shows the actual data from the triangle experiment (where the landmark directions are easy to see). We average the
response biases inside each bin and plot the direction of the bias (yellow arrows). The empirical data clearly show that average
responses in adjacent bins are biased in similar directions. It is visually apparent that biases point toward the landmarks (the
modes near the triangle’s vertices). On the other hand, the symmetric variable precision model predicts random directions
(Fig. S3D), as expected. In these simulations we used variance U(s)2 inversely proportional to the density of the end-state of
the serial reproduction experiment, but note that this model would produce random directions regardless of the form and
magnitude of the variance. In comparison, the efficient encoding model (with noise value of o = 0.01) predicts consistent biases
towards the landmarks (Fig. S3E), and it is visually apparent that the model produces single-trial biases that are similar in
that respect to the actual human data.

We quantify consistent single-trial biases by measuring the angular differences between the directions of average response
vectors in adjacent bins both vertically and horizontally. Fig. S3F shows a histogram of these angular differences. We see that
the data (continuous green line) show a clear peak at small angles (p < 0.001 via bootstrapping). However, the symmetric
variable precision (flat dashed cyan line) predicts a flat histogram of angular differences that is not different from the random
distribution (gray). In contrast, the predictions of the efficient encoding model (dashed dark blue line) show a clear peak for
small angular differences, which is consistent with the data. We repeated the analysis for all 7 natural images, and obtained
similar results (Fig. S3G).

To compute statistical significance of the magnitude of the peak in the histograms and to explore the effect of the noise
parameter sigma in both the symmetric variable precision and efficient encoding models, we computed the probability of small
angular differences within +/-12 degrees as shown in between the dashed vertical lines in Fig. S3F for the triangle image.
We plotted these values as a function of the noise parameter for all natural images and shapes (Fig. S3H). The data show
significant small angular differences (horizontal green lines in Fig. S3H). The probability of small angular differences (phases)
predicted by the efficient encoding model (dashed dark blue lines) varies with the noise magnitude, but the symmetric variable
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precision model (see 7 nearly overlapping cyan lines) predicts no phase consistency regardless of the noise magnitude.
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Fig. S1. Serial reproduction experiment designs: The between-subject and within-subject designs. A. Between-subject design. Each chain was composed of nodes representing
individual trials. Each trial contained a stimulus S;, ;, delay, and response R; ;. Chains contained N = 20 iterations. Each chain began with an initial seed point location
sampled from a uniform distribution, and subsequent nodes in the chain contained the response to the previous node as the stimulus (the “telephone game” procedure).
Participants were randomly assigned to trials in different chains and never participated in the same chain twice. B. Within-subject design. Participants completed entire chains,

A.Transmission chain between-subject design

A participant never
participates in the same chain twice

Random seed T ?
Iteration 1 CP ?
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B.Transmission chain within-subject design
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alternating between nodes in their assigned chains. In this design, no chain contained data from more than a single participant.
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A. Spatial memory serial reproduction process B. Bayesian perception
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Fig. S2. A. Spatial memory serial reproduction process. A stimulus point location S; is perceived as a noisy percept T} and reproduced as a location R;. This reproduced
point becomes the stimulus for the next participant in the serial reproduction chain (S¢41). B. Bayesian perception. A stimulus location is remembered following an inference
process during which a noisy percept of the actual location (the likelihood P(T%|S:), purple dotted line) is integrated with a belief state about probable point locations (the prior
P(S}), dotted black line) resulting in the posterior (P (R |T%), blue dotted line). The reconstruction (the net result of the encoding and decoding) P(R:|S;) is shown in the
solid green line. A stimulus point location (red dot) near a landmark (green dot) will tend to be misremembered with a bias towards the landmark, and on average will be

reproduced closer to the landmark (pink dot).
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A. Consistent biases: responses are oriented in the same direction B. Inconsistent biases: responses are not oriented in the same direction
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Fig. S3. Analysis of the consistency of the bias. A. Prediction for consistent biases. Average response vectors (black arrows) for nearby point reconstructions (white dots with
red outline) will tend to point in the same direction. B. Prediction for inconsistent (random) biases in responses. Average response vectors (black arrows) for nearby point
reconstructions will not point in the same direction. C. Coherent biases in the triangle data. We averaged all differences between response and stimulus pairs across all
iterations that fell within bins that subtended 0.04 of the image width and height, in a grid over the image. We computed the direction of the average bias (yellow arrows). The
direction vectors are plotted on top of the KDE of the last iteration, which we downsampled to the grid resolution. D. The symmetric variable precision model predictions.
Directions are incoherent (random). E. The efficient encoding model predictions. The model qualitatively replicates the pattern seen in the data. F. Quantification of the bias
consistency. Angular difference histogram for the triangle image. The x-axis shows the angular difference (in degrees) of the average directions of the biases in adjacent bins.
The angular differences for the actual data (green line) and efficient encoding model (simulated dashed dark blue line) are concentrated near 0 degrees, showing significant
consistent biases (p < 0.001 via bootstrapping). The symmetric variable precision model (cyan line) is not different from the uniform distribution (gray area). Shaded areas
show one standard deviation of the histograms computed by simulating the models 1000 times. G. Results for all natural images. H. Small angular differences (probability of
angular differences between -12 and 12 degrees) as a function of model and noise magnitude. The efficient encoding model (dashed blue lines) predicts different levels of bias
consistency depending on the noise magnitude but the symmetric variable precision model (overlapping cyan lines) predicts random phases regardless of noise magnitude that
are not different from the uniform distribution (shaded gray area).
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A. Efficient encoding: psychological representation B. Two equivalent perspectives on internal geometry
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Fig. S4. Rational models of visuospatial memory. A. The efficient-encoding model. Variations in sensory noise encode informative visual regions with higher resolution,
resulting in warped internal representations where some visual regions are over-represented relative to others (“internal geometry” of the psychological representation produced
by the function F'). In internal just-noticeable difference (JND) units, perceptual noise is isotropic and Gaussian, and the prior is uniform. The distortion of the internal scene
representation is inversely proportional to the density in the prior. In panels A-D, original location (red point) is inferred by combining the prior with a noisy percept (yellow point),
and the participant produces a biased reconstruction (pink point). B. Two equivalent perspectives on the psychological representation. According to the model, the same internal
distribution can be described in two equivalent coordinate systems. The deterministic function F' maps Euclidean distances to a representation in internal JND distance units,
while F~1 inverts this representation, transforming JNDs back to Euclidean distances (Euclidean space). In JND units the prior is uniform and the likelihood is Gaussian. This
implies that in the Euclidean space, the prior is non-uniform and the likelihood varies across parts of the image. C. The “efficient-encoding” model. Unlike in the “fixed-encoding”
model, encoding precision varies systematically depending on the location in the visual scene. D. The “fixed-encoding” model. Encoding precision is fixed throughout the image.
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randomized samples of a uniform distribution. The shaded regions correspond to standard deviations from 1000 KDEs obtained from bootstrapped samples.
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A. Discrimination experiment results (examples): raw d', smoothed grid, and interpolated maps
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B. Discrimination experiment results for shape images: interpolated maps (smoothed d' maps)
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Fig. S7. Discrimination maps: Natural images and shape images. A. Discrimination percent accuracy for “same” and “shifted” conditions for the plane image (top left), including
raw d’ grid point values, smoothed d’ in top right row, plotted over the image, and shown without the image (in the second row). The interpolated d’ map is also shown in the
far right column, overlayed over the image, and without the image. Examples are also shown for the boat image. B. Smoothed d’ maps for shape images.
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A. Dynamics of each iteration: real data (20 iterations) Discrimination experiment
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Fig. S8. Representative example of the simulated chain dynamics for the efficient-encoding and fixed-encoding models, and real chain results (face image). We also show
simulated d’ maps that are predicted from the serial reproduction experiment and compare them to the actual d’ results. A. Dynamics of the empirical serial reproduction
experiment. Each panel shows a KDE fit to the point locations at each iteration, where iteration 0 corresponds to the initial uniform distribution. Also shown are the smoothed
discrimination experiment d’ results. Discrimination is positively correlated with the KDE fit to the data in the last iteration of the chains. B. Simulation of the chain dynamics
using the efficient-encoding model. The input for the simulation was the empirical prior obtained from the serial reproduction experiment (KDE fit to the data in the last iteration,
shown inside the dotted red bounding box in A). C. Dynamic simulation for the fixed-encoding model. D. Fitting the noise parameters based on the serial reproduction experiment.
The graph shows the JSD distance between the prior (final iteration KDE), and the model predictions at each iteration (blue and red lines), and empirical chain iterations
(green line). We performed a grid search over the magnitudes of the noise parameter (o). We selected the value for the noise magnitude that produced chain dynamics that
most closely approximated the empirical dynamics (green curve) in panel D. The best values were 0.036 and 0.0235 for the efficient encoding and fixed encoding model,
respectively. E. Simulated d’ results for the efficient-encoding and fixed-encoding models and empirical d’ maps. Top row shows empirical d’ results and correlations to
the corresponding priors. Second row shows the efficient-encoding model predictions. Correlations of the predicted discrimination maps to the prior KDEs (displayed above
each image) are all positive for the efficient-encoding model. Bottom row shows discrimination predictions of the fixed-encoding model. Correlations between the predicted
discrimination maps and the prior KDEs are all negative at the fitted noise level for the fixed-encoding model. Note that the fixed-encoding model produced edge artifacts (which
were not observed in the data). To facilitate the comparison, we excluded values 6 pixels from the edges of the predicted discrimination maps when computing the correlations
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A. Precision stimulus manipulations B. Timing manipulations
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Fig. S9. Encoding precision direct experimental manipulations. A. Encoding precision stimulus manipulations. We repeated the serial reproduction experiment with
manipulations to the image by adding Gaussian noise or reducing the contrast. B. Timing manipulations. We repeated the serial reproduction experiment with a reduced
presentation period (200ms instead of 1000ms), or a longer delay period (2000ms instead of 1000ms). C. Other manipulations: We tested the Markovian assumption by
interleaving experimental trials with dummy trials in which points where presented in random locations. D. Other manipulations: payoff experiment. We tested the effect of
introducing a payoff to the task by rewarding accurate responses to the right of the original stimulus with double the bonus awarded to accurate responses to the left of the
original stimulus. E. The KDE and scatterplot of the original serial reproduction experiment results. F. Results of the precision, delay and other manipulations: scatterplots and
KDEs. G. JSD differences comparing KDEs from each of the manipulations to the original results. Results show differences are significantly different from zero (p < 0.001) in
the case of the precision manipulations (blue bars), and not significantly different from zero in the case of the delay and other manipulations (red and gray bars, respectively).
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A. Encoding and reproduction experiments: using a blank frame at encoding and test
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B. Forward and backward noise masking experimental design and results
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Fig. $10. A. Encoding and reproduction experiments. In order to confirm that biases emerge during the encoding phase, and not during the reproduction phase, we compared
the results of substituting a natural image with a blank (uniform gray) probe image at test time, or during the encoding phase. A. The experimental design of the original
experiment, as well as the two manipulations, and results using a 1000 ms encoding duration, or a short 300 ms encoding duration. Results clearly show that the prior is biased
towards the landmarks of the images presented during the encoding phase and not the reproduction phase. The results of a control experiment, in which the blank gray frame
was presented both during the encoding phase and the reproduction phase is also shown. B. Forward and backward noise masking experimental design and results. We
introduced forward and backward masking to the encoding phase of the original experimental design, and reduced the encoding time to 300 ms instead of the full 1000 ms. The
masks were generated as a sequence of random 1/ f “pink” noise images. We also ran an experiment in which we substituted the natural image with a blank image for the
reproduction (response) phase. The results of the first experiment show that masking had little to no effect on the outcome of the experiment relative to the same experiment
without masking. Finally, the results of the second experiment using a blank frame during the response phase reveals that masking had little to no effect on the outcome of the
experiment relative to the same experiment without the masking. These findings suggest that overt attention in the form of eye movements during encoding are likely not
responsible for the patterns of biases. They also show that eye-movements at test time cannot explain the patterns of biases either.
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A. Shape spatial complexity manipulation

3-sided (triangle) 4-sided (square) 5-sided (pentagon) 7-sided polygon
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B. Shape temporal encoding manipulation
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Fig. S11. A. Spatial manipulation of encoding precision. The apparent increase in peaks in spatial memory KDEs for more complex regular polygons led us to consider
changes to the internal representation in the limit, as the regular polygons become more complex and start to approximate a circle. Each panel shows the non-parametric kernel
density estimates (KDE) of the serial reproduction results obtained using regular polygon images with an increasing number of corners. As the image complexity increases, the
KDE structures begin to resemble the results for the circle. B. Temporal encoding precision manipulation: When the presentation time of a 19-sided regular polygon stimulus
image is reduced from 1000 to 300 ms, the resulting biases are significantly simplified towards the spatial memory representation for a circle. The barplot shows the relative
differences in the effect of changing the encoding time on the KDE structure using the JSD. All distances were computed as the JSD distances between the final distribution of
points for both manipulations and the final distribution for a shaded circle. Error bars represent the standard deviation of the distance estimated by bootstrapping (after applying
the Bonferroni correction; *: p < .05; **: p <.01; ***: p <.001).
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A. CAM fit to data in the first iteration of the chains using 4 prototypes
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B. Transmission chain image results: superposition of points across all iterations and KDEs

Fig. S12. Category Adjustment Model (CAM) estimates for simple shape images. The CAM asserts that each reconstruction from memory linearly interpolates between the
stimulus and a prototype (see methods). We fit the CAM using 4 prototype location terms to the data for each of the shapes, using the exact same procedure as (5). We used all
initial point locations and the positions in the first iteration for each of the images. B. Scatter plots showing the superposition of responses across all iterations of the chains for
each of the shapes, and the corresponding Kernel Density Estimates (KDEs).
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A. Category Adjustment Model (CAM) and discrimination maps and predictions

D 2010 5 D 2010 5 D 2010 5
CAM CAM CAM

Fig. S13. Category Adjustment Model (CAM). This model asserts that each reconstruction from memory linearly interpolates between the stimulus and a prototype (see
methods). A. We fit the CAM using 5, 10, and 20 prototype location terms to the data for each of the natural images. We used all initial point locations and the positions in the
first iteration for each of the images. B. Correlations of KDEs fit to the CAM point-estimates to KDEs of the chain data are shown, as well as correlations between chain KDEs
and smoothed discrimination d’ maps for comparison. In some cases, the model produced estimates of the prototype locations that were nearly overlapping.
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A. Split-half chain sampling, KDE and CAM model-fitting procedure, and comparison (r) for one split-half sample
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B. Plane image: comparison between split-half KDE reliability, and CAM estimate reliability (100 split-half samples)
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Fig. S14. CAM and serial reproduction chain reliability analysis. A. For a given random partition of the data into two equal splits (split 1 in red, and split 2 in blue), we fit a KDE
to the 20th iteration data in split 1 and compared it to a KDE fit to data in K chain samples from split 2, as well as CAM estimates fit to the same K chain samples in split 2. B.
Results comparing the internal reliability of the KDEs fit to random splits of the data (blue line), as well as the reliability of the CAM estimates, using 5 (cyan line), 10 (green line),
and 20 (red line) prototypes, for each value of K samples from the 2nd partition of 250 chains. The shaded error bars correspond to 100 random partitions of the full chains into
two equal parts. For all values of K, the internal reliability estimates of the KDEs were significantly higher than reliability of the CAM estimates. The x-axis in the graph is
normalized according to the number of participant trials used for the estimation (equating for the fact that the serial reproduction estimates are made from multiple iterations,
and therefore more data). The analysis indicates that even when the two methods are equated for the amount of data used, the serial reproduction results produce more
reliable estimates.
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A. Fixations, COM, segmentation KDE maps
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B. Fixations, COM, segmentation KDE maps and predictions
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C. Comparing fixations, COM, seg. KDE and discrimination
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Fig. S15. KDE predictions using Centers of Mass (COM), Fixations, and Segmentations. A. Eye-movements obtained for the natural images, centers of mass (COM) computed
as the average x and y coordinate values inside each of the human-made segmentations of the objects in the images, and transmission chain results (KDEs) obtained using
segmentation images instead of original grayscale images. B and C. Model comparison comparing discrimination maps, KDEs fit to transmission chain data obtained for
segmentation images, COM, and fixations. The model comparison shows that the COMs and fixations were the weakest predictors of the original image KDEs
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A. Images and segmentations. C. COM and segmentation KDEs
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Fig. S16. Centers of Mass (COM) are poor predictors of spatial memory priors obtained via serial reproduction. A. Images were landscape images used in previous work, and
segmentations were obtained using k-means clustering of the RGB values of the original color images, using the same procedure described by (12—14). Two examples of the
segmentations are shown for both images. B. Centers of mass (COM) were computed by averaging the x and y coordinates of the pixels in each of the segmented regions. C.
KDEs obtained using our serial reproduction results for the grasycale images as well as the segmentation images. Also shown are the COM maps obtained by smoothing the
COM with an optimal smoothing parameter (maximizing its correlation to the KDEs obtained for the original grayscale images). D. Barplots showing the optimal performance of
the COM maps, and the KDEs fit to the results from the serial reproduction chains using the segmentation images used for computing the centers of mass. Results clearly show
that COM maps are poor predictors of the KDEs.
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A. Gradient-level edge and corner features, and discrimination maps
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C. Transmission chain results for images with illusory contours

ILLUSORY SQUARE SUPERPOSITION ILLUSORY FACE SUPERPOSITION

Fig. S17. Model comparison using attenuation. Discrimination accuracy maps are more predictive of the spatial memory KDEs than optimized corner (Harris) and edge (Canny)
feature detectors implemented using (23). We performed a detailed grid search over the allowable parameter settings for both the Harris corner and Canny edge detectors and
selected the settings that maximized the correlations to the KDEs. A. feature maps (with optimal smoothing) displayed over the images. Also shown are correlations with
corrections for attenuation over each map. B. Barplots of the disattenuated correlations. Errorbars represent 1000 bootstrapped samples of the chain data. C. Chain results for
a square with an illusory upper-right-hand corner and a face with an illusory right eye. Transmission-chain results reveal biases concentrated around the illusory regions: a
pattern around the upper right-hand illusory corner of the square that is largely identical to the pattern we observe with the original image, as well as biases centered over the
illusory eye in the face image.
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A. Spatial memory KDEs and overt attention: free fixation, cued object search and saliency search predictions
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Fig. S18. Overt attention and spatial memory priors. Spatial memory KDEs, free fixations, cued object search fixations, and saliency search fixations. A. Fixation maps with
optimal smoothing for free-fixation, cued object search, and saliency search tasks are not predictive of spatial memory priors. We show all the fixation maps and spatial memory
KDEs for 8 images taken from the database used in (4). We applied a smoothing parameter to all the maps using Matlab’s imgaussfilt function. We selected the smoothing
parameter that maximized the correlations of the maps to the spatial memory KDEs. Also shown are correlation matrices with disattenuated correlations. We computed the
disattenuated correlations using internal reliability estimates for each of the fixation maps and the chain data. We estimated the internal reliability by averaging the correlations
between 100 split-half pairs of the data, for each of the predictors.
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A. "Graspability" & "meaning" patches, contexts & grids B. Patch ratings task design
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Fig. S19. Patch ratings experiments. We reproduced the experiments by (18, 19) for 8 images for which detailed eye-movement fixation data were available for free-viewing,
cued object search and saliency search tasks (4). A. We extracted circular image patches from each of the images using fine and coarse spatial grids. B. We obtained 10
ratings of the “informativeness” and “graspability” for each of the patches on AMT in two separate experiments. C. For each experiment (“informativeness” vs. “graspability”), we
averaged the ratings for each of the patches, and across fine and coarse scales. We then applied an optimal smoothing parameter (to maximize the correlation of the resulting
maps to the KDEs). Finally, we down-weighted the edges of the maps to simulate the center bias in overt attention, using the same procedure as (18, 19). D. Example fixation
maps, meaning and graspability maps, centered meaning and graspability maps, and KDE results. E. Disattenuated correlation matrix showing that neither the fixations, nor the
meaning and graspability maps (with and without the center bias) are predictive of the spatial memory prior (Chain KDE) for the example shown in D. F-G shows another
representative example, with similar results. H. All chain KDEs for the 8 images. |. Average correlation matrix with disattenuated correlations. Across all the images, neither the
fixations, nor the meaning and graspability maps (with and without the center bias) are strongly predictive of spatial memory priors (Chain KDEs).
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A.Transmission chain between-subject design results

Fig. $20. Full serial reproduction results for a shaded pentagon (all chains and all iterations). A. Main results Using the between-subject design. B. Results using the
within-subject design. The bottom right sub-panels show the parametric KDEs, and the next-to-last sub-panels show an overlay of the parametric KDEs over the image.
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A.Transmission chain between-subject design results

Fig. S21. Full serial reproduction results for a natural image (all chains and all iterations). A. Main results Using the between-subject design. B. Results using the within-subject
design. The bottom right sub-panels show the parametric KDEs, and the next-to-last sub-panels show an overlay of the parametric KDEs over the image.
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Fig. S22. Kernel density estimates (KDEs) for triangle and lighthouse image serial reproduction results. KDEs for the initial seed distribution and all 20 iterations of the chains
are shown.
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Experiment number |Image file name Image category Image width Image height Number of participants |Number of chains
1|gray-circle Shape images 564 554 107 499
2|gray-triangle Shape images 610 523 102 496
3|gray-square Shape images 518| 505| 103 498|
4|gray-pentagon Shape images 512 486 103 494
5|face-with-illusory-contour Natural images 192 256 94| 498
6|Lighthouse Natural images 166 256 121 500
7|Bird Natural images 256 183 101 467
8|Horse Natural images 192 256 104 483
9|Plane Natural images 256 165 110| 482

10(Boat Natural images 256 192 103 478
11{Room Natural images 172 256 106 485,
12(Bird-segmentation Segmented natural images 256 183 108 500
13[Horse-segmentation Segmented natural images 192 256 106 488
14(Plane-segmentation Segmented natural images 256 165 98| 498
15(Boat-segmentation Segmented natural images 256 192 105 492
16(Room-segmentation Segmented natural images 172 256 106 491
17(*Face” Discrimination experiments 292 277 178 N.A.
18[“Lighthouse” Discrimination experiments 293 243 220 N.A.
19(*Bird" Discrimination experiments 259 243 190 N.A.
20[*Horse™ Discrimination experiments 266 243 300 N.A.
21|*Plane” Discrimination experiments 192 256 308 N.A.
22(*Boat” Discrimination experiments 166 256 300 N.A.
23[*Room™ Discrimination experiments 256 183 240 N.A.
24(“gray circle from circle-to-square” Discrimination experiments 192 256 240 N.A.
25(“gray triangle” Discrimination experiments 256 165 280 N.A.
26(“gray square” Discrimination experiments 256 192 240 N.A.
27(“gray pentagon” Discrimination experiments 172 256 98| N.A.
28(gray-square-with-illusory-corner llusory contours 518 505 106 494,
29(face-with-illusory-contour lllusory contours 192 256 110| 497
30(plane-200-ms-encoding Natural images 256 165 17| 481
31(plane-reduced-contrast Natural images 256 165 106 500
32(plane-Gaussian-noise Natural images 256 165 109 499
33(Plane-uniformity-manipulation Natural images 256 165 210 492
34(Plane-payofi-manipulation Natural images 256 165 110| 499
35(Plane-delay-manipulation Natural images 256 165 103 499
36(Pentagon-within-design Shape images 512 486 74| 288
37[Plane-within-design Natural images 256 165 150 577
38|Fixations-image-1 Natural images 256 256 110 499
39|Fixations-image-2 Natural images 256 256 109 499
4A0|Fixations-image-3 Natural images 256 256 109 500
41|Fixations-image-4 Natural images 256 256 111 498
42|Fixations-image-5 Natural images 256 256 105 498
43|Fixations-image-6 Natural images 256 256 106 500
44|Fixations-image-7 Natural images 256 256 106 500
45|Fixations-image-8 Natural images 256 256 104 500
46|Fixations-image-1 Meaning ratings experiments 256 256 40 N.A.
4A7|Fixations-image-2 Meaning ratings experiments 256 256 40 N.A.
48|Fixations-image-3 Meaning ratings experiments 256 256 40 N.A.
49|Fixations-image-4 Meaning ratings experiments 256 256 40 N.A.
50(Fixations-image-5 Meaning ratings experiments 256 256 40 N.A.
51(Fixations-image-6 Meaning ratings experiments 256 256 40 N.A.
52(Fixations-image-7 Meaning ratings experiments 256 256 40 N.A.
53Fixations-image-8 Meaning ratings experiments 256 256 40, N.A.
54(Fixations-image-1 Graspability ratings experiments 256 256 40 N.A.
55(Fixations-image-2 Graspability ratings experiments 256 256 40 N.A.
56(Fixations-image-3 Graspability ratings experiments 256 256 40 N.A.
57|Fixations-image-4 Graspability ratings experiments 256 256 40| N.A.
58(Fixations-image-5 Graspability ratings experiments 256 256 40 N.A.
59(Fixations-image-6 Graspability ratings experiments 256 256 40 N.A.
60(Fixations-image-7 Graspability ratings experiments 256 256 40 N.A.
61[Fixations-image-8 Graspability ratings experiments 256 256 40 N.A.
62(Lighthouse-300-ms-encoding Natural images 166 256 115 499
63(Lighthouse-blank-probe Natural images 166 256 107 500
64(Lighthouse-blank-probe-and-300-ms-encoding Natural images 166 256 106 498
65(Blank-stimulus-and-probe-control Natural images 200 256 53| 250
66(Blank-stimulus-and-lighthouse-probe Natural images 166 256 55| 250
67 [Lighthouse-300-ms-encoding-blank-probe-and-noise-masking Natural images 166 256 110 500
68(Lighthouse-300-ms-and-noise-masking Natural images 166 256 109 500
69(Landscape-image-1 Natural images 256 213 54| 250
70[Landscape-image-2 Natural images 256 190 52| 250
71(Landscape-image-1-segmentation Segmented natural images 256 213 52| 250
72[Landscape-image-2-segmentation Segmented natural images 256 190 55| 250
73 Shaded-19-sided-polygon-(300ms-presentation) Shape images 486 486 113 475
74 Shaded-3-sided-polygon Shape images 487 487 89| 405
75 Shaded-4-sided-polygon Shape images 488 488 106 495
76 Shaded-5-sided-polygon Shape images 488 488 105 496,
77|Shaded-7-sided-polygon Shape images 490 490 106 498
78[Shaded-8-sided-polygon Shape images 491 491 106 494,
79(Shaded-11-sided-polygon Shape images 492 492 101 485
80(Shaded-13-sided-polygon Shape images 493 493 104 489
81(Shaded-15-sided-polygon Shape images 494 494 107 498
82(Shaded-17-sided-polygon Shape images 495 495 107 497
83(Shaded-19-sided-polygon Shape images 496 496 107 490
84(Shaded-21-sided-polygon Shape images 497 497 110 498
85[Shaded-25-sided-polygon Shape images 498 498 107 492

Fig. $23. All experiments, including the image names and categories, the width and heights of all stimulus images, the total number of participants who participated in each
experiment, and the number of chains where applicable.
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