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Fig. S1. Schematic diagram of 2D AIV model. A fully-connected network is used to approximate the key output parameters, namely (I, u, v, p), by taking the space and time
coordinates as inputs (x, y, t). The governing equations for this problem are encoded in a residual network, where the derivatives are computed via automatic differentiation
(AD) in the TensorFlow code (Google, Mountain View, CA, USA). Moreover, the no-slip boundary conditions are introduced on the channel walls (denoted by green lines at the
top-left image), namely u(∂Ω) = 0. The activation function for each neuron is σ(·) = sin(·). The loss function for training is composed of three terms: data mismatch,
boundary conditions and residuals of conservation laws.

Table S1. Number of training data points used for training of 2D AIV. Nd represents the number of training data from microfluidic images. Ne
denotes the number of training points for computing the residues of the governing equations. Nb designates the number of training points
on the channel wall.

MA MA#3 MA#4 MA#6

Nd 7410 10353 14983

Nb 510 522 587

Ne 7410 10353 14983

Supporting Information Text

1. Implementation details of AIV

2D AIV model. The details of the AIV model employed to infer the 2D velocity and pressure fields from 2D images is elaborated
in Fig. S1. The inputs (purple circles) to the model are the time and 2D spatial coordinates (t, x, y) and the outputs of the
model (orange circles) are spatio-temporal scalar field I which represents the image intensity as well as the 2D velocity and
pressure field (u, v, p). The encoded equations in the AIV model (in the blue box) include the image advection equation, the
2D Navier-Stokes equation and continuity equation.

Training data. The training data sets for AIV include (1) the data points extracted from the microfluidic images {xi, ti, Ii}Nd×Nt
i=1

for computing Ldata; (2) the residual points {xi, ti}Ne×Nt
i=1 used in the governing equations for computing Lres; and (3) the

points selected on the boundaries of the channel wall {xi, ti}Nb×Nt
i=1 for computing Lbcs, where Nt denotes the number of image

frames. The number of data points Nd and the number of points on the wall boundary Nb are selected based on the number of
pixels in the microfluidic images, while Ne is selected to be Ne = Nd for the prediction of 2D velocity and pressure fields. The
values of Nd, Nb and Ne used for the three MAOAC channels with different geometries are listed in Table S1. 100 sequential
images (i.e., Nt = 100) are extracted from the blood flow videos for each of these three MAOAC channels to train AIV.

Hyperparameters. As illustrated in Fig. S1, the AIV model is composed of a fully-connected network containing 10 hidden layers
with 80 neurons per layer. For each layer, the input-output relationship can be expressed as: Y = σ(WX + b), where W
and b are the trainable weights and biases, respectively. The activation function for each neuron is σ(·) = sin(·). All the
weights and biases are randomly initialized by the Xavier scheme (1). The training of the network is performed using Adam
optimizer (2). In order to calculate the residuals (e1,e2,e3 and e4 in Fig. S1) in Lres, the partial differential operators in the
governing equations are computed using automatic differentiation (AD) where the derivatives in the governing equations are
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Fig. S2. Schematic diagram of 3D AIV model. A fully-connected network is used to approximate the solutions, namely (I, u, v, w, p), by taking the space and time coordinates
as inputs (x, y, z, t). The governing equations include the transport equation of image intensity, the three-component momentum equations and the continuity equation.

approximated by the derivatives of the output with respect to the input of the neural networks. λd and λb are the weighing
coefficients to account for the relative contributions of the three terms in the total loss function. We note that for AIV, a
relatively large λd and λb can accelerate optimization because the image data can be quickly regressed, but it may also result
in overfitting. More details of how to select the appropriate weighing coefficients in the loss function for training PINNs can be
found in (3, 4). In this work, the weighting coefficient for Ldata is selected to be λd = 10 through a trial-and-run process. As
we impose no-slip boundary conditions on the channel wall, we implement a stronger penalization (λb = 100) on loss resulting
from the boundary conditions (Lbcs) to constrain the magnitude of the velocity on the channel wall to be approximately zero.

Training strategy. The training of AIV are performed using a two-step optimization. In the first step, we train the network with
5,000 epochs with initial learning rate 10−3 and we observe that the total loss function has reached a plateau. One epoch in
the training means that all the selected training points (Nd +Nb +Nc in Table S1) have been used to train the neural network
once. In this step, Ldata are predominately minimized through the optimization process such that the AIV model can attain a
good regression to the microfluidic image data. Next, we exclude the data term (Ldata) as well as the image advection equation
(residual e1) in the loss function, and train the neural network for another 50000 epochs with a smaller learning rate (10−4) to
fine-tune the velocity and pressure fields based on the residuals of Navier–Stokes (NS) equations.

3D AIV model. The 3D AIV model, as shown in Fig. S2, is composed of a neural network containing 10 layers with 100 neurons
per layer. The training points for the residual loss (Lres) are selected uniformly in the 3D computational domain as illustrated
in Fig.7(A) in the maintext. We select the number of training points for computing the residues of the governing equations,
Ne = 2Nd, where Nd is the number of 2D image pixels. The number of training points on the channel wall Nb is selected to be
50000 for the 3D case and they are uniformly distributed on the upper bound, lower bound and lateral channel walls. We train
the 3D AIV following the same strategy as introduced in the 2D AIV model.

2. Methods for comparisons

Variational optical flow. Variational optical flow is one of the most popular techniques in the computer vision community for
estimation of the movement of objects in a sequence of images (5–7). The estimation of flow field is performed by minimizing
an objective function which is expressed as

min
u
J =

∫
Ω

[
(∂tI +∇I · u)2 + α ‖ ∇u ‖2

]
dΩ. [1]

The first term in the function considers the data extracted from the sequential images under the assumption that the targeted
objects have the fixed brightness in the sequential images. The second term is a regularization term for smoothing the velocity
field. The optical flow-based methods have been developed for fluid flow motion estimation, especially for PIV (8–10). In this
work, we implement the multi-resolution algorithm (10) to solve Eq. 1. The algorithm and the corresponding code can be
found at: https://github.com/shengzesnail/coarse_to_fine_HS_PIV. The weighting coefficient α is 100 and the result is obtained by
taking the average of 100 instances.
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Deep-PIV. Deep-PIV, designed for particle image velocimetry, is a deep convolutional neural network with an encoder-decoder
architecture (11, 12). The original Deep-PIV model was trained using thousands of particle images and the estimation of the
flow field relies on the correlation of the particle positions at two consecutive images (11). In the current work, we employ the
pretrained Deep-PIV model in (11) to predict the velocity field in MAOAC channels without further training because the
motion of blood cells in the blood flow is analogous to particle motion. The algorithm and the corresponding code can be
found at: https://github.com/shengzesnail/PIV-LiteFlowNet-en. The result of Deep-PIV is obtained by taking the average of 100
instances.

3. Modeling the transport of RBCs and platelets in the microchannel using dissipative particle dynamics

We perform dissipative particle dynamics (DPD) simulations to model the transport of red blood cells (RBCs) and platelets in
channel MA#3 (BNR = 3.6), as shown in Fig. 6 in the main paper. The DPD method is a mesoscopic particle-based simulation
technique, where each DPD particle represents a cluster of molecules and it interacts with other DPD particles through soft
pairwise forces (13, 14). DPD method is capable of capturing the hydrodynamic behavior of fluids at the mesoscale, and it has
been successfully employed to study complex fluids, such as blood (15, 16). The equation of motion for each DPD particle i is
governed by the sum of pair interactions fi with the surrounding particles j. The time evolution of velocity (vi) and position
(ri) of a particle i with mass mi is determined by Newton’s second law of motion:

dri = vi dt ; dvi = fi/mi dt. [2]
where dt is the simulation timestep size. These two equations of motion of DPD particles are solved using a velocity-Verlet
algorithm. In the classical DPD method (13, 14), the total force fi exerted on particle i by particle j is composed of a
conservative force (FCij), a dissipative force (FDij), and a random force (FRij) given by

FCij = aij(1−
rij
rc

)r̂ij for rij ≤ rc; 0 for rij > rc, [3]

FDij = γωd(rij)(r̂ij · v̂ij)r̂ij , [4]

FRij = σωr(rij)
ζij√
dt

r̂ij , [5]

where rc is a cut-off distance beyond which the interaction force is considered to be zero. aij , γ, σ are the conservative,
dissipative and random coefficients, respectively. The DPD parameters used in Eqs. (3)-(5) for all types of DPD particles are
given in Table.S2. rij is the distance between particle i and j. r̂ij is a unit vector. v̂ij is the difference between the vi and vj .
ζij is a Gaussian random number with zero mean and unit variance. The parameters γ and σ and the weight functions are
coupled through the fluctuation-dissipation theorem and are related by ωd = ω2

r and σ2 = 2γkBT , where kB is the Boltzmann
constant and T is the temperature of the system. The weight function ωr(rij) = (1− rij/rc)k with k = 1 in the standard DPD
method (13, 14), whereas other values of k have been used to increase the fluid viscosity (15, 17, 18). More detailed description
of DPD method can be found in (13, 19).

In addition to blood plasma modeled by collections of free DPD particles, the membrane of blood cells suspended in the
plasma, including RBCs and platelets, is constructed by a 2D triangulated network with Nv vertices (DPD particles). The
vertices are connected by Ns elastic bonds to impose proper membrane mechanics. These DPD representations of RBCs and
platelets were validated and widely used in the previous studies for both healthy and diseased cells (18, 20–22). The free energy
Vcell of a single cell is given by

Vcell = Vs + Vb + Va+v. [6]
The elastic energy Vs representing the elastic interactions of the cell membrane is defined by

Vs =
∑

j∈1...Ns

[
kBT lm(3x2

j − 2x3
j )

4p(1− xj)
+ kp
lj

]
, [7]

where p is the persistence length, kp is the spring constant, kBT is the energy unit, lj is the length of the spring j, lm is the
maximum spring extension, and xj = lj/lm. p and kp are computed by balancing the forces at equilibrium and from their
relation to the macroscopic shear modulus, µs:

µs =
√

3kBT

4plmx0

(
x0

2(1− x0)3 −
1

4(1− x0)2 + 1
4

)
+ 3
√

3kp
4l30

, [8]

where l0 is the equilibrium spring length and x0 = l0/lm. The bending resistance Vb of the cell membrane is modeled by

Vb =
∑

j∈1...Ns

kb [1− cos(θj − θ0)] , [9]

where kb is the bending constant, and it is related to the macroscopic bending rigidity kc where kb = 2kc/
√

3, θj is the
instantaneous angle between two adjacent triangles having the common edge j, and θ0 is the spontaneous angle. In addition,
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Table S2. DPD parameters used in simulations. rc is a cut-off radius, aij is the conservative coefficient, γ is the dissipative coefficient, and
k is the weight function exponent. In all simulations, we set the particle mass m = 1, and the thermal energy kBT = 0.10 in DPD units. Note
that S = solvent (representing plasma), R = RBC and P = platelet.

type rc aij γ k

S-S 1.58 5.0 20.0 0.20

S-R 1.5 0.0 45.0 0.20

S-P 1.5 0.0 10.0 0.20

R-R 1.0 10.0 10.0 0.20

R-P 1.0 10.0 10.0 0.20

P-P 1.0 10.0 10.0 0.20

Table S3. Cell membrane parameters for RBC and platelet models. Nv is the number of DPD particles on the membrane, lm is the maximum
bond extension, l0 is the equilibrium bond length, kb is the bending constant, µs is the shear modulus, Atot

0 and V tot
0 are the specified cell

area and volume, respectively, kd + ka is the combined area constraint coefficient, and kv is the volume constraint coefficient.

cell Nv lm/l0 kb µs Atot
0 (V tot

0 ) kd + ka (kv)

RBC 500 1.8 6.025 100.0 132.87 (92.45) 5000 (5000)

PLT 48 1.8 100.0 104 19.63 (6.02) 5000 (104)

the area and volume constraints Va+v are imposed to mimic the area-preserving lipid bilayer and the incompressible interior
fluid. The corresponding energy is given by

Va+v =
∑

j∈1...Nt

kd(Aj −A0)2

2A0
+ ka(Acell −Atot

0 )2

2Atot
0

+ kv(Vcell − V tot
0 )2

2V tot
0

, [10]

where Nt is the number of triangles in the membrane network, A0 is the equilibrium value of a triangle area, and kd, ka and
kv are the local area, global area and volume constraint coefficients, respectively. The terms Atot

0 and V tot
0 are targeted cell

area and volume. The cell membrane parameters used in Eqs (7)-(10) for all blood cell models are given in Tables S2 and S3,
respectively.

In order to prevent cell overlap, we employ a Morse potential between membrane particles from different blood cells and it
is expressed as

VM (r) = De[e2β(r0−r) − 2eβ(r0−r)] , [11]

where r and r0 are the distance and equilibrium distance between two membrane particles, respectively. De is the well-depth of
the potential, and β characterizes the interaction range. By properly setting the parameters, we can ensure sufficiently strong
repulsive forces between cell membrane particles and prevent their overlap. We present the Morse potential parameters used
for cell-cell interactions in Table S4. Note that the cutoff radius rc,morse = 1 for all the Morse interactions is given.

To drive blood flow in the microchannel, we apply a constant body force to each DPD particle and we tune this body force
such that the velocity of the solvent particles around the centerline of the post-aneurysm channel, as shown in Fig.6(C) in the
maintext, is close to the maximum velocity of 1.65 mm/s in the channel inferred by AIV.

In order to convert the DPD units to the physical units, we define the length scale of the simulation as [L] = 1× 10−6m.
Then, the time scale of the system can be evaluated by

[t] = [L] η
P

ηM
µMs
µPs

[12]

where µs is the RBC membrane shear modulus, η is the plasma viscosity, and superscripts M and P denote the model (DPD)
and physical units, respectively. Using membrane shear modulus of healthy RBCs µps = 4.73× 10−6N/m and plasma viscosity
ηP = 1.2× 103Pas, the length scale is computed to be [t] = 2.27× 10−4s.

4. 3D results of AIV for microchannel MA#6

The AIV prediction and the CFD simulation results of shear stress for MA#6 (BNR = 5) along two lines on two different
planes in the channel depth direction are shown in Fig. S3.
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Table S4. Morse potential parameters for cell-cell interactions. De is the well depth of the potential, r0 is the zero force distance, and β
characterizes the interaction range. Note that R = RBC and P = platelet

type De β r0

R-R 5.0 2.0 0.95

R-P 10.0 2.0 1.0

P-P 10.0 2.0 1.0

Fig. S3. Comparison between the AIV prediction and the CFD simulation of wall shear stress for MA#6 (BNR = 5) along two lines on two different planes in the channel depth
direction. Left: z = 0 µm, right: z = 3.5 µm. Red circles: CFD results, blue triangles: AIV results.

5. 3D results of AIV for microchannel MA#3

We also employ 3D AIV model to predict the velocity field, pressure field and wall shear stress for MAOAC channel with
BNR = 2 and the corresponding 3D results are illustrated in Fig. S4 and Fig. S5.

6. List of supplementary movies

Movie S1. A bright-field micro-aneurysm-on-a-chip experimental video segment, from which the velocity and pressure fields of
blood flow were inferred by the AIV model. The original images were recorded with a frame rate of 500 fps, while the video
here has been slowed down to 12.5 fps.

Movie S2. A fluorescence-stained micro-aneurysm-on-a-chip experimental video segment, from which we performed platelet-
tracking to obtain the local velocities of the flow. The original images were recorded with a frame rate of 60 fps, while the
video here has been slowed down to 12.5 fps.
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Fig. S4. 3D AIV predictions for MAOAC chan-
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depth direction (z = 0). (B) Velocity magnitudes
and (C) pressure fields at three different cross-
sections (z = 0,±7.5 µm) along the depth of
the channel. (D) Shear stress on the channel
wall. AIV results are averaged over 100 image
frames.
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Fig. S5. Comparison of 3D AIV predictions with results of CFD simulations for MAOAC channel with BNR = 2. (A) 3D velocity vectors inferred from AIV. Two cross-sections
along the x-axis are selected to make comparisons with CFD simulations. (B) Velocity magnitudes at the cross-section located at x = 35 µm in the microchannel. From top to
bottom: CFD simulation, AIV model, and absolute error. The relative L2-norm error at this cross-plane is 14.23%. (C) Velocity magnitudes at the cross-section located at
x = 130 µm in the microchannel. From top to bottom: CFD simulation, AIV model, and absolute error. The relative L2-norm error is 16.49%. (D)-(E) Velocity profiles along
two cross lines at planes z = 0 µm and z = 5.5 µm. The symbols of AIV predictions signify the time-averaged values from 100 image frames and the shadows represent the
standard deviations.
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