
1 Methods

This section provides an overview over the implementation of glm gp, the main function of the package glmGamPoi.
glm gp takes as input a count matrix and a specification of the design formula. In addition, it has several flags to
turn on or off individual steps: size factor estimation, overdispersion estimation, overdispersion shrinkage, Cox-Reid
adjustment. After validating its input, the function goes through the following steps and finally returns an estimate for
the overdispersion for each gene, the regression coefficients for each gene and covariate, the deviance, the mean matrix
and the size factors.

1. Estimate the size factors. glmGamPoi offers three different estimation techniques:

• Column mean

• Median of the ratios for each sample compared with a pseudo-reference sample (described by equation 5 in
Anders and Huber (2010)). To avoid issues with the zeros, we calculate the ratio only on the positive counts.

• A deconvolution based method calling scran’s calculateSumFactors function

The tuple of all size factor estimates is scaled by a common factor such that their geometric mean is one.

2. Estimate the overdispersion roughly using the empirical variances and the mean-variance relation of the Gamma-
Poisson distribution σ2 = µ+ θµ2.

3. Check if the experimental design is a single factor variable, in which case the coefficients of the GLM can be
estimated for each group individually (Case 1). Otherwise, Case 2 applies.

4. Estimate coefficients for each gene roughly.

• Case 1: the estimates are the average counts per group.

• Case 2: fit the linear model.

5. Estimate the coefficients for each gene properly.

• Case 1: use a Newton-Raphson procedure to find the optimal coefficient for each group.

• Case 2: use Fisher-Scoring with a small (10−6) ridge penalty in combination with a line search to make sure
each step decreases the deviance to find the coefficients for each gene.

6. Calculate the mean matrix M = exp
(
BXT +D

)
, where B is the coefficient matrix, X is the design matrix, and

D is the offset matrix.

7. Estimate the overdispersion for each gene properly by optimizing the log-likelihood of the Gamma-Poisson
GLM. The optimization calls the nlminb function in R and uses the analytical expression of the first and second
derivative to guide the optimization.

• If the first derivative is negative for θ ≤ 10−8, we assume that there is no maximum and set the overdispersion
estimate to zero

• We create a frequency table F = {{0, f0}, {1, f1}, {2, f2}, . . .} for each count vector y , where fk is the
number of times that the count value k occures for that gene. We use this table to speed up parts of the
log-likelihood calculation. For example, instead of calculating the log-gamma function for each element

r =

n∑
i=1

log Γ(yi),

where n = length(y), we calculate

r =
∑

(k,fk)∈F

fk log Γ(k).

This optimization contributes most to the speed-up, because the table F is much smaller for many genes
than the full vector y. If we realize during the creation of the frequency table, that it grows too large
and the additional cost of creating the table is not worth it, we revert back to the standard vector based
optimization.

• The calculation of the first derivative is made more robust against numerical divergences by adding bounds
on two terms of the sum.
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– For small θ, the term r = 1/θ (
∑n
i=1 ψ(yi + 1/θ)− nψ(1/θ)) can become too large. We introduce an

upper bound based on the Laurent series expansion of the equation at 1/θ = ∞ which is rupper =∑
i yi − (

∑
i (yi − 1)yi) θ/2.

– For small µiθ the following term becomes imprecise r = log(1 + µiθ) − µiθ
1+µiθ

. We use a Taylor

expansion of log(1 + µiθ) at µiθ = 0 to derive an upper bound rupper = (µθ)2 1
1+µθ and lower bound

rlower = (µθ)2
(

1
1+µθ − 1/2

)
to stabilize the calculation.

8. Shrink the overdispersion estimates using the quasi-likelihood framework σ2 = θQL

(
µ+ θtrendµ

2
)

that edgeR has
developed (Lund et al., 2012).

• We fit a local median regression through the mean gene expression values and maximum likelihood
overdispersion estimates θML to identify the dispersion trend

• We convert the maximum likelihood overdispersion estimates to quasi-likelihood overdispersion estimates
θQL using the relation θQL = 1+µθML

1+µθtrend
.

• We estimate the parameters of the variance prior (the degrees of freedom df0 and scale τ2
0 of an inverse

Chi-squared distribution) using a maximum likelihood procedure.

• We shrink the quasi-likelihood overdispersion estimates by taking the weighted mean between the trended
prior and the quasi-likelihood overdispersion estimates

θSQL =
df0τ

2
0 + dfθQL

df0 + df

where θSQL is the shrunken quasi-likelihood overdispersion estimate.

9. Re-estimate the coefficients based on the updated overdispersion estimates.

10. Re-calculate the mean matrix based on the updated coefficients.

Furthermore, glmGamPoi provides functionality to do differential expression analysis with the test de function.
The procedure is based on the quasi-likelihood ratio test framework developed for RNA-sequencing data by Lund et al.
(2012). The test de function takes as input a reduced design which is used as the null hypothesis. We calculate the
likelihood ratio (LR) as the difference of the deviance of the full model (dfull) and the deviance of the reduced model
(dreduced) for each gene

LR = dreduced − dfull.

From the likelihood ratio, we calculate the F statistic

F =
LR

dftestθSQL
,

where dftest is the difference between the number of covariates in the full vs. the reduced model and θSQL is the
shrunken quasi-likelihood dispersion estimate from Step 8. Finally, to calculate the p-values, we compare F against a
F-distribution with dftest and dffit degrees of freedom, where dffit = df0 + df from Step 8. For convenience, the test de

function also calculates the multiple testing adjusted p-values using the Benjamini-Hochberg procedure (Benjamini and
Hochberg, 1995).

2 Reproducibility

Software versions: R 3.6.2, glmGamPoi 1.1.5, edgeR 3.28.1, DESeq2 1.29.4. The scripts to reproduce the results of this pa-
per are available on github.com/const-ae/glmGamPoi-Paper. The data underlying this article are available from Biocon-
ductor at https://dx.doi.org/10.18129/B9.bioc.MouseGastrulationData, https://doi.org/doi:10.18129/B9.bioc.TENxBrainData,
and https://doi.org/doi:10.18129/B9.bioc.TENxPBMCData.
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3 Supplementary Table

ID Description Data Location (doi) #cells

Mouse Gastru-
lation

Effects of a gene-knockout on mouse gas-
trulation

10.18129/B9.bioc.MouseGastrulationData 31,000

Brain20k Mouse brain atlas 10.18129/B9.bioc.TENxBrainData 20,000
PBMC4k Peripheral blood mononuclear cells 10.18129/B9.bioc.TENxPBMCData 4,000
PBMC68k Peripheral blood mononuclear cells 10.18129/B9.bioc.TENxPBMCData 68,000

Suppl. Table S1: Single cell datasets. In each, the number of genes was approximately 30,000.
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4 Supplementary Figures
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Suppl. Figure S1: Extension of Figure 1 with three additional datasets: PBMC4k, Brain20k, and PBMC68k. edgeR
and DESeq2 aborted the computation on the PBMC68k dataset because the available memory of 250GB was not
enough. The runtime on the Mouse Gastrulation dataset is larger compared with the other three datasets, because
a more complex experimental design was fitted. It took into account the mutation status of the tomato gene, the
developmental stage, and the sequencing pool, which resulted in 5 covariates in the design matrix. The experimental
design for the Brain20k dataset accounted for the mouse that was sequenced (2 covariates). For the PBMC4k and
PBMC68k, we used an intercept-model (1 covariate).

4



10000 20000 30000

1

5

9

13

1.0 3.0 5.5 8.0 10.0

Number of Genes

Relative Number of Genes

R
el

at
iv

e 
R

un
tim

e
Runtime vs Number of GenesA

1000 2000 3000 4000

1

5

9

13

17

21

1 2 3 4 5 6 7 8

Number of Cells

Relative Number of Cells

R
el

at
iv

e 
R

un
tim

e

Runtime vs Number of CellsB

1

6

11

16

21

26

1 6 11 16 21
Number of Covariates

R
el

at
iv

e 
R

un
tim

e

Runtime vs Number of Covariates
in Design Matrix

C

DESeq2 edgeR glmGamPoi

Suppl. Figure S2: Line plots that show the increasing runtime of edgeR, DESeq2, and glmGamPoi with A) the number
of genes, B) the number of cells, and C) the number of covariates in the experimental design. The dashed black line
marks the diagonal which implies linear increase of the runtime. The experiments were run on different subsets of the
PBMC4k dataset. The same methodology for measurements as in Figure 1 was used. Panel C) shows only the runtime
for glmGamPoi because the runtime for edgeR and DESeq2 is dominated by the overdispersion estimation, which masks
the effect of the increasing number of covariates. Although asymptotically the scaling with the number of covariates is
cubic in glmGamPoi, because of the QR decomposition of the design matrix, for the limited number of covariates that
are typically encountered in real-world experiments, the scaling is well approximated by a linear function.
The plot shows the relative durations, for reference we also provide the absolute runtime: In Panel A, a relative runtime
of 1 corresponds to 12, 67, and 146 seconds for glmGamPoi, edgeR, and DESeq2, respectively. In Panel B, a relative
runtime of 1 corresponds to 33, 75, and 88 seconds for glmGamPoi, edgeR, and DESeq2, respectively. In Panel C, a
relative runtime of 1 corresponds to 19 seconds for glmGamPoi.
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Suppl. Figure S3: Scatter plots on a log-log scale that compare the genewise dispersion estimates of DESeq2 and
edgeR against glmGamPoi. A small jitter is added to each point to avoid overplotting. All methods optimize the same
Cox-Reid adjusted Gamma-Poisson profile likelihood. This means that the best algorithm given the same data is the
one that achieves the largest likelihood. The grey points show genes for which the likelihood was approximately equal
(i.e. within ±0.001). glmGamPoi achieved a larger likelihood for 14,675 / 1,958 (DESeq2 / edgeR) genes (purple), an
equivalent likelihood for 4,698 / 17,385 genes (grey), and had a smaller likelihood for 400 / 430 genes (orange). The
dashed lines mark the diagonal of the plot.
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Suppl. Figure S4: Scatter plots that compare the estimates of the intercept (one column in the Beta matrix) and the
dispersion on the PBMC4k dataset for DESeq2, DESeq2 calling glmGamPoi, and edgeR against glmGamPoi. The
color of the points shows the density of points in the area. The dashed diagonal line marks the diagonal where the two
estimates are identical. The density for the color is normalized within each plot. Note that the dispersion estimates of
edgeR are the shrunken gene-wise estimates. This is because edgeR does not provide a straightforward way to extract
the maximum likelihood estimates.
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Suppl. Figure S5: Scatter plots that compare the estimates of the tomato coefficient (one column in the Beta matrix),
the dispersion, and the p-value from the test for differential expression on the Mouse Gastrulation dataset for DESeq2,
DESeq2 calling glmGamPoi, and edgeR against glmGamPoi. Otherwise it has the same structure as Supplementary
Figure S4.
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Suppl. Figure S6: Scatter plots that compare the estimates of the MouseA coefficient (one column in the Beta matrix),
the dispersion, and the p-value from the test for differential expression on the Brain20k dataset for DESeq2, DESeq2
calling glmGamPoi, and edgeR against glmGamPoi. Otherwise it has the same structure as Supplementary Figure S4.
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Suppl. Figure S7: Comparison of the p-values calculated with the likelihood ratio test of DESeq2 and the quasi-likelihood
ratio test of glmGamPoi. A) shows the differences on the mouse gastrulation knockout dataset. B) shows the difference
on the Brain20k dataset. The scatter plots on the left show the p-values for the full vs. the reduced design on a
double-logarithmic scale. Three exemplary genes with similar p-value are highlighted in purple and three genes with
very different p-values in orange. Their counts are shown on the right. The red lines show per-group mean.
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