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†INFN, Dipartimento di Fisica, Università di Roma “Tor Vergata”, Via della Ricerca

Scientifica 1, 00133 Roma, Italy

‡Dipartimento di Scienza dei Materiali, Università degli Studi di Milano - Bicocca, Via
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Experimental methods

Atomic force microscopy (AFM) images are collected in intermittent-contact mode in air with

a Nanoscope V MultiMode (Bruker) using silicon probes (force constant 40 N/m, resonance

frequency 300 kHz, tip radius 8 nm) with a resolution of 512× 512 pixels.

Polarized optical absorption measurements are performed at normal incidence in the

spectral range from 1.7 to 3.6 eV by using a Perkin-Elmer Lambda900 spectrometer, equipped

with a depolarizer and Glan-Taylor calcite polarizers, with a light spot size of about 5 mm2.

Plots of the molecular and crystal structure were produced with Mercury CSD 3.7.1

Experimental configuration in optical measurements

The absorption spectra reported in Figure 1e in the main text are collected on a 1 nm thick

ZnTPP film. These spectra are a good approximation of those of a (100)-oriented ZnTPP

single crystal when the light beam is normal to (100)ZnTPP surface (thus, light propagates

along the a∗ZnTPP axis) and is linearly polarized with the electric field E parallel and or-

thogonal to [001]ZnTPP (see Figure S1), notwithstanding (100)- and (100)-oriented ZnTPP

crystals could coexist on KAP surface. The reason can be understood looking at Figure S2,

where a view along the a∗ZnTPP axis for (100)- and (100)-oriented is reported together with

the directions of E of polarized light used for collecting spectra. The X (X ′) and Y (Y ′) di-

rections in (100)- [(100)-] oriented ZnTPP crystals reported in Figure S2 are the orthogonal

projections onto the molecular plane of the directions connecting the opposite nitrogen atoms

along which the optical spectra of the isolated molecule with the conformation assumed in

the crystal have been computed (see Figure 3c in the main text). At normal incidence, the

projections of X and Y directions on the sample surface are connected to X ′ and Y ′ by

means of a C2 axis along cZnTPP axis. It is therefore obvious that at normal incidence no

differences could be observed between the optical response of a (100)-oriented ZnTPP single

crystal or a couple of crystals oriented like those reported in Figure S2 (both present in our
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samples), when incident light is polarized along and perpendicularly to the cZnTPP axis. Note

that the above approximation fails under any other configurations (e.g. different directions

of light polarization at normal incidence or oblique incidence measurements).

Figure S1: Sketch of the experimental configuration of the optical measurements at normal
incidence. View of the crystal (one layer) along a∗ZnTPP, which is also the direction of light
propagation. The directions of light polarization are also reported.

Figure S2: View along a∗ZnTPP for (100)- and (100)-oriented ZnTPP crystals. For simplicity,
just one unit cell is reported. X and Y axes (the same also reported in Figure 1 in the
main text) are those used for computing the optical spectra of the isolated molecule with
the conformation assumed in the crystal.

S3



Theoretical Methods

The quantum-ESPRESSO package2,3 is used for DFT simulations while all the MBPT cal-

culations are done using Yambo.4 We refer the reader to two previous papers on metal-free

meso-tetraphenyl porphyrin (H2TPP) where a similar theoretical/computational approach

and numerical implementation have been used.5,6

The DFT calculations are based on plane-wave expansion and norm-conserving pseu-

dopotentials and use the generalized gradient approximation (PBE).7 A semi-empirical van

der Waals correction8 is added in the exchange-correlation term in order to obtain the re-

laxed atomic structure of the ZnTPP crystal, where as discussed in the main text, the lattice

parameters are taken from experimental data. Van der Waals corrections are not used in

calculations of isolated molecules. A cutoff of 70 Ry is used. Systems are modelled using

periodic supercells with k-point grids of 4 × 4 × 4 and Γ point only for the crystal and

isolated molecule respectively. A denser grid in the π-stacking direction 3× 3× 6 has been

used to plot the excitonic wavefunctions. On top of the structural relaxation simulations,

self-consistent and non-self consistent calculations are performed for the gas and solid phases.

This allows us to obtain not only the occupied but also a high number of Kohn-Sham empty

states needed for the excited-state simulations (up to 15 eV above the highest occupied

state). To provide a good estimation of the electronic levels (bandstructure), the second

step consists in carrying out GW calculations within a perturbative scheme and using the

plasmon-pole approximation for the inverse dielectric matrix.9 For the isolated molecule, due

to the high computational cost, we limit the calculation to one-shot G0W0 approach. For the

ZnTPP crystal that is the main phase of interest here, we instead apply a more expensive

self-consistent GW approach by updating the energies in both G and W . This approach has

been shown to improve the agreement of the energetic position of the electronic states with

respect to experiment in other organic compounds, as well.10
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The quasi-particle energies are obtained as:

EQP
i = EKS

i +
1

1− βi
〈ϕKSi |Σ(EKS

i )− Vxc|ϕKSi 〉, (1)

where the index i runs over the occupied (holes h) and unoccupied (electrons e) states. |ϕKSi 〉

are the Kohn-Sham eigenfunctions, βi is given by βi = 〈ϕKSi |dΣ/dE|EKS
i
|ϕKSi 〉, i.e., the linear

coefficient in the energy expansion of the self-energy Σ, which is itself the product of the

Green’s function G times the screened Coulomb interaction W obtained within the random

phase approximation (RPA). Vxc is the DFT exchange-correlation potential. For the isolated

molecule, a box-like cutoff in the long-range Coulomb potential is used in both GW and

Bethe-Salpeter equation (BSE) calculations, in order to simulate truly isolated molecular

excited states.4,11

The optical spectra are calculated by solving the Bethe-Salpeter equation which allows

to take into account local-field and excitonic effects at the same time. By expanding the

states over the Kohn-Sham basis, the solution of the BSE can be mapped onto an eigenvalue

problem for the excitonic Hamiltonian.12,13 Following similar notation as Grüning et al.,14

we can write this matrix in the Fock space of electron-hole (eh) pairs |eh〉 and antipairs |he〉

as:

Hexc =

 Hres Hcoupl

−H∗coupl −H∗res

 , (2)

where the upper left (lower right) is called the resonant (antiresonant) block, is Hermitian

and is defined as

Hres = (EQP
e − EQP

h )δe,e′δh,h′ + 〈eh|K|e′h′〉 (3)

whereK = W−2v̄ is the excitonic kernel, withW and v̄ being the screened and bare Coulomb

interaction without the long-range part, and the factor 2 comes from the spin-degeneracy.12

The coupling part Hcoupl = 〈eh|K|h′e′〉 is symmetric and describes the interaction between

the resonant and antiresonant blocks, or in other words, between the eh pairs at positive and
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negative (antipairs) energies. Here, electron-hole antipairs are denoted by h′e′ while EQP
h ,

|h〉 (EQP
e , |e〉) refer to quasi-particle energies and eigenfunctions of occupied (unoccupied)

states respectively. Starting from the excitonic Hamiltonian Hexc, it can be shown12 that

the photo-absorption cross section is proportional to

σ(ω) ∝ Im

(
〈0|~ξ · ~D 1

(ω −Hexc + iO+)
~ξ · ~D|0〉

)
(4)

= Im

(
〈P | 1

(ω −Hexc + iO+)
|P 〉
)

(5)

where |0〉 is the ground-state wavefunction, ~ξ is the unit vector in the direction of the electric

field of the polarized light and ~D is the electronic dipole, while |P 〉 = ~ξ · ~D|0〉. Using the

spectral representation, the cross-section can be rewritten in terms of excitonic eigenvalues

Eexc
λ and eigenvectors Aehλ (which are obtained diagonalizing the excitonic matrix Hexc) as:

σ(ω) ∝
∑
λ

|〈λ|~ξ · ~D|0〉|2δ(h̄ω − Eexc
λ ) (6)

=
∑
λ

|
∑
eh

〈e|~ξ · ~D|h〉Aehλ |2δ(h̄ω − Eexc
λ ) (7)

where |λ〉 =
∑

ehA
eh
λ |eh〉 is the excitonic state expressed as linear combination of independent

quasi-electron and holes states. It is then clear that the optical matrix elements, when

local-fields and excitonic effects are taken into account, are due to a mixing of independent

quasi-particle transitions mediated by the excitonic eigenvectors Aehλ .

BSE spectra: convergence, excitonic oscillator strengths, and Tamm-

Dancoff approximation

Figure 3d in the main manuscript demonstrates the error induced in the peak energy position

for E || [001]ZnTPP when the e-h states to build up the excitonic Hamiltonian (see Eq. 2 and

3) is truncated. Figure S3 illustrates the effect on the overall anisotropy: the spacing between
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the peaks increases to 0.43 eV compared with 0.2 eV reported in Figure 3a at full convergence,

and the lineshape and relative intensities are distinctly modified.

Figure S3: Absorption spectra of crystalline ZnTPP computed considering only the four a
bands of Figure 2a.

Figure S4 reports the calculated oscillator strengths of all excitonic states produced by

diagonalizing the excitonic matrix. It shows that several excitons, in addition to B∗ and

B∗1 reported in Figure 3a, are present in the B -band region. Although most of these are

optically inactive at the level of theoretical approximation used in this work (i.e. where

no coupling with vibrational phonon-modes is considered), they probably play a role in the

exciton dynamics and transport properties of the material.

It is worth pointing out that the Tamm-Dancoff approximation (TDA), which consists in

assuming that the coupling blocks are equal to zero, is generally a very good approximation

for extended or periodic materials. Nevertheless, since this term is actually dominated by the

unscreened Coulomb potential v, which is a measure of the inhomogeneity of the electronic

density, the TDA fails for systems where the electronic density is strongly inhomogeneous,

i.e. nanostructures, molecules and molecular crystals where van der Waals interactions are

mainly responsible for intermolecular bonds.
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Figure S4: Absorption spectra of crystalline ZnTPP showing oscillator strengths of all exci-
tons.

Figure S5: Exciton amplitudes Aλ(ω) corresponding to the Q,B and B1 excitons.

As discussed in Ref.14 the failure of the TDA can be quantified and understood by looking
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at the amplitude functions defined as

Aλ(ω) =
∑

η=eh,he

|〈η|λ〉|2δ(ω − Eη). (8)

Indeed if contributions to a given exciton λ occur also from eh antipairs, peaks at negative

energies appear.

We look then at the amplitudes Aλ(ω) of the three main excitons Q,B,B1, which are

reported in Figure S5, where a contribution at negative energies (he antipair transitions) is

clearly visible. This explains clearly the need to include the coupling parts in the excitonic

Hamiltonian.
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