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Supplementary Materials 

 

 

Supplementary methods  

RNA extraction and microarray data analysis 

Total RNA was extracted using the QIAGEN FFPE RNeasy kit (QIAGEN GmbH, 

Germany). RNA quality and quantity were analyzed using an Agilent Bioanalyzer 2100 

(Agilent Technologies, Santa Clara, USA) and a Nanodrop 2000 spectrophotometer 

(ThermoFisher Scientific, Waltham, MA, USA). After amplification, fragmentation, and 

labeling with Ovation FFPE WTA System (NuGEN, San Carlos, CA, USA) and Encore Biotin 

Module (NuGEN), the total RNA was then hybridized to Affymetrix HTA 2.0 (Affymetrix, 

Santa Clara, CA, USA) using the GeneChip® Hybridization, Wash and Stain Kit (Affymetrix) 

following the manufacturer’s instructions. All arrays were scanned with the GeneChip® 

Scanner 3000 (Affymetrix), and raw data were obtained using Command Console Software 

4.0 (Affymetrix) with the default settings. 

Affymetrix HTA 2.0 has high coverage of probes that can measure coding and noncoding 

transcripts, containing >6.0 million probes covering > 200,000 coding transcripts and > 40,000 

non-coding transcripts. This array has ten probes per exon and four probes per exon-exon 

splice junction, thus having an average of 100 probes cover one transcript. The raw microarray 

data was normalized using the Transcriptome Analysis Console (version 4.0.1) with exon-level 

SST-RMA. After normalization, 893,193 of 913,035 probes remained based on the transcript 

accession numbers. Then, we used the “ComBat” algorithm in SVA package in R language to 

remove batch effects (1). Here, we only included 558,258 probes representing coding probes 

for the subsequent analysis. We then used empirical Bayes (eBayes) statistics in the ‘limma 

package’ to determine which probes were significantly differentially expressed between 

patients with response and non-response to induction chemotherapy (IC) (2), and a total of 

23,024 probes (eBayes P<0.05) were identified for further analysis.  

As RNA extracted from paraffin-embedded samples is highly and randomly fragmented, 

we also performed Fisher’s exact test to confirm whether a transcript was really significantly 

differentially expressed as described in our previous study (3). We first counted the number of 

probes that were designed for each transcript and matched the differentially expressed probes 

to their respective transcripts. Then, the rate of significantly differentially expressed probes of 

each transcript was evaluated by the Fisher’s exact test, and the transcripts with probes that 
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were significantly enriched (Fisher P value <0.05) were screened out. Based on this, we 

obtained a list of 6,343 differentially expressed transcripts (Fisher P value <0.05).  

Meanwhile, we calculated the median of the probe expression values of each transcript 

and defined it as the transcript expression value in each sample. We screened out transcripts 

which were significantly differentially expressed between patients with response and non-

response to IC using the eBayes statistics. We obtained 385 differentially expressed transcripts 

(empirical fold-change ≥1.5 and eBayes P value <0.05). Analyzing together with the above 

Fisher’s exact test, we obtained a total of 185 significantly differentially expressed transcripts 

(empirical fold-change ≥1.5, eBayes P value <0.05, and Fisher P value <0.05). 

To obtain a unique gene list, we selected the representative transcript of a gene according 

to the following criteria: if a gene had only one significantly differentially expressed transcript, 

we selected this transcript; if a gene had two or more significantly differentially expressed 

transcripts, we selected the transcript with the highest fold-change. Then, we obtained a list of 

85 unique genes for further analysis.  

To further identify genes that were most strongly related to the efficacy of IC and narrow 

down the number of the 85 genes for further analysis, we used the least absolute shrinkage and 

selector operation (LASSO) and support vector machine-recursive feature elimination (SVM-

RFE), which are two popular methods for regression with high dimensional predictors (4-6). 

We first performed LASSO algorithm with the ‘glmnet package’ in R, with penalization 

parameter λ selected by a 10-fold cross-validation approach and minimum mean cross-

validated error rule (4). Based on this, we identified 37 candidate genes from the 85 genes. We 

also used SVM-RFE for the candidate gene selection (5). We used SVM-RFE with the ‘e1071 

package’ in R as follows: we trained the SVM classifier, computed the ranking score for each 

factor and then removed the factor with the smallest ranking score. Leave-one-out cross-

validation was used to identify the number of best-ranked features of the SVM-RFE model. 

We then selected the top 31 candidate genes from the 85 genes were the first to appear with an 

accuracy of 95%. Finally, we obtained 43 candidate genes for further analysis through the 

incorporation of genes selected by LASSO and SVM-RFE.  

 

NanoString data analysis 

For the Nanostring nCounter assay, 5 housekeeping genes (B2M, RPLP0, RPL19, PGK1 

and ACTB) were selected, as in previous study (3). 300 ng of RNA was hybridized to the 

NanoString custom codeset, and the subsequent reaction was performed with the nCounter™ 
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Prep Station. The expression counts were obtained using the nCounter™ Digital Analyzer. We 

first calculated the sum counts of the five housekeeping genes and set a minimum count 

threshold of 1000 to filter out samples with low quality as previously described (7). We 

excluded 23 low-quality samples, and 769 samples that passed the quality control step were 

used for further analysis.  

The Nanostring codeset reactions contained 6 positive and 8 negative spike-in controls, 

and these were used for hybridization and background correction. The counts of each sample 

were corrected for hybridization variability across samples by multiplying the mean sum of the 

positive spike-in controls across all of the good-quality samples and dividing by the sum of the 

positive spike-in controls for that sample. Then, the background correction was performed by 

subtracting the average of the negative spike-in controls for that sample.  

We further normalized the measurable gene species that were loaded in each sample by 

dividing the counts by the geometric mean of 5 housekeeping genes in that sample and then 

multiplying by 1000. To exclude genes that were expressed at a level at or close to the 

background level, we selected genes with the following criterion: at least 20% of the samples 

had an expression level greater than the mean plus 2 standard deviations of the normalized 

negative spike-in controls. All 43 genes conformed to these criteria, and their normalized data 

were log2 transformed for further analyses.  

 

Construction of a 6-gene signature 

We performed LASSO logistic regression analysis and decision curve analysis (DCA) to 

select genes to construct a signature to predict the response to IC in the training cohort (3,4,8). 

We used the bootstrap method in the penalized logistic model with the R package glmnet to 

determine the robustness of the 43 candidate genes. A total of 1000 bootstrap samples with a 

sample size of 160 were randomly drawn, with the replacement of data from the training data 

cohort (80 responders and 80 non-responders). For each bootstrap sample, we built a penalized 

logistic model using the one-standard error (1se) value of the penalization parameter λ that 

training with a 10-fold cross-validation approach. We ranked genes by the frequencies at 

which they were included in the bootstrap LASSO models.  

Then, we used DCA, a useful method to evaluate the optimal predictive model, with the 

R package rmda to determinate the net benefit derived from the inclusion of each of the genes 

in turn, according to the order of the bootstrap LASSO frequency. The DCA showed that the 

model with 6 genes was superior to the models with fewer than 6 genes across the 0% to 80% 
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threshold probabilities. Meanwhile, the model with 7 genes did not obtain much more net 

benefit than the models with 6 genes. In addition, we calculated the difference in the areas 

under the receiver operating characteristic curves (AUCs) between adjacent gene models. The 

results showed that the model with 6 genes had the most obvious increase in the AUC 

compared with the models with 1 to 5 genes, and adding genes to the 6-gene model did not 

further increase the AUC obviously. Hence, we included 6 genes in the final prediction model. 

Using the logistic regression method (9), we constructed a gene signature with these 6 genes to 

predict the response to IC in the training cohort.  

  



5 

 

References:  

1. Leek JT, Johnson WE, Parker HS, Jaffe AE, Storey JD. The sva package for removing 

batch effects and other unwanted variation in high-throughput experiments. Bioinformatics. 

2012;28(6): 882-883. 

2. Smyth GK. Linear models and empirical Bayes methods for assessing differential 

expression in microarray experiments. Stat Appl Genet Mol Biol. 2004;3: Article3. 

3. Tang X, Li Y, Liang S, et al. Development and validation of a gene expression-based 

signature to predict distant metastasis in locoregionally advanced nasopharyngeal carcinoma: a 

retrospective, multicentre, cohort study. Lancet Oncol. 2018; 19(3): 382–393. 

4. Tibshirani R. Regression Shrinkage and Selection via the Lasso. J R Stat Soc Series B. 

1996;58: 267–88. 

5. Huang ML, Hung YH, Lee WM, Li RK, Jiang BR. SVM-RFE based feature selection 

and Taguchi parameters optimization for multiclass SVM classifier. Sci World J. 2014;2014: 

795624. 

6. Qiu J, Peng B, Tang Y, et al. CpG methylation signature predicts recurrence in early-

stage hepatocellular carcinoma: results from a multicenter study. J Clin Oncol. 

2017;35(7):734-742. 

7.      Huet S, Tesson B, Jais JP, et al. A gene-expression profiling score for prediction of 

outcome in patients with follicular lymphoma: a retrospective training and validation analysis 

in three international cohorts. Lancet Oncol. 2018;19(4): 549–561. 

8. Vickers AJ, Elkin EB. Decision Curve Analysis: A Novel Method for Evaluating 

Prediction Models. Med Decis Making. 2006;26(6): 565–574. 

9.       Xu R, Wei W, Krawczyk M, et al. Circulating tumour DNA methylation markers for 

diagnosis and prognosis of hepatocellular carcinoma. Nat Mater. 2017;16(11): 1155-1161.  

  



6 

 

Supplementary Table 1: Clinical characteristics of responders or non-responders to induction 

chemotherapy (IC) in the discovery stage 

Variables Responders (n=71)* Non-responders (n=24)* 

Age (y)   

<45 39 (54.9) 14 (58.3) 

≥45 32 (45.1) 10 (41.7) 

Sex   

Male 51 (71.8) 22 (91.7) 

Female 20 (28.2) 2 (8.3) 

T stage   

T2 4 (5.6) 1 (4.2) 

T3 46 (64.8) 15 (62.5) 

T4 21 (29.6) 8 (33.3) 

N stage   

N0 1 (1.4) 1 (4.2) 

N1 27 (38.0) 7 (29.2) 

N2 29 (40.8) 12 (50.0) 

N3 14 (19.7) 4 (16.7) 

TNM stage   

III 41 (57.7) 15 (62.5) 

IV 30 (42.3) 9 (37.5) 

EBV DNA (copies/ml)   

<2000 25 (35.2) 6 (25.0) 

≥2000 43 (60.6) 17 (70.8) 

NA 3 (4.2) 1 (4.2) 

*Data are n (%) unless otherwise stated. TNM: tumor-node-metastasis; EBV: Epstein-Barr 

virus 
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Supplementary Table 2: The NanoString Codeset 

Gene name Flags 
Selected by 

LASSO 

Selected by 

SVM-RFE 
Accession Position 

ACTB HK* 
  

NM_001101.2 1011-1110 

ADTRP 
 

√ √ NM_032744.3 97-196 

AL161418.1 √ 
 

ENST00000640280.1 23-122 

APOO 
 

√ 
 

NM_024122.4 801-900 

ATMIN 
 

√ 
 

NM_015251.2 417-516 

B2M HK 
  

NM_004048.2 236-335 

BCL11A 
 

√ √ NM_018014.3 2585-2684 

C19orf57 
 

√ √ ENST00000585755.1 260-359 

C7orf25 
 

√ √ NM_001099858.1 1075-1174 

CCDC32 
  

√ NM_052849.3 546-645 

CDK5R1 
 

√ √ NM_003885.2 419-518 

FAM96B 
  

√ NR_024525.2 447-546 

DCAF7 
 

√ √ NM_005828.4 831-930 

DOPEY1 
  

√ NM_015018.3 1820-1919 

DSC3 
 

√ 
 

NM_001941.3 6376-6475 

FAM72C 
 

√ √ NM_001346071.1 1096-1195 

FOXO1 
 

√ 
 

NM_002015.3 1527-1626 

GAPT 
 

√ 
 

NM_152687.2 453-552 

GOLGA2 
 

√ 
 

NM_004486.4 68-167 

HLA-DPA1 √ √ NM_033554.3 306-405 

KLRD1 
  

√ NM_007334.2 1253-1352 

LOC102723532 
 

√ XM_017030115.1 748-847 

LOC401040 √ 
 

XM_011512295.1 284-383 

LRRD1 
 

√ 
 

NM_001161528.1 88-187 

NDUFS3 
 

√ √ NM_004551.2 248-347 

NFATC2IP 
 

√ √ NM_032815.3 1681-1780 

NMNAT1 
 

√ √ NM_022787.3 155-254 

OGFRL1 
 

√ √ NM_024576.3 1036-1135 

PGK1 HK 
  

NM_000291.2 1031-1130 

PHLDA3 
 

√ √ NM_012396.3 533-632 

PJA1 
 

√ √ NM_145119.3 952-1051 

PLAC8 
 

√ √ NM_016619.2 211-310 

PRH1 
 

√ √ NM_001291314.1 322-421 

PRMT5 
 

√ √ NM_006109.4 777-876 

PTGS2 
 

√ 
 

NM_000963.1 496-595 

RNF138 
 

√ √ NM_016271.4 463-562 
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Gene name Flags 
Selected by 

LASSO 

Selected by 

SVM-RFE 
Accession Position 

RPL19 HK 
  

NM_000981.3 316-415 

RPLP0 HK 
  

NM_001002.3 251-350 

RSRP1 
 

√ √ NM_020317.4 362-461 

SLC25A27 
 

√ √ NM_004277.4 1481-1580 

SUOX 
 

√ √ NM_000456.2 603-702 

TLR8 
  

√ NM_016610.2 2311-2410 

TMEM64 
 

√ √ NM_001008495.3 998-1097 

TUBA4A 
 

√ 
 

NM_006000.2 645-744 

USP14 
 

√ 
 

NM_005151.3 239-338 

ZNF155 
 

√ √ NM_001260486.1 2209-2308 

ZNF788P 
 

√ √ NM_001348163.1 1991-2090 

ZNF827 
 

√ √ NM_001306215.1 4104-4203 

*HK: housekeeping gene  
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Supplementary Table 3: Bootstrap LASSO analysis to rank 43 candidate genes in order of 

frequency 

Rank Gene Name Frequency 

1 AL161418.1 972 

2 RNF138 961 

3 OGFRL1 935 

4 PTGS2 849 

5 PLAC8 703 

6 LRRD1 679 

7 PHLDA3 674 

8 CDK5R1 633 

9 KLRD1 613 

10 GOLGA2 594 

11 PRMT5 585 

12 ZNF827 579 

13 RSRP1 567 

14 LOC401040 556 

15 CCDC32 553 

16 ZNF788P 518 

17 C7orf25 471 

18 ADTRP 468 

19 ATMIN 411 

20 TMEM64 406 

21 C19orf57 358 

22 DSC3 358 

23 APOO 345 

24 SLC25A27 344 

25 NDUFS3 321 

26 HLA-DPA1 277 

27 GAPT 268 

28 PRH1 254 

29 FAM72C 210 

30 USP14 183 

31 NFATC2IP 165 

32 DCAF7 163 

33 LOC102723532 149 

34 BCL11A 136 

35 NMNAT1 121 

36 PJA1 118 
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Rank Gene Name Frequency 

37 TLR8 103 

38 SUOX 93 

39 TUBA4A 84 

40 FAM96B 46 

41 DOPEY1 39 

42 ZNF155 34 

43 FOXO1 30 
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Supplementary Table 4: Determination of the number of genes included in the signature 

Number of genes 

included 

AUC of the 

gene signature 
ΔAUC* 

1-gene model 0.64 
 

2-gene model 0.69 0.05 

3-gene model 0.74 0.05 

4-gene model 0.79 0.05 

5-gene model 0.79 0.00 

6-gene model 0.87 0.08 

7-gene model 0.87 0.00 

8-gene model 0.88 0.01 

9-gene model 0.87 -0.01 

10-gene model 0.89 0.02 

*ΔAUC = the AUC of the (n+1)-gene model – the AUC of the n-gene model. We included 

genes in the model in the order of the bootstrap LASSO outcome, and the AUC of the 6-gene 

model increased most obviously compared with the models with fewer than 6 genes, and 

further adding genes to the 6-gene model did not dramatically increase the AUC. AUC, area 

under receiver the operating characteristic curves. 
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Supplementary Table 5: Multivariable logistic regression analysis of the 6-gene signature 

with the short-term tumor response to induction chemotherapy (IC) in the training, clinical 

trial, and external independent cohorts. 

  Multivariable analysis 

Cohort OR (95% CI)* P value* 

Training cohort 29.69 (6.11-144.23) <0.001 

Clinical trial cohort 22.68 (2.20-234.42) 0.009 

External independent cohort 21.86 (4.31-111.02) <0.001 

*OR, 95% CI and P values were calculated using an adjusted multivariable logistic regression 

model, including 6-gene signature (no-benefit vs. benefit), age (≥ 45 years vs. < 45 years), sex 

(male vs. female), T stage (T3–4 vs. T1–2), N stage (N2-3 vs. N0-1), EBV DNA (≥ 2000 vs. < 

2000) as covariables. OR, odds ratio; CI, confidence interval.  
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Supplementary Figure 1: Candidate gene selection by two algorithms. 

(A) LASSO algorithm was performed with penalization parameter λ selected by a 10-fold 

cross-validation approach and minimum mean cross-validated error rule. The dotted vertical 

lines represented the optimal values by minimum criteria; (B) LASSO coefficient of the 

variables selected with the minimum criteria. The vertical line was the optimal value by 

minimum criteria and results in 37 non-zero coefficients; (C) SVM-RFE was used to rank 

genes and then leave-one-out cross-validation analyses were performed to calculate the 

accuracy of the SVM-RFE model. The dotted vertical lines represented the including gene 

number that first to appear with an accuracy of 95%; (D) Candidate genes were obtained 

through the incorporation of genes selected by LASSO and SVM-RFE. LASSO, least absolute 

shrinkage and selector operation; SVM-RFE, support vector machine-recursive feature 

elimination; IFS, incremental feature selection. 
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Supplementary Figure 2: Determination of the number of genes included in the signature.  

Decision curve analysis showed that the 6-gene model had the greatest net benefit across the 

0% to 80% threshold probabilities compared with the models with 1 to 5 genes, and adding 

genes to the 6-gene model did not obviously increase the net benefit. 
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Supplementary Figure 3: Prediction of the short-term response to induction chemotherapy by 

the 6-gene signature and each single gene in the training cohort. The 95% CI of the AUC and 

P value were estimated using the bootstrap method. AUC: area under receiver operating 

characteristic curve; CI: confidence interval. 
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Supplementary Figure 4: Kaplan-Meier curves of overall survival according to treatment 

with or without induction chemotherapy (IC) in the benefit or no-benefit groups. 

(A) Benefit group of the training cohort (n=243); (B) No-benefit group of the training cohort 

(n=99); (C) Benefit group of the clinical trial cohort (n=130); (D) No-benefit group of the 

clinical trial cohort (n=57); (E) Benefit group of the external independent cohort (n=170); (F) 

No-benefit group of the external independent cohort (n=70). HR, hazard ratio; CI, confidence 

interval. We calculated P values with the unadjusted log-rank test and hazard ratios (HRs) with 

univariable Cox regression analysis.  
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Supplementary Figure 5: Kaplan-Meier curves of distant failure-free survival according to 

treatment with or without induction chemotherapy (IC) in the benefit or no-benefit groups. 

(A) Benefit group of the training cohort (n=243); (B) No-benefit group of the training cohort 

(n=99); (C) Benefit group of the clinical trial cohort (n=130); (D) No-benefit group of the 

clinical trial cohort (n=57); (E) Benefit group of the external independent cohort (n=170); (F) 

No-benefit group of the external independent cohort (n=70). HR, hazard ratio; CI, confidence 

interval. We calculated P values with the unadjusted log-rank test and hazard ratios (HRs) with 

univariable Cox regression analysis. 


