Supplementary Materials

Supplementary methods

RNA extraction and microarray data analysis

Total RNA was extracted using the QIAGEN FFPE RNeasy kit (QIAGEN GmbH, Germany). RNA quality and quantity were analyzed using an Agilent Bioanalyzer 2100 (Agilent Technologies, Santa Clara, USA) and a Nanodrop 2000 spectrophotometer (ThermoFisher Scientific, Waltham, MA, USA). After amplification, fragmentation, and labeling with Ovation FFPE WTA System (NuGEN, San Carlos, CA, USA) and Encore Biotin Module (NuGEN), the total RNA was then hybridized to Affymetrix HTA 2.0 (Affymetrix, Santa Clara, CA, USA) using the GeneChip® Hybridization, Wash and Stain Kit (Affymetrix) following the manufacturer's instructions. All arrays were scanned with the GeneChip® Scanner 3000 (Affymetrix), and raw data were obtained using Command Console Software 4.0 (Affymetrix) with the default settings.

Affymetrix HTA 2.0 has high coverage of probes that can measure coding and noncoding transcripts, containing >6.0 million probes covering > 200,000 coding transcripts and > 40,000 non-coding transcripts. This array has ten probes per exon and four probes per exon-exon splice junction, thus having an average of 100 probes cover one transcript. The raw microarray data was normalized using the Transcriptome Analysis Console (version 4.0.1) with exon-level SST-RMA. After normalization, 893,193 of 913,035 probes remained based on the transcript accession numbers. Then, we used the "*ComBat*" algorithm in SVA package in R language to remove batch effects (1). Here, we only included 558,258 probes representing coding probes for the subsequent analysis. We then used empirical Bayes (eBayes) statistics in the '*limma* package' to determine which probes were significantly differentially expressed between patients with response and non-response to induction chemotherapy (IC) (2), and a total of 23,024 probes (eBayes P<0.05) were identified for further analysis.

As RNA extracted from paraffin-embedded samples is highly and randomly fragmented, we also performed Fisher's exact test to confirm whether a transcript was really significantly differentially expressed as described in our previous study (3). We first counted the number of probes that were designed for each transcript and matched the differentially expressed probes to their respective transcripts. Then, the rate of significantly differentially expressed probes of each transcript was evaluated by the Fisher's exact test, and the transcripts with probes that

were significantly enriched (Fisher *P* value <0.05) were screened out. Based on this, we obtained a list of 6,343 differentially expressed transcripts (Fisher *P* value <0.05).

Meanwhile, we calculated the median of the probe expression values of each transcript and defined it as the transcript expression value in each sample. We screened out transcripts which were significantly differentially expressed between patients with response and nonresponse to IC using the eBayes statistics. We obtained 385 differentially expressed transcripts (empirical fold-change ≥ 1.5 and eBayes *P* value <0.05). Analyzing together with the above Fisher's exact test, we obtained a total of 185 significantly differentially expressed transcripts (empirical fold-change ≥ 1.5 , eBayes *P* value <0.05, and Fisher *P* value <0.05).

To obtain a unique gene list, we selected the representative transcript of a gene according to the following criteria: if a gene had only one significantly differentially expressed transcript, we selected this transcript; if a gene had two or more significantly differentially expressed transcripts, we selected the transcript with the highest fold-change. Then, we obtained a list of 85 unique genes for further analysis.

To further identify genes that were most strongly related to the efficacy of IC and narrow down the number of the 85 genes for further analysis, we used the least absolute shrinkage and selector operation (LASSO) and support vector machine-recursive feature elimination (SVM-RFE), which are two popular methods for regression with high dimensional predictors (4-6). We first performed LASSO algorithm with the 'glmnet package' in R, with penalization parameter λ selected by a 10-fold cross-validation approach and minimum mean cross-validated error rule (4). Based on this, we identified 37 candidate genes from the 85 genes. We also used SVM-RFE for the candidate gene selection (5). We used SVM-RFE with the 'e1071 package' in R as follows: we trained the SVM classifier, computed the ranking score for each factor and then removed the factor with the smallest ranking score. Leave-one-out cross-validation was used to identify the number of best-ranked features of the SVM-RFE model. We then selected the top 31 candidate genes from the 85 genes were the first to appear with an accuracy of 95%. Finally, we obtained 43 candidate genes for further analysis through the incorporation of genes selected by LASSO and SVM-RFE.

NanoString data analysis

For the Nanostring nCounter assay, 5 housekeeping genes (B2M, RPLP0, RPL19, PGK1 and ACTB) were selected, as in previous study (3). 300 ng of RNA was hybridized to the NanoString custom codeset, and the subsequent reaction was performed with the nCounter[™]

Prep Station. The expression counts were obtained using the nCounter[™] Digital Analyzer. We first calculated the sum counts of the five housekeeping genes and set a minimum count threshold of 1000 to filter out samples with low quality as previously described (7). We excluded 23 low-quality samples, and 769 samples that passed the quality control step were used for further analysis.

The Nanostring codeset reactions contained 6 positive and 8 negative spike-in controls, and these were used for hybridization and background correction. The counts of each sample were corrected for hybridization variability across samples by multiplying the mean sum of the positive spike-in controls across all of the good-quality samples and dividing by the sum of the positive spike-in controls for that sample. Then, the background correction was performed by subtracting the average of the negative spike-in controls for that sample.

We further normalized the measurable gene species that were loaded in each sample by dividing the counts by the geometric mean of 5 housekeeping genes in that sample and then multiplying by 1000. To exclude genes that were expressed at a level at or close to the background level, we selected genes with the following criterion: at least 20% of the samples had an expression level greater than the mean plus 2 standard deviations of the normalized negative spike-in controls. All 43 genes conformed to these criteria, and their normalized data were log2 transformed for further analyses.

Construction of a 6-gene signature

We performed LASSO logistic regression analysis and decision curve analysis (DCA) to select genes to construct a signature to predict the response to IC in the training cohort (3,4,8). We used the bootstrap method in the penalized logistic model with the R package *glmnet* to determine the robustness of the 43 candidate genes. A total of 1000 bootstrap samples with a sample size of 160 were randomly drawn, with the replacement of data from the training data cohort (80 responders and 80 non-responders). For each bootstrap sample, we built a penalized logistic model using the one-standard error (1se) value of the penalization parameter λ that training with a 10-fold cross-validation approach. We ranked genes by the frequencies at which they were included in the bootstrap LASSO models.

Then, we used DCA, a useful method to evaluate the optimal predictive model, with the R package *rmda* to determinate the net benefit derived from the inclusion of each of the genes in turn, according to the order of the bootstrap LASSO frequency. The DCA showed that the model with 6 genes was superior to the models with fewer than 6 genes across the 0% to 80%

threshold probabilities. Meanwhile, the model with 7 genes did not obtain much more net benefit than the models with 6 genes. In addition, we calculated the difference in the areas under the receiver operating characteristic curves (AUCs) between adjacent gene models. The results showed that the model with 6 genes had the most obvious increase in the AUC compared with the models with 1 to 5 genes, and adding genes to the 6-gene model did not further increase the AUC obviously. Hence, we included 6 genes in the final prediction model. Using the logistic regression method (9), we constructed a gene signature with these 6 genes to predict the response to IC in the training cohort.

References:

1. Leek JT, Johnson WE, Parker HS, Jaffe AE, Storey JD. The sva package for removing batch effects and other unwanted variation in high-throughput experiments. *Bioinformatics*. 2012;28(6): 882-883.

2. Smyth GK. Linear models and empirical Bayes methods for assessing differential expression in microarray experiments. *Stat Appl Genet Mol Biol*. 2004;3: Article3.

3. Tang X, Li Y, Liang S, et al. Development and validation of a gene expression-based signature to predict distant metastasis in locoregionally advanced nasopharyngeal carcinoma: a retrospective, multicentre, cohort study. *Lancet Oncol.* 2018; 19(3): 382–393.

4. Tibshirani R. Regression Shrinkage and Selection via the Lasso. *J R Stat Soc Series B*. 1996;58: 267–88.

5. Huang ML, Hung YH, Lee WM, Li RK, Jiang BR. SVM-RFE based feature selection and Taguchi parameters optimization for multiclass SVM classifier. *Sci World J*. 2014;2014: 795624.

6. Qiu J, Peng B, Tang Y, et al. CpG methylation signature predicts recurrence in earlystage hepatocellular carcinoma: results from a multicenter study. *J Clin Oncol*. 2017;35(7):734-742.

7. Huet S, Tesson B, Jais JP, et al. A gene-expression profiling score for prediction of outcome in patients with follicular lymphoma: a retrospective training and validation analysis in three international cohorts. *Lancet Oncol.* 2018;19(4): 549–561.

8. Vickers AJ, Elkin EB. Decision Curve Analysis: A Novel Method for Evaluating Prediction Models. *Med Decis Making*. 2006;26(6): 565–574.

9. Xu R, Wei W, Krawczyk M, et al. Circulating tumour DNA methylation markers for diagnosis and prognosis of hepatocellular carcinoma. *Nat Mater*. 2017;16(11): 1155-1161.

5

Variables	Responders (n=71)*	Non-responders (n=24)*
Age (y)		
<45	39 (54.9)	14 (58.3)
≥45	32 (45.1)	10 (41.7)
Sex		
Male	51 (71.8)	22 (91.7)
Female	20 (28.2)	2 (8.3)
T stage		
Τ2	4 (5.6)	1 (4.2)
Τ3	46 (64.8)	15 (62.5)
Τ4	21 (29.6)	8 (33.3)
N stage		
N0	1 (1.4)	1 (4.2)
N1	27 (38.0)	7 (29.2)
N2	29 (40.8)	12 (50.0)
N3	14 (19.7)	4 (16.7)
TNM stage		
III	41 (57.7)	15 (62.5)
IV	30 (42.3)	9 (37.5)
EBV DNA (copies/ml)		
<2000	25 (35.2)	6 (25.0)
≥2000	43 (60.6)	17 (70.8)
NA	3 (4.2)	1 (4.2)

Supplementary Table 1: Clinical characteristics of responders or non-responders to induction chemotherapy (IC) in the discovery stage

*Data are n (%) unless otherwise stated. TNM: tumor-node-metastasis; EBV: Epstein-Barr virus

Gene name	Flags	Selected by	Selected by	Accession	Position
	C	LASSO	SVM-RFE		
ACTB	HK*			NM_001101.2	1011-1110
ADTRP		\checkmark	\checkmark	NM_032744.3	97-196
AL161418.1		\checkmark		ENST00000640280.1	23-122
APOO		\checkmark		NM_024122.4	801-900
ATMIN		\checkmark		NM_015251.2	417-516
B2M	HK			NM_004048.2	236-335
BCL11A		\checkmark	\checkmark	NM_018014.3	2585-2684
C19orf57		\checkmark	\checkmark	ENST00000585755.1	260-359
C7orf25		\checkmark	\checkmark	NM_001099858.1	1075-1174
CCDC32			\checkmark	NM_052849.3	546-645
CDK5R1		\checkmark	\checkmark	NM_003885.2	419-518
FAM96B			\checkmark	NR_024525.2	447-546
DCAF7		\checkmark	\checkmark	NM_005828.4	831-930
DOPEY1			\checkmark	NM_015018.3	1820-1919
DSC3		\checkmark		NM_001941.3	6376-6475
FAM72C		\checkmark	\checkmark	NM_001346071.1	1096-1195
FOXO1		\checkmark		NM_002015.3	1527-1626
GAPT		\checkmark		NM_152687.2	453-552
GOLGA2		\checkmark		NM_004486.4	68-167
HLA-DPA1		\checkmark	\checkmark	NM_033554.3	306-405
KLRD1			\checkmark	NM_007334.2	1253-1352
LOC102723532			\checkmark	XM_017030115.1	748-847
LOC401040		\checkmark		XM_011512295.1	284-383
LRRD1		\checkmark		NM_001161528.1	88-187
NDUFS3		\checkmark	\checkmark	NM_004551.2	248-347
NFATC2IP		\checkmark	\checkmark	NM_032815.3	1681-1780
NMNAT1		\checkmark	\checkmark	NM_022787.3	155-254
OGFRL1		\checkmark	\checkmark	NM_024576.3	1036-1135
PGK1	HK			NM_000291.2	1031-1130
PHLDA3		\checkmark	\checkmark	NM_012396.3	533-632
PJA1		\checkmark	\checkmark	NM_145119.3	952-1051
PLAC8		\checkmark	\checkmark	NM_016619.2	211-310
PRH1		\checkmark	\checkmark	NM_001291314.1	322-421
PRMT5		\checkmark	\checkmark	NM_006109.4	777-876
PTGS2		\checkmark		NM_000963.1	496-595
RNF138			\checkmark	NM_016271.4	463-562

Supplementary Table 2: The NanoString Codeset

Gene name Flags	Floor	Selected by	Selected by	Accession	Position
	riags	LASSO	SVM-RFE		
RPL19	HK			NM_000981.3	316-415
RPLP0	HK			NM_001002.3	251-350
RSRP1		\checkmark	\checkmark	NM_020317.4	362-461
<i>SLC25A27</i>		\checkmark	\checkmark	NM_004277.4	1481-1580
SUOX		\checkmark	\checkmark	NM_000456.2	603-702
TLR8			\checkmark	NM_016610.2	2311-2410
TMEM64		\checkmark	\checkmark	NM_001008495.3	998-1097
TUBA4A		\checkmark		NM_006000.2	645-744
USP14		\checkmark		NM_005151.3	239-338
ZNF155		\checkmark	\checkmark	NM_001260486.1	2209-2308
ZNF788P		\checkmark	\checkmark	NM_001348163.1	1991-2090
ZNF827		\checkmark	\checkmark	NM_001306215.1	4104-4203

*HK: housekeeping gene

Supplementary Table 3: Bootstrap LASSO analysis to rank 43 candidate genes in order of frequency

Rank	Gene Name	Frequency
1	AL161418.1	972
2	RNF138	961
3	OGFRL1	935
4	PTGS2	849
5	PLAC8	703
6	LRRD1	679
7	PHLDA3	674
8	CDK5R1	633
9	KLRD1	613
10	GOLGA2	594
11	PRMT5	585
12	ZNF827	579
13	RSRP1	567
14	LOC401040	556
15	CCDC32	553
16	ZNF788P	518
17	C7orf25	471
18	ADTRP	468
19	ATMIN	411
20	TMEM64	406
21	C19orf57	358
22	DSC3	358
23	APOO	345
24	SLC25A27	344
25	NDUFS3	321
26	HLA-DPA1	277
27	GAPT	268
28	PRH1	254
29	FAM72C	210
30	USP14	183
31	NFATC2IP	165
32	DCAF7	163
33	LOC102723532	149
34	BCL11A	136
35	NMNAT1	121
36	PJA1	118

37 TLR8 103 38 SUOX 93 39 TUBA4A 84 40 FAM96B 46 41 DOPEY1 39 42 ZNF155 34	Rank	Gene Name	Frequency
38 SUOX 93 39 TUBA4A 84 40 FAM96B 46 41 DOPEY1 39 42 ZNF155 34	37	TLR8	103
39 TUBA4A 84 40 FAM96B 46 41 DOPEYI 39 42 ZNF155 34	38	SUOX	93
40 FAM96B 46 41 DOPEY1 39 42 ZNF155 34	39	TUBA4A	84
41 DOPEYI 39 42 ZNF155 34	40	FAM96B	46
42 <i>ZNF155</i> 34	41	DOPEY1	39
	42	ZNF155	34
43 <i>FOXO1</i> 30	43	FOXO1	30

Number of genes	AUC of the	
included	gene signature	AACC
1-gene model	0.64	
2-gene model	0.69	0.05
3-gene model	0.74	0.05
4-gene model	0.79	0.05
5-gene model	0.79	0.00
6-gene model	0.87	0.08
7-gene model	0.87	0.00
8-gene model	0.88	0.01
9-gene model	0.87	-0.01
10-gene model	0.89	0.02

Supplementary Table 4: Determination of the number of genes included in the signature

 $\Delta AUC =$ the AUC of the (n+1)-gene model – the AUC of the n-gene model. We included genes in the model in the order of the bootstrap LASSO outcome, and the AUC of the 6-gene model increased most obviously compared with the models with fewer than 6 genes, and further adding genes to the 6-gene model did not dramatically increase the AUC. AUC, area under receiver the operating characteristic curves. **Supplementary Table 5:** Multivariable logistic regression analysis of the 6-gene signature with the short-term tumor response to induction chemotherapy (IC) in the training, clinical trial, and external independent cohorts.

	Multivariable	analysis
Cohort	OR (95% CI)*	P value*
Training cohort	29.69 (6.11-144.23)	< 0.001
Clinical trial cohort	22.68 (2.20-234.42)	0.009
External independent cohort	21.86 (4.31-111.02)	< 0.001

*OR, 95% CI and *P* values were calculated using an adjusted multivariable logistic regression model, including 6-gene signature (no-benefit *vs.* benefit), age (\geq 45 years *vs.* < 45 years), sex (male *vs.* female), T stage (T3–4 *vs.* T1–2), N stage (N2-3 *vs.* N0-1), EBV DNA (\geq 2000 *vs.* < 2000) as covariables. OR, odds ratio; CI, confidence interval.

Supplementary Figure 1: Candidate gene selection by two algorithms.

(A) LASSO algorithm was performed with penalization parameter λ selected by a 10-fold cross-validation approach and minimum mean cross-validated error rule. The dotted vertical lines represented the optimal values by minimum criteria; (B) LASSO coefficient of the variables selected with the minimum criteria. The vertical line was the optimal value by minimum criteria and results in 37 non-zero coefficients; (C) SVM-RFE was used to rank genes and then leave-one-out cross-validation analyses were performed to calculate the accuracy of the SVM-RFE model. The dotted vertical lines represented the including gene number that first to appear with an accuracy of 95%; (D) Candidate genes were obtained through the incorporation of genes selected by LASSO and SVM-RFE. LASSO, least absolute shrinkage and selector operation; SVM-RFE, support vector machine-recursive feature elimination; IFS, incremental feature selection.

Supplementary Figure 2: Determination of the number of genes included in the signature. Decision curve analysis showed that the 6-gene model had the greatest net benefit across the 0% to 80% threshold probabilities compared with the models with 1 to 5 genes, and adding genes to the 6-gene model did not obviously increase the net benefit.

Supplementary Figure 3: Prediction of the short-term response to induction chemotherapy by the 6-gene signature and each single gene in the training cohort. The 95% CI of the AUC and *P* value were estimated using the bootstrap method. AUC: area under receiver operating characteristic curve; CI: confidence interval.

A Training cohort: benefit group

B Training cohort: no-benefit group

Supplementary Figure 4: Kaplan-Meier curves of overall survival according to treatment with or without induction chemotherapy (IC) in the benefit or no-benefit groups.

(A) Benefit group of the training cohort (n=243); (B) No-benefit group of the training cohort (n=99); (C) Benefit group of the clinical trial cohort (n=130); (D) No-benefit group of the clinical trial cohort (n=57); (E) Benefit group of the external independent cohort (n=170); (F) No-benefit group of the external independent cohort (n=70). HR, hazard ratio; CI, confidence interval. We calculated *P* values with the unadjusted log-rank test and hazard ratios (HRs) with univariable Cox regression analysis.

Supplementary Figure 5: Kaplan-Meier curves of distant failure-free survival according to treatment with or without induction chemotherapy (IC) in the benefit or no-benefit groups.

(A) Benefit group of the training cohort (n=243); (B) No-benefit group of the training cohort (n=99); (C) Benefit group of the clinical trial cohort (n=130); (D) No-benefit group of the clinical trial cohort (n=57); (E) Benefit group of the external independent cohort (n=170); (F) No-benefit group of the external independent cohort (n=70). HR, hazard ratio; CI, confidence interval. We calculated *P* values with the unadjusted log-rank test and hazard ratios (HRs) with univariable Cox regression analysis.