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Supplementary Note 1: SHG Identification of Crystal Axes 

 

Second harmonic generation (SHG) is a nonlinear optical process in which the frequency of the 

incoming light is doubled through interactions with a crystal structure.  In materials which do not 

possess a center of inversion symmetry, such as Td-MoTe2, the leading-order contribution to the 

SHG is the process of electric-dipole (ED) radiation, which can be expressed as:  

𝑃𝑖(2𝜔) = 𝜒𝑖𝑗𝑘
𝐸𝐷𝐸𝑗(𝜔)𝐸𝑘(𝜔), 

where 𝑃𝑖(2𝜔) is the polarization of the SHG field, 𝐸𝑗,𝑘(𝜔) are components of the incoming 

fundamental electric field, and 𝜒𝑖𝑗𝑘
𝐸𝐷 is the SHG susceptibility tensor of the electric-dipole 

approximation.  Importantly, the general form of 𝜒𝐸𝐷 is determined by the symmetries of the 

crystal.  

 

The rotational anisotropy of the SHG (RA-SHG) was measured using an experimental setup shown 

in Supplementary Fig. 1. The intensity of the reflected SHG, 𝐼2𝜔, was measured as a function of 

the angle 𝜑 between the incident polarization and the x-axis in the lab coordinate frame. The 

incident fundamental and the reflected SHG polarizations can be selected to be either parallel or 

crossed, forming the two polarization channels of the RA-SHG measurements. 

 

 

 
 

 

Supplementary Fig. 1. The RA-SHG setup. Incoming light at 800nm is incident normal to the sample surface and 

the intensity of the reflected SHG light (400nm) is measured as a function of the angle of rotation of the polarization 

about the c-axis of the crystal.  There are two unique polarization channels in this normal incidence geometry – parallel 

and crossed.  Here, the a and b axes of the crystal are indicated as well as the lab-frame coordinates xyz. 

 

The space group of Td-MoTe2 bulk crystals is known to be the non-centrosymmetric Pmn21 with 

a mirror plane normal to the a-axis, a glide plane perpendicular to the b-axis, and a C2 screw axis 

along the c-axis1. Above a critical temperature of 𝑇𝑐  = 250K, the crystal undergoes a structural 

phase transition if the thickness of the layers is above ~12nm to 1T’-MoTe2 in which the C2 axis 

becomes an in-plane screw axis (along the a-axis) and the glide plane disappears (centrosymmetric 

space group P21/m)2. For samples with thickness below ~12nm, the Td structure obeys space group 



Pm with a mirror plane normal to the a-axis because the glide plane is not preserved3. In such thin 

samples, this crystal structure is maintained above 250K4. 

  

At the surface of bulk or thick flake of Td-MoTe2, the out-of-plane 2-fold screw axis is no longer 

present because of the lack of translational symmetry along the surface normal direction. As a 

result, the surface point group for Td-MoTe2 is m, where a single mirror plane is normal to the a-

axis. Optical SHG under the ED approximation is extremely sensitive to the surface contribution, 

and therefore its corresponding susceptibility tensor 𝜒𝑀𝑜𝑇𝑒2
(2)

 should be derived using the surface 

point group m (shown below, where x, y, and z are equivalent to a, b, and c, respectively). The 

rotational anisotropy (RA) of ED SHG can be further computed based on 𝜒𝑀𝑜𝑇𝑒2
(2)

. 
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=
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. 

We can use this to simulate functional forms for the ED RA SHG intensity together with 

𝐼2𝜔(𝜑) = |𝐴𝜒𝑖𝑗𝑘
𝐸𝐷(𝜑)𝑒̂𝑗(𝜔)𝑒̂𝑘(𝜔)|

2
𝐼𝜔𝐼𝜔, 

where 𝐴 is a constant determined by the experimental geometry and 𝑒̂𝑗,𝑘(𝜔) are components of the 

polarization of the incoming fundamental light. Doing this, we achieve the following functional 

forms: 

𝐼𝑀𝑜𝑇𝑒2 ,𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙
2𝜔 = (3𝜒𝑦𝑥𝑥

𝑀𝑜𝑇𝑒2 cos3(𝛼 − 𝜑) sin(𝛼 − 𝜑) + 𝜒𝑦𝑦𝑦
𝑀𝑜𝑇𝑒2 sin3(𝛼 − 𝜑))

2
 

𝐼𝑀𝑜𝑇𝑒2 ,𝑐𝑟𝑜𝑠𝑠𝑒𝑑
2𝜔 =

1

4
cos2(𝛼 − 𝜑) (𝜒𝑦𝑥𝑥

𝑀𝑜𝑇𝑒2 − 𝜒𝑦𝑦𝑦
𝑀𝑜𝑇𝑒2 + (𝜒𝑦𝑦𝑦

𝑀𝑜𝑇𝑒2 − 3𝜒𝑦𝑥𝑥
𝑀𝑜𝑇𝑒2) cos(2(𝛼 − 𝜑)))

2
, 

where α defines the rotation angle of the sample’s mirror plane from the mirror plane normal to 

the a-axis used to derive the model.  It is through this α that the mirror plane orientation of the 

device is determined. 

 

In addition to contributions from the MoTe2 flakes, it was found that the h-BN flakes encapsulating 

the MoTe2 also contributed to the detected SHG.  To account for this, the models for the two 

polarization channels were amended to include contributions from the h-BN by coherently 

summing the SHG electric fields from both materials. The model was derived assuming that the 

mirror plane of the h-BN was rotated from the y-axis by an angle δ and included a complex phase 

𝛾 between the fields from the two materials.  Illustrations of this coherent summing procedure are 

shown in Supplementary Fig. 2. 



 
 

Supplementary Fig. 2. RA-SHG patterns for MoTe2 devices. Patterns for sample thickness a, 127nm and b, 47nm 

shown with the derived fits for the Td-MoTe2 and h-BN contributions as they are coherently summed. The mirror 

planes extracted from the fits using the 𝛼 and 𝛿 parameters are shown by the dashed blue and yellow lines, respectively.  

The shading indicates positive and negative values of the E-fields.  Scaling is in units of counts per second on the 

detector.  The shown examples here are for the parallel channel only for each device. 

 

Few layer h-BN is well-known to exist in the D3h point group5, yielding the SHG susceptibility 

tensor:  
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. 

Coherently summing the fields from the Td-MoTe2 and the h-BN using the procedure outlined 

above yields the following functional forms:  

𝐼𝑃𝑖𝑛−𝑃𝑜𝑢𝑡
2𝜔 (2𝜔) = (3𝜒𝑦𝑥𝑥

𝑀𝑜𝑇𝑒2 𝑐𝑜𝑠2(𝛼 − 𝜑) 𝑠𝑖𝑛(𝛼 − 𝜑) + 𝜒𝑦𝑦𝑦
𝑀𝑜𝑇𝑒2 𝑠𝑖𝑛3(𝛼 − 𝜑))

2

− 2𝜒𝑦𝑦𝑦
ℎ𝐵𝑁 𝑐𝑜𝑠(𝛾) 𝑠𝑖𝑛(𝛼 − 𝜑) (3𝜒𝑦𝑥𝑥

𝑀𝑜𝑇𝑒2 𝑐𝑜𝑠2(𝛼 − 𝜑)

+ 𝜒𝑦𝑦𝑦
𝑀𝑜𝑇𝑒2 𝑠𝑖𝑛2(𝛼 − 𝜑)) 𝑠𝑖𝑛(3(𝛿 − 𝜑)) + 𝜒𝑦𝑦𝑦

ℎ𝐵𝑁2 𝑠𝑖𝑛2(3(𝛿 − 𝜑)), 

𝐼𝑃𝑖𝑛−𝑆𝑜𝑢𝑡
2𝜔 (2𝜔) =

1

4
(𝑐𝑜𝑠2(𝛼 − 𝜑) (𝜒𝑦𝑥𝑥

𝑀𝑜𝑇𝑒2 − 𝜒𝑦𝑦𝑦
𝑀𝑜𝑇𝑒2 + (−3𝜒𝑦𝑥𝑥
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𝑀𝑜𝑇𝑒2) 𝑐𝑜𝑠2(2(𝛼 − 𝜑))

+ 4𝜒𝑦𝑦𝑦
ℎ𝐵𝑁 𝑐𝑜𝑠(𝛾) 𝑐𝑜𝑠(𝛼 − 𝜑)(𝜒𝑦𝑥𝑥

𝑀𝑜𝑇𝑒2 − 𝜒𝑦𝑦𝑦
𝑀𝑜𝑇𝑒2

+ (−3𝜒𝑦𝑥𝑥
𝑀𝑜𝑇𝑒2 + 𝜒𝑦𝑦𝑦

𝑀𝑜𝑇𝑒2) 𝑐𝑜𝑠(2(𝛼 − 𝜑)))𝑐𝑜𝑠(3(𝛿 − 𝜑))

+ 4𝜒𝑦𝑦𝑦
ℎ𝐵𝑁 𝑐𝑜𝑠2(3(𝛿 − 𝜑))). 

Our fittings thus extract the susceptibility tensor elements as well as the angles α, δ and the phase 

𝛾. 



Supplementary Note 2: Measurement of in-plane NLAHE in 2D MoTe2 

 

 
 

Supplementary Fig. 3. Comparison of in-plane and out-of-plane Hall responses. Second harmonic Vxz and Vxy 

measured in 9nm-thick sample for I || a at 2K shows stronger out-of-plane NLAHE strength. 

 

 

Supplementary Note 3: Dependence of NLAHE on Frequency and Current Direction 

 

 
 

Supplementary Fig. 4. Fidelity of NLAHE signal. The c-axis NLAHE does not substantially change with a, 

changing first harmonic frequency or b, exchanging the current leads. 

 

 

Supplementary Note 4: Finite Element Method Simulations of Current and Potential 

Distributions 

 

In order to account for the circular electrode geometry and unique shape of each MoTe2 flake, we 

have performed simulations using the finite element method (FEM) to determine the precise 

current and potential distribution for each individual device. We obtain the in-plane conductivities 

by matching the simulated potential difference with that measured experimentally between the 

particular voltage leads Vxx for a given directional current bias. We then extract the local electric 

field Ex at the vertical contact/junction for that bias. An example simulation is shown below for 

the 70nm device. 



 

 
 

Supplementary Fig. 5. Representative FEM simulations taken of 70nm-thick device. a, Left: optical image of 

device and bias/measurement circuit (I || a). Right: simulated potential distribution corresponding to the circuit 

conditions used to extract the in-plane conductivities and longitudinal electric field locally at the vertical contacts used 

to measure the c-axis NLAHE. b, Same but for I || b. Scale bars are 5μm.  

 

 

Supplementary Note 5: Comparison with WTe2 

 

 
 
Supplementary Fig. 6. Measurement of c-axis NLAHE in bulk-like WTe2. a, Second harmonic Vxz vs. first 

harmonic Vxx
2 for 𝐼 ∥ 𝑎 and 𝐼 ∥ 𝑏 in 130-nm-thick sample at 2K. b, NLAHE strength 𝐸𝑧

2𝜔/(𝐸𝑥
𝜔)2 vs. 𝜎𝑥𝑥/𝜎𝑥𝑥0 for 𝐼 ∥

𝑎 and 𝐼 ∥ 𝑏. c, Hall angle 𝐸𝑧
2𝜔/𝐸𝑥

𝜔 vs 𝐸𝑥
𝜔 for 𝐼 ∥ 𝑎 and 𝐼 ∥ 𝑏. Peak NLAHE strength and Hall angle is less than but 

comparable to 127-nm-thick MoTe2. 

 

 



Supplementary Note 6: MoTe2 Hall Bar Devices 

 

 
 

Supplementary Fig. 7. Measurement of c-axis NLAHE in MoTe2 Hall bars. a, Second harmonic Vxz vs. first 

harmonic Vxx
2 for 𝐼 ∥ 𝑎 in 155-nm- and 126-nm-thick samples at 2K. The response does not change substantially when 

exchanging the current leads. b, NLAHE strength 𝐸𝑧
2𝜔/(𝐸𝑥

𝜔)2 vs. 𝜎𝑥𝑥/𝜎𝑥𝑥0 for 𝐼 ∥ 𝑎 in 126-nm-thick sample. Inset 

shows optical image of device with bottom (top) electrodes traced out in black (red). Scale bar is 5μm. c, Hall angle 

𝐸𝑧
2𝜔/𝐸𝑥

𝜔 vs 𝐸𝑥
𝜔 for 𝐼 ∥ 𝑎 in 155-nm-thick sample. 

 

 

Supplementary Note 7: Determination of the Intrinsic Berry Curvature Contribution to the 

NLAHE strength 

 

In the NLAHE, the vertical Hall current is given by  𝑗𝑧
2𝜔 = 𝜎𝑧𝑧𝐸𝑧

2𝜔 = 2𝜒𝑧𝑥𝑥 (𝐸𝑥
𝜔)2, where the 

intrinsic Berry curvature dipole (𝐷𝑥𝑦) contribution to the nonlinear susceptibility tensor is given 

by: 𝜒𝑧𝑥𝑥 = −𝜀𝑧𝑦𝑥  
𝑒3𝜏

2 ℏ2(1+𝑖𝜔𝜏)
𝐷𝑥𝑦 6. 𝜀𝑧𝑦𝑥 stands for the third-rank Levi-Civita symbol. In the DC 

limit 𝜔𝜏 ≪ 1, we have: 
𝐸𝑧
2𝜔

(𝐸𝑥
𝜔)2
=

1

𝜎𝑧𝑧

𝑒3𝜏

 ℏ2
 𝐷𝑥𝑦.   

 

For each sample, we have extracted the electron and hole densities (n, p) and mobilities (𝜇𝑛, 𝜇𝑝) 

using a two-band model for the ordinary Hall effect and magnetoresistance7. Supplementary Fig. 

8 shows representative data and extracted values for the 127-nm-thick device for 𝐼 ∥ 𝑎. The 

electron and hole densities are nearly balanced. We can then obtain the corresponding scattering 

time 𝜏 =
𝜇 𝑚𝑒𝑓𝑓

𝑒
 , where 𝑚𝑒𝑓𝑓~𝑚0, the bare electron mass7. 𝜏 ranges between ~0.2ps (9nm) to ~1ps 

(127nm).  

 

From the DFT calculations shown in Supplementary Fig. 10, 𝜎𝑧𝑧~0.6𝜎𝑥𝑥 for I ∥ a near the charge 

neutrality point, while the theoretical value for 𝐷𝑥𝑦 is 0.856. From these values, we calculate an 

upper limit of 𝐸𝑧
2𝜔/(𝐸𝑥

𝜔)2 = 1.3 × 10−7m/V across all our different samples. 

 

 



 
 

Supplementary Fig. 8. Representative magnetoresistance and Hall data. Symmetrized magnetoresistance and 

anti-symmetrized Hall measurements taken on 127-nm-thick sample for 𝐼 ∥ 𝑎. Dashed lines are fits to the two-band 

model, yielding electron density (n), hole density (p), electron mobility (𝜇𝑛), and hole mobility (𝜇𝑝). 

 

 

Supplementary Note 8: Measurement of NLAHE at Higher Bias 

 
Supplementary Fig. 9. Measurement of NLAHE at higher bias. 𝐸𝑥

𝜔 , 𝐸𝑥
2𝜔, 𝐸𝑧

2𝜔 , and Hall angle Ez
2ω/Ex

ω vs. 𝐼 ∥ 𝑎 

for 127-nm-thick sample. Solid gray line marks the current at which Hall angle is maximum. Beyond this current, 

𝐸𝑥
𝜔  begins to deviate from a linear dependence (dashed gray line), likely due to sample heating, although 𝐸𝑥

2𝜔 remains 

negligibly small in comparison. 

 

 

Supplementary Note 9: Determination of Conductivity Anisotropy 

 

We performed first-principles calculation to estimate the conductivity anisotropy of bulk Td-phase 

MoTe2. Our calculations were based on the density-functional theory (DFT) in the framework of 

the generalized gradient approximation with the Vienna ab-intio package8,9. The spin-orbit 

n = 0.77 × 1026m−3 

p = 0.78 × 1026m−3 

μn = 0.36m
2V−1s−1 

μp = 0.27m
2V−1s−1 



coupling was included. The longitudinal conductivity was evaluated by the semi-classical transport 

theory using the Boltzmann transport equation. The lattice structure taken as Pmn21 space group 

with a = 3.48Å, b = 6.34Å, and c = 13.88Å.  

 

By assuming the same relaxation time along the different crystal directions, we obtain the ratio 

between out-of-plane conductivity (𝜎𝑐𝑐) and in-plane conductivity (𝜎𝑎𝑎) with respect to the 

chemical potential. Near the charge neutral point (zero energy), the 
𝜎𝑐𝑐

𝜎𝑎𝑎
~0.6. Although it is a 

layered structure, the c-axis conductivity is in the same order of magnitude as the in-plane 

conductivity. 

 

 
 
Supplementary Fig. 10. Calculation of conductivity anisotropy. Calculated ratio between the c-axis conductivity 

(𝜎𝑐𝑐) and in-plane conductivity (𝜎𝑎𝑎) of Td-MoTe2 as a function of the Fermi energy. Zero energy corresponds to the 

charge neutrality point where electrons and holes compensate.  

 

We have also measured experimentally the temperature-dependent resistivity along the a and c 

axes of a separate bulk MoTe2 crystal grown under the same conditions as those used for our 

devices. 𝜌𝑐𝑐  𝜌𝑎𝑎⁄ ~4 across nearly the entire temperature range. 
 

 
Supplementary Fig. 11. Measurement of resistivity anisotropy. a, Schematic of measurement geometry. b, 

Temperature-dependent resistivity for 𝐼 ∥ 𝑎 and 𝐼 ∥ 𝑐. Anisotropy ratio is nearly constant across the entire temperature 

range and is the same order as the calculated value. 
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