
Reviewers' comments: 

Reviewers #2/6 (Remarks to the Author): 

Review for “Reconstructing human regulatory network of cranial neural crest cell and annotating 

variants in developmental context” 

In this paper, Feng et al. utilize previously published expression and chromatin accessibility data to 

reconstruct a gene regulatory network for cranial neural crest cells, termed hReg-CNCC. This network 

links transcription factor binding to regulatory elements to regulated gene expression and proposes a 

hierarchical architecture of transcription factors in a CNCC gene regulatory network. The authors 

further explore the cis regulatory sequences in their network and overlap them with GWAS SNPs, 

disease traits and evolutionarily interesting regions (both deeply conserved and rapidly evolving). The 

authors make some interesting observations in their analysis of available datasets, regarding 

regulation of CNCC enhancers and overlap with human variants. However, we believe the authors 

somewhat overstate a number of observations, and the biological relevance of some conclusions is 

unclear. Furthermore, some key details and comparisons for the model itself need to be provided. We 

outline major and minor concerns below. 

Major concerns 

The authors should provide more detail as to how the interaction strength score in their model is 

calculated, they simply state “which was learned from the PECA model on diverse cellular contexts.” I 

could not find more details on this in the provided reference, and in any case given that it is important 

to the predictions, those details should be explicitly provided in this paper. 

Page 1. The authors claim that in their hReg-CNCC network, transcription factors “hierarchically 

regulate the neural plate border, specification, and migration”. The data they use to generate their 

network is from a single stage of in vitro CNCC differentiation. Therefore, this broad statement is 

unfounded, and should be updated. 

Page 3. The authors perform PECA2 on data from “paired RNA-seq and ATAC-seq data to obtain �

context-specific regulatory networks” – is it a requirement of the analysis that the RNA-seq and ATAC-

seq datasets are from matched samples? If so, did the authors confirm that the samples analysed are 

indeed matched? If this is not a requirement, perhaps rephrase as this is confusing. 

On page 4, the authors state that “Some TFs were less understood in CNCC and we labeled them as 

novel TFs (Figure 3B)”. Many of these TFs have clear links to craniofacial development from human 

Mendelian disorders and from mouse genetics (e.g. ALX1/3/4, PRRX1 etc.) The authors need to 

reclassify these TFs. 

Also page 4, using the human-biased enhancers and human-biased genes as a “gold standard” is a 

reasonable approach, but the authors should also compare their method to the Activity-by-contact 

(ABC) model (Fulco et al, Nature Genetics 2019) of predicting enhancer-gene links, as this method 

also outperforms the nearest gene approach. All the input data to apply the ABC method to CNCCs 

(ATAC-Seq, H3K27ac ChIP-seq, optionally RNA-seq) are available. 

Regarding the classification of TFs into Modules 1 and 2, can the authors verify that this is not driven 

by something as trivial as the information content of the TFs binding site motifs? Low information 

content motifs would be predicted in many/most accessible regions, which would result in broad 

predicted regulation, whereas higher information content would result in a more specific set of 

predicted targets. 

In many places the authors state that a TF regulates a certain gene, e.g. page 7 “TFAP2A regulated 



19/28 of the causal genes; NR2F1 regulated 16/28 of the causal genes; and ALX3/4 regulated 22/28 

of the causal genes”. The authors don’t have any direct functional evidence for these causal 

relationships, and so should take care to reword this through the text. 

In two instances, the authors discuss that a HOX binding site was implicated as an influential motif at 

a regulatory element. It should be noted that the head region is for the most-part HOX-negative, and 

the authors should discuss which factors may bind to these sequences that may be relevant for 

craniofacial development, else the relevance of these binding motifs may be in question. For example, 

on page 7 “On the distal regulatory element, the most important one was “HOXA4_1/encode”, which 

was involved with 18 TFs’ binding” and page 8 “This regulation may be achieved by SNP’s influence on 

the motif binding of HOXB2.” Furthermore, expression data for TFs is included in the author’s model – 

given that HOX genes are very lowly expressed (< 1 TPM)in CNCCs, this suggests a false positive 

prediction of the model -- a TF cannot regulate a target gene if it is not expressed. The authors may 

consider adding a hard expression cutoff for TFs and target genes to their predictions to eliminate 

these cases. 

The authors state “There were two types of pleiotropy: the first was that one SNP locating in a 

regulatory element and regulated multiple genes. For example, rs16985457 was located in 

chr19:54693360-54695240 and regulated CNOT3, PRPF31, and LENG1 (Figure 4E); the second type 

was one SNP regulates a gene and was associated with multiple traits.” It is unclear how the authors 

determined that these SNPs regulate these genes without functional data. Perhaps this is simply a 

misunderstanding and the authors should reword to clarify they mean the regulatory element 

regulates the target gene, and activity may be modulated by the SNP. Furthermore, in the second 

example the ‘multiple traits’ are in fact all related craniofacial measurements, and so probably does 

not count as a case of pleiotropy. 

The statement “helped find causal SNPs, causal genes, and explained how genetic variants get 

involved in regulation” is an over-reach about the conclusions, and should be re-worded. 

There are numerous additional concerns regarding the analysis of facial GWAS SNPs, regardless of the 

precise dataset used (note there is a recent bioRXiv preprint with a larger set of genome-wide 

significant SNPs, https://doi.org/10.1101/2020.05.12.090555). The overall enrichment of facial GWAS 

SNPs within hReg-CNCC regions is weak and seems highly dependent on the GWAS p-value threshold 

used -- why does Figure 4A only go up to -log10(p) of 5 (axes should be labeled on this figure) 

instead of the standard 5e-08 genome-wide significance cutoff? Additionally, the enrichment analysis 

in 4A should be repeated using a set of random SNPs not associated with facial measures, that would 

ideally be matched to the true set of SNPs in terms of minor allele frequency, number of additional 

SNPs in LD, and density of nearby genes. This matching can easily be done with tools such as 

SNPSnap (https://data.broadinstitute.org/mpg/snpsnap/match_snps.html). 

The sentence in the Discussion “The human face is an exemplar complex morphological structure 

resulting from the intricate coordination of genetic, cellular, and environmental factors” bears a 

striking resemblance to a sentence in the above-mentioned recent bioRXiv preprint, which reads: “The 

human face is an exemplar complex morphological structure. It is a highly multipartite structure 

resulting from the intricate coordination of genetic, cellular, and environmental factors.” Perhaps this 

was an honest mistake by the authors, but this kind of copy-pasting of sentences without citation is 

not acceptable. 

Minor concerns 

In the introduction the authors mention “Wilderman, et al. profiled multiple biochemical markers of 

chromatin activity as a comprehensive functional genomics data and predicted chromatin states for 

4.5-8 post-conception weeks of early human craniofacial development22” Was this data used in 

generating the network? This should be clarified. 



The authors validate their model using GRN from model organisms “hReg-CNCC predicted 703 

regulations among the 50 CNCC genes and 36 were in the known CNCC pathways.”. Recently Tatjana 

Sauka-Spengler and colleagues expanded the neural crest GRN, and could be incorporated into the 

analysis (https://doi.org/10.1016/j.devcel.2019.10.003). 

In Figure 3C, the authors should also provide the corresponding recall values for each of the TF ChIP-

Seq datasets. 

Axes are missing for Figure 3E. 

Please provide a null model of the number of expected overlaps between hReg-CNCCs and either UCEs 

or HARs - is the observed overlap more than this? 

Please name the VISTA elements that were tested and overlap with UCEs in your analysis (Figure 6B). 

One element was stated to be positive, but in which tissues the enhancer was active was not stated, 

please clarify. Also, just because a sequence was tested in VISTA does not mean that it is necessarily 

important (as the authors state) – many sequences tested in VISTA were also chosen because they 

are highly conserved, this is circular logic. 

Please reword the statement “These results showed that hReg-CNCC 

helped find the conserved elements that were responsible for human face and illustrated their 

Regulations.” By definition, an ultraconserved element is exactly the same between humans and other 

species, and so cannot be responsible for the “human face” as it is unique from other species -- in fact 

it is more likely that it is responsible for aspects of craniofacial development shared between species. 

The importance or relevance of these statements is unclear, please provide some interpretation of this 

observation: “We also noticed that the TFs regulating the five annotated regulatory elements were 

consistent with hReg-CNCC revealed regulatory architecture. For example, TFAP2B, ALX4, and TCF4 

regulated 4/5 of the annotated regulatory elements and they were in Module 1 and upstream or core 

TFs in dense network. TWIST1 and TFAP4 only regulated one of the five annotated regulatory 

elements and they were in Module 2 or downstream TFs in dense network.” 

“TFs in Module 1, such as TFAP2A and NR2F133, were at higher level and broadly regulated other 

genes.” The authors should clarify what they mean by level here - there could be confusion they mean 

expression level, or level in the TF GRN hierarchy. 

For the facial GWAS section, please provide the number of SNP-TF-TG links at a 5e-08 genome-wide 

significance threshold for the GWAS SNPs. 

What do the authors mean in this section about ‘one paired data’, this is unlear. Please clarify in the 

text. “PECA was successfully applied to identify master regulator in stem cell differentiation24 and 

interpret regulatory element for non-model organism25. PECA2 further extended PECA to require one 

paired data (i.e., one sample) as input to infer the regulatory network and was applied to reveal 

causal regulations for time course data26.” 

The English is difficult to understand in places and could benefit from proof-reading. 

There are numerous typos, including: 

· evolutional 

· optimizaiton 

· intermidiate 



Reviewer #4 (Remarks to the Author): 

Authors of Feng et al present hReg-CNCC, a network-based modeling tool that allows them "to 

annotate genetic variants of human facial GWAS and disease traits with associated cis- regulatory 

modules, transcription factors, and target genes." Linking distal regulatory regions to target genes is a 

major challenge for the chromatin and neural crest communities. Thus, the tools presented here could 

be quite useful. Additionally, hReg-CNCC has the potential to link human variation data from GWAS 

studies with functional data from genomics studies, enabling investigators to better understand how 

subtle difference in phenotype arise from modest impacts on gene regulation. This is a very 

interesting concept as it pertains to human evolution and sexual selection in the context on neural 

crest development. While there are many interesting observations in this study, which highlight the 

utility of hReg-CNCC, the study lacks sufficient validation of predictions. This shortcoming diminishes 

my enthusiasm. 

Major concerns: 

The main issue deals with validation - authors perform several methods attempting to validate their 

results, including studies of GWAS SNPs at identified REs, and measurements of TFs from bonafide 

NCC derived datasets (Prescott et al.). In my view, these attempts fall short, especially with 

consideration to the more rigorous validation performed by these research groups in prior publications 

(Duren 2017 and 2020). More rigorous validation methods are necessary to assess the overall utility 

of hReg-CNCC. 

Was hReg-CNCC performed on data from ESCs and differentiated embryoid bodies as in Duren et al 

2020 (Genome Research), or was new data acquired from other sources as in Duren et al 2017 

(PNAS)? This is a critical issue that has not been made clear in the manuscript. If the former, how is it 

possible that NCC specific REs and TFs are active in ESCs and/or in embryoid bodies? Shouldn’t these 

factors be inactive in highly heterogeneous embryoid bodies, especially at stages prior to NCC 

specification? If the later, it is important for the reader to understand which published datasets were 

used for hReg-CNCC. 

The ability to recreate the hierarchy of NCC-specific TFs using their network-based modeling approach 

is quite impressive. The authors should further validate their results using data from a recently 

published study - Long et al. (Cell Stem Cell 2020), where human cells were differentiated into NCCs 

and then chondrocytes. If the identified REs and TFs are indeed active during NCC differentiation these 

factors should be active in the Long et al datasets. As an orthogonal approach, data from Long et al 

could be analyzed independently using PECA2 and hReg-CNCC and the results could be compared with 

current findings to assess similarities and differences between tissue types or datasets. 

Several of the REs identified appear to be inaccessible in the portion of the genome the authors 

selected to depict in figure 5. This raises the question - how many REs are accessible vs. inaccessible 

in total for the data used in this study? Are these regions marked by H3K27ac? Are the in-accessible 

REs accessible in other NCC-derived ATAC-Seq datasets? Authors should investigate these questions 

both to validate their results, and also to assess how REs might be utilized differently in distinct NCC-

derived tissues. These types of comparisons were performed in Duren et al 2017, and were quite 

useful for assessing the performance of PECA. It would be especially interesting to assess whether REs 

become active or inactive in NC-derived cancer types where master NC regulators such as Sox9 or 

Sox10 are known to function. Publicly available TCGA data should allow the authors to investigate this 

question. 

Minor concerns: 

Authors should confirm abbreviations are defined the first time they are used. "RE" is defined only in 

the methods section. 



In the introduction section "Marcos et al."" should be "Simoes-Costa et al."
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COMMSBIO-20-2518A 

Point-to-point responses to Reviewers' comments: 

Reviewer #2/6 (Remarks to the Author): 

In this paper, Feng et al. utilize previously published expression and chromatin accessibility data to 
reconstruct a gene regulatory network for cranial neural crest cells, termed hReg-CNCC. This network links 
transcription factor binding to regulatory elements to regulated gene expression and proposes a hierarchical 
architecture of transcription factors in a CNCC gene regulatory network. The authors further explore the 
cis regulatory sequences in their network and overlap them with GWAS SNPs, disease traits and 
evolutionarily interesting regions (both deeply conserved and rapidly evolving). The authors make some 
interesting observations in their analysis of available datasets, regarding regulation of CNCC enhancers and 
overlap with human variants. However, we believe the authors somewhat overstate a number of 
observations, and the biological relevance of some conclusions is unclear. Furthermore, some key details 
and comparisons for the model itself need to be provided. We outline major and minor concerns below. 

Author’s Response: We thank the reviewer for the precise summary. We are happy that the 
reviewer appreciated our major contribution in construction of human regulatory network of cranial 
neural crest cells (hReg-CNCC) and application to interpret GWAS SNPs, diseases, and
evolutionarily important regions. In the light of the reviewer’s suggestion, we presented more 
validations of hReg-CNCC, added complete details of our model and comparison, reworded the many 
statements of observation and conclusion to make the biological relevance between them clearer. We 
hope these revisions will address the major and minor concerns and highlight our contribution to 
construct high-quality human regulatory network of cranial neural crest cells and effort to interpret 
genetic variants, disease, and evolutionarily regulatory elements. 

Major concerns: 

1.) The authors should provide more detail as to how the interaction strength score in their model is 
calculated, they simply state “which was learned from the PECA model on diverse cellular contexts.” I 
could not find more details on this in the provided reference, and in any case given that it is important to 
the predictions, those details should be explicitly provided in this paper. 

Author’s Response: We followed your suggestions to add more detail of how the interaction 
strength score was calculated in our revision. This will make the computation of interaction strength 
score clear. The interaction strength was based on the output of PECA model1, which gave as set ��

of REs for the �-the TG. We conducted a regression model of �-th gene expression (���) on its REs’ 

accessibility (���): 
��� = ��� + ∑ �������∈��                           (1) 

We obtained the parameter ���, which was the interaction strength score in our manuscript, by 

regression of the equation (1) with 148 public paired expression and accessibility data of human. We 
have explicitly added these details into our “Methods” section and we thank the reviewer to improve 
our manuscript. 

Excerpt from Manuscript: (Page 13) ...... ��� was the expression correlation of �-th TF and �-th TG 

across diverse ENCODE samples. ��� represented the interaction strength between �-th RE and �-th TG, 
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which was learned from the PECA model on diverse cellular contexts1. In detail, PECA model predicted a 
set �� of REs to regulate the �-the TG. Then a regression model of �-th gene expression on its REs’ 

accessibility was constructed, 
��� = ��� + ∑ �������∈��                           (2) 

We obtained the parameter ��� by regression of the equation (2) with 148 public paired expression and 

accessibility data of human (Table S4) …… 

2.) Page 1. The authors claim that in their hReg-CNCC network, transcription factors “hierarchically 
regulate the neural plate border, specification, and migration”. The data they use to generate their network 
is from a single stage of in vitro CNCC differentiation. Therefore, this broad statement is unfounded, and 
should be updated. 

Author’s Response: We followed your suggestion to update the broad statement in a more specific 
way. We agreed with the reviewers that our hReg-CNCC were constructed with a single stage of in 
vitro CNCC differentiation. In our regulatory network, we found that a variety of TFs were involved 
with regulation of CNCC. And functions of these TFs were association with neural plate border (such 
as MSX1), specification (such as TWIST1), and migration (such as SOX5/9/10). The function 
association did not causally indicate that regulation of neural plate border, specification, and 
migration happened in single stage of CNCC. We have revised the sentences involved with this 
problem. 

Excerpt from Manuscript:

(Page 1) ...... Consensus optimization predicts high quality regulations and reveals the architecture of 
upstream, core, and downstream transcription factors that are associated with functions of neural plate 
border, specification, and migration …… 

(Page 11) …… Importantly the architecture that upstream, core, and downstream TFs were associated with 
functions of neural plate border, specification, and migration were explored in hReg-CNCC and …… 

3.) Page 3. The authors perform PECA2 on data from “paired RNA-seq and ATAC-seq data to obtain �
context-specific regulatory networks” – is it a requirement of the analysis that the RNA-seq and ATAC-seq 
datasets are from matched samples? If so, did the authors confirm that the samples analysed are indeed 
matched? If this is not a requirement, perhaps rephrase as this is confusing.

Author’s Response: We clarified the sample match issue to make this point clear. For PECA2, the 
paired samples were required for better quality of regulatory network. However, the samples can be 
matched at different level, such as biosample, replicate, or cell type level depending on the application. 
For example, we tried matched samples at both biosmaple and cell type level in mouse ENCODE 
data in our previous PECA studies (Duren et al. 2017). In this study, the samples were matched at 
biosample level. The matched samples and their GEO accession were listed in detail as below in Table 
R1. However, “RNAseq_human1_rep2” doesn’t have a matched biosample “ATAC_human1_rep2”. 
Then we confirmed that there are high correlations between “RNAseq_human1_rep2” and 
“RNAseq_human1_rep1”. We made the adjustment about the matching condition to match 
“RNAseq_human1_rep2 (GSM1817213)” with “ATAC_human1_rep1 (GSM1817203)” in our 
study. 
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Pair RNA-seq ATAC-seq 

1 RNAseq_human1_rep1(GSM1817212) ATAC_human1_rep1(GSM1817203) 

2 RNAseq_human2_rep1(GSM1817214) ATAC_human2_rep1(GSM1817204) 

3 RNAseq_human2_rep2(GSM1817215) ATAC_human2_rep2(GSM1817205) 

4 RNAseq_human3_rep1(GSM1817216) ATAC_human3_rep1(GSM1817206) 

5 RNAseq_human3_rep2(GSM1817217) ATAC_human3_rep2(GSM1817207) 

6 RNAseq_human1_rep2(GSM1817213) ATAC_human1_rep1(GSM1817203) 

Table R1. Matched samples used for hReg-CNCC’s construction. 

Figure R1. (A). Correlation of 6 samples of RNA-seq. (B). Correlation of 5 samples of ATAC-seq. 

As shown in Table R1, the first 5 pairs were perfectly matched at biosample level (from the same 
human and the same replicate) and the sixth pair was weakly matched (only from the same human). 
After processing all the RNA-seq and ATAC-seq, we found that there were high correlations among 
samples and the samples from the same human were more correlated than that of different humans 
(Figure R1A, B). With this observation, we assumed that if the sample of “ATAC_human1_rep2” 
was available, it would be quite correlated with “ATAC_human1_rep1”. So, to make the best use of 
all available data, we made “RNA_human1_rep2” and “ATAC_human1_rep1” the sixth paired 
samples.  

In our revision, we added the information of sample matching into the supplement tables to avoid 
misunderstanding. 

Excerpt from Manuscript: (Page 3) ...... In the first step, we collected paired RNA-seq and ATAC-seq 
data from (Prescott, et al.)21 and applied PECA226 to � replicates (� = 6 in this study, Table S1) to obtain 
� context-specific regulatory networks …… 

4.) On page 4, the authors state that “Some TFs were less understood in CNCC and we labeled them as 
novel TFs (Figure 3B)”. Many of these TFs have clear links to craniofacial development from human 
Mendelian disorders and from mouse genetics (e.g. ALX1/3/4, PRRX1 etc.) The authors need to reclassify 
these TFs. 

Author’s Response: Thanks for the reviewer’s crucial comments. We have corrected this notation 
in our revision and labeled these TFs as “other CNCC TFs”. 
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Excerpt from Manuscript: (Page 5) ...... Some TFs were not included in CNCC pathway but also 
important for CNCC development. So, we labeled them as “other CNCC TFs” (Figure 3B) …… 

5.) Also page 4, using the human-biased enhancers and human-biased genes as a “gold standard” is a 
reasonable approach, but the authors should also compare their method to the Activity-by-contact (ABC) 
model (Fulco et al, Nature Genetics 2019) of predicting enhancer-gene links, as this method also 
outperforms the nearest gene approach. All the input data to apply the ABC method to CNCCs (ATAC-
Seq, H3K27ac ChIP-seq, optionally RNA-seq) are available. 

Author’s Response: We thank the reviewers and follow your valuable suggestion to compare hReg-
CNCC with ABC model from (Fulco et al, Nature Genetics 2019). Our side-by-side comparison 
results in Figure R2 showed hReg-CNCC outperformed ABC model in predicting enhancer-gene 
links.  

ABC (Activity-by-contact) model was based on ABC score by integrating ATAC-seq peaks, H3K27ac 
activity, and Hi-C contact, 

��� ������,� =
����,�

∑ ����,���� �������� � ���� �� ��� �� �
.

Where �� was the activity of enhancer and ��,� was the contacts between enhancer and gene. 
Unluckily, Hi-C data was not available for CNCC. To apply ABC model to CNCC dataset, we 
followed the instruction at the ABC software website (https://github.com/broadinstitute/ABC-
Enhancer-Gene-Prediction) to leverage average Hi-C data. Totally, ABC model predicted 17,499 
pairs of enhancer-gene regulations.  

We first checked whether ABC model could predict human biased genes for human biased enhancers. 
17 human biased enhancers were assigned target genes by ABC model and there were totally 260 
genes regulated by them. Only 38 of these 260 target genes were human biased genes, which gave the 
fold change 1.60. This result indicated a similar performance with proximity-based method. hReg-
CNCC performed better than ABC model and proximity-based method (Figure R2A). After 
comparison among three-method-predicted human biased genes, we found 15 genes that were 
uniquely detected by hReg-CNCC, which were important for CNCC (Figure R2B). For example, 
ROBO3 was only expressed by human (FPKM 2.50 in human and 0.71 in chimpanzee). There was a 
human biased enhancer (supported by H3K27ac and ATAC-seq data) located at 65k downstream of 
ROBO3 (Figure R2C). While this enhancer was closer to HEPACAM, it was not associated with 
HEPACAM since this gene was not expressed in human CNCC (FPKM 0.08). This example also 
showed the strength of hReg-CNCC to correctly detected distal enhancers for target genes. 

The comparison with ABC model further confirmed that hReg-CNCC can better predict enhancer 
gene interaction by utilizing the rich information of gene expression from RNA-seq data. Also, hReg-
CNCC didn’t require Hi-C data which is currently limited by resolution, high cost, and high demand 
of cell materials. We discussed the possible reason for the relatively poor performance of ABC model 
by inputting the averaged Hi-C data. We expected the high resolution CNCC Hi-C data may improve 
its accuracy and hReg-CNCC can easily incorporate the high-quality physical interaction data. We 
added this comparison in our revised manuscript and we thanked the reviewers’ advice to better 
show the advantage of hReg-CNCC. 
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Figure R2. (A) hReg-CNCC predicts the human biased enhancers’ target genes more accurately than ABC 
model and proximity-based method using human biased differentially expressed genes as gold standard. 
(B). hReg-CNCC predicts 33% enhancer gene relationships as novel distal regulation for human biased 
enhancers, which cannot be found by ABC model or the proximity-based method. (C). hReg-CNCC 
predicts ROBO3 as the target gene for the distal human biased enhancer (comparing human and 
chimpanzee’s H3K27ac and ATAC-seq tracks), which is located near HEPACAM. The expression pattern 
of ROBO3 supports the target assignment for the human biased enhancer (comparing human and 
chimpanzee’s RNA-seq tracks). 

Excerpt from Manuscript: (Page 4) ……We utilized the linkages between human biased enhancers21

and human biasedly expressed genes as gold standard positives. For these human biased enhancers, hReg-
CNCC predicted 216 genes as their target genes, of which 45 genes were human biasedly expressed genes. 
This gave a fold change enrichment 2.31 (Methods). We compared with Activity-By-Contact (ABC) 
model28 and proximity-based method, which assigns the nearest TSS as target gene (Methods). For ABC 
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model, there were 260 genes that were predicted to be regulated by human biased enhancers and 38 of them 
were human biasedly expressed genes, which gave the fold change 1.60. For proximity-based method, there 
were 1,445 nearest genes linked to these human biased enhancers and 214 genes of them were human 
biasedly expressed genes, which gave the fold change 1.62. (Figure 2D). These results showed hReg-CNCC 
was more accurate to assign correct target genes for regulatory elements. Importantly, 15 hReg-CNCC 
predicted human biasedly expressed genes (33%) were regulated by distal enhancers and cannot be 
correctly predicted by ABC model or proximity-based method (Figure 2E). For example, ROBO3, which 
confines early neural crest cells to the ventral migratory pathway in the trunk29 and regulates the production 
of cranial neural crest cells30, was predicted as the true target gene of a distal human biased enhancer, which 
was located near HEPACAM and far from ROBO3’s gene body (Figure 2F). This distal human biased 
enhancer was validated by human specific ATAC-seq and H3K27ac ChIP-seq signals and was consistent 
with the expression pattern of ROBO3 (FPKM 2.50 in human and 0.71 in chimpanzee, Figure 2F). Though 
this human biased enhancer was nearest to HEPACAM, it was not associated with HEPACAM since 
HEPACAM was not expressed in human CNCC (FPKM 0.08) …… 

6.) Regarding the classification of TFs into Modules 1 and 2, can the authors verify that this is not driven 
by something as trivial as the information content of the TFs binding site motifs? Low information content 
motifs would be predicted in many/most accessible regions, which would result in broad predicted 
regulation, whereas higher information content would result in a more specific set of predicted targets. 

Author’s Response: We thank the reviewers to pinpoint a possible bias for our module detection 
in hReg-CNCC. We calculated the information content of 32 TFs in Module 1 and 71 TFs in Module 
2 but found no significant difference between their information content (Figure R3A). In fact, there 
existed some TFs in Module 1 that had high information content, such as TFAP2A, and there was 
also some TFs in Module 2 who had low information content, such as LMX1B. The main difference 
between Module 1 and Module 2 was the number of bound REs (Figure R3B). We also check whether 
information score was association number of predicted binding REs in Reg-CNCC and obtained a 
low correlation (PCC=0.08, Figure R3B). These results showed that the classification of TFs into 
Module 1 and Module 2 was not driven by trivial information content. 

Figure R3. (A) Boxplot of information content (IC score) of TFs in Module 1 and Module 2. (B). Scatter 
plot of the IC score and number of hReg-CNCC-predicted bound REs of 103 TF (32 Module 1 TFs and 71 
Module 2 TFs) show no correlation between IC score and binding REs. 

Excerpt from Manuscript: (Page 5) ……the clustering was not driven by motif’s trivial information 
content (Figure S2A, B) …… 
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7.) In many places the authors state that a TF regulates a certain gene, e.g. page 7 “TFAP2A regulated 19/28 
of the causal genes; NR2F1 regulated 16/28 of the causal genes; and ALX3/4 regulated 22/28 of the causal 
genes”. The authors don’t have any direct functional evidence for these causal relationships, and so should 
take care to reword this through the text. 

Author’s Response: We thank the reviewers to point out the lack of functional evidence for the 
“causal” relationship in our statements. The TF-TG regulations were inferred from hReg-CNCC. 
We have reworded the sentences involved with the misleading “causal” relationship in our revision. 

Excerpt from Manuscript:

(Page 7) ……The genetic variants in the CRMs of hReg-CNCC, including their functional regulatory 
elements, target genes, and bound TFs, should be useful in the annotation of SNPs identified by GWAS of 
human facial variation traits…… 

(Page 8) ……we found that even though different traits at different region of face had different SNPs and 
target genes, they shared a group of upstream TFs. For example, TFAP2A regulated 19/28 of the target 
genes; NR2F1 regulated 16/28 of the target genes; and ALX3/4 regulated 22/28 of the target 
genes……Together these evidences suggested ALX1 as the candidate facial shape associated gene in our 
annotated regulatory network…… 

(Page 9) ……hReg-CNCC can improve the enrichment of facial shape-associated SNPs in CNCC and used 
the TFs, REs, and TGs to help explain how genetic variants get involved in regulation, such as 
ALX1……This fact motivated us depict human facial traits’ the known genetic variants by its target genes 
and regulation…… 

8.) In two instances, the authors discuss that a HOX binding site was implicated as an influential motif at a 
regulatory element. It should be noted that the head region is for the most-part HOX-negative, and the 
authors should discuss which factors may bind to these sequences that may be relevant for craniofacial 
development, else the relevance of these binding motifs may be in question. For example, on page 7 “On 
the distal regulatory element, the most important one was “HOXA4_1/encode”, which was involved with 
18 TFs’ binding” and page 8 “This regulation may be achieved by SNP’s influence on the motif binding of 
HOXB2.” Furthermore, expression data for TFs is included in the author’s model – given that HOX genes 
are very lowly expressed (< 1 TPM) in CNCCs, this suggests a false positive prediction of the model -- a 
TF cannot regulate a target gene if it is not expressed. The authors may consider adding a hard expression 
cutoff for TFs and target genes to their predictions to eliminate these cases. 

Author’s Response: We agree with the reviewer that revealing true upstream binding TF is 
difficult and we thank the reviewers for the suggestion about considering the expression of motif 
associated TFs. The HOX TFs were indeed non- or low-expressed in CNCC. So, we reexamined the 
motifs these two SNPs might exert influence on. On the distal RE of ALX1, if we change the allele at 
SNP rs11609649 to its effective allele, there were a gain of “PH0082.1_Irx2/Jaspar” and a loss of 
“FOXM1_1/encode”, corresponding to IRX3 and FOXM1. IRX3 and FOXM1 were highly expressed 
in CNCC (RPKM of IRX3 68.12, FOXM1 49.03) and important regulators of CNCC2,3. On the 
promoter, the change to SNP rs12810608’s effective allele will cause a gain of 
“PB0186.1_Tcf3_2/Jaspar”, which was associated with TCF cluster, such as TCF3, TCF7L1, TCF12, 
and TCF4 (Figure R4). We revised this paragraph in our manuscript. 
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Figure R4. Two SNPs influencing the regulation of ALX1 and their located REs, influenced TFs. 

Excerpt from Manuscript: (Page 8) ……We scanned motif on these two REs with effective allele and 
reference allele of the SNPs respectively and found that the binding affinity of many motifs were changed 
(Figure 4D). There was a gain of motif “PB0186.1_Tcf3_2/Jaspar” in promoter and its associated TCF 
clusters were top regulators of ALX1 (Figure S4B). On the distal regulatory element, when allele at 
rs11609649 was change to the effective allele, there were a gain of motif “PH0082.1_Irx2/Jaspar” and a 
loss of motif FOXM1_1/encode. These two motifs corresponded to IRX3 and FOXM1 respectively, which 
were highly expressed in CNCC (FPKM of IRX3 68.12, FOXM1 49.03) and important regulators of 
CNCC45,46…… 

9.) The authors state “There were two types of pleiotropy: the first was that one SNP locating in a regulatory 
element and regulated multiple genes. For example, rs16985457 was located in chr19:54693360-54695240 
and regulated CNOT3, PRPF31, and LENG1 (Figure 4E); the second type was one SNP regulates a gene 
and was associated with multiple traits.” It is unclear how the authors determined that these SNPs regulate 
these genes without functional data. Perhaps this is simply a misunderstanding and the authors should 
reword to clarify they mean the regulatory element regulates the target gene, and activity may be modulated 
by the SNP. Furthermore, in the second example the ‘multiple traits’ are in fact all related craniofacial 
measurements, and so probably does not count as a case of pleiotropy. 

Author’s Response: We agree with the reviewer that claiming regulations without functional data 
should be careful. In our revision, we clarified the relationship between SNPs and target gene are 
inferred from paired omics data by hReg-CNCC. They mean the regulatory element regulates the 
target gene, and activity may be modulated by the SNP, i.e., the SNPs were located in the regulatory 
elements and exerted influence on the activity of regulatory elements. And these regulatory elements 
were predicted to regulate target genes by hReg-CNCC. We also corrected the misusage of 
“pleiotropy” in our revision. The multiple facial distances were quite related and couldn’t be 
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classified to be “pleiotropy”. Instead, we termed this pattern as “multi-trait effect” in our revised 
manuscript. 

Excerpt from Manuscript:

(Page 8) ……We revealed several interesting patterns to potentially illustrate SNPs’ multi-trait effect and 
cooperation. There were two patterns of multi-trait effect: the first was that one SNP was located in a 
regulatory element and this regulatory element regulated multiple genes. For example, rs16985457 
was located in chr19:54693360-54695240 and chr19:54693360-54695240 was predicted to regulate 
CNOT3, PRPF31, and LENG1 (Figure 4E, left); the second type was one SNP, which was associated 
with multiple traits, was located in a regulatory element and this regulatory element only regulates a 
gene. For example, rs12810608 was located in chr12:85673460-85674718, which regulates ALX1, and this 
SNP was associated with three face distances: “EnR-Prn”, “EnL-Prn”, and “EnR-AlL” (Figure 4E, middle). 
In addition, multiple SNPs cooperated in one regulatory element and worked together to influence the 
activity of regulatory element. For instance, rs11719548 and rs11711710 were simultaneously located in 
chr3:12872024-127872868 and chr3:12872024-127872868 regulated RUVBL1 (Figure 4E, right).…… 

(Page 9) ……hReg-CNCC can also illustrate the possible mechanism of SNPs’ multi-trait effect and 
cooperation……

10.) The statement “helped find causal SNPs, causal genes, and explained how genetic variants get involved 
in regulation” is an over-reach about the conclusions, and should be re-worded. 

Author’s Response: We removed the over-reaching statement in our revision. 

Excerpt from Manuscript: (Page 9) ……hReg-CNCC can improve the enrichment of facial shape-
associated SNPs in CNCC and used the TFs, REs, and TGs to help explain how genetic variants get involved 
in regulation……

11.) There are numerous additional concerns regarding the analysis of facial GWAS SNPs, regardless of 
the precise dataset used (note there is a recent bioRXiv preprint with a larger set of genome-wide significant 
SNPs, https://doi.org/10.1101/2020.05.12.090555). The overall enrichment of facial GWAS SNPs within 
hReg-CNCC regions is weak and seems highly dependent on the GWAS p-value threshold used -- why 
does Figure 4A only go up to -log10(p) of 5 (axes should be labeled on this figure) instead of the standard 
5e-08 genome-wide significance cutoff? Additionally, the enrichment analysis in 4A should be repeated 
using a set of random SNPs not associated with facial measures, that would ideally be matched to the true 
set of SNPs in terms of minor allele frequency, number of additional SNPs in LD, and density of nearby 
genes. This matching can easily be done with tools such as SNPSnap 
(https://data.broadinstitute.org/mpg/snpsnap/match_snps.html). 

Author’s Response: We thank the reviewers’ comments and pointing out SNPSnap to help us to 
perform additional control experiments.  

We agreed that the overall enrichment of facial GWAS SNPs in hReg-CNCC was weak and 
dependent on GWAS p-value threshold. The cutoff in Figure 4A only went up to 10-5 because the 
number of SNPs was not large enough to obtain a reliable fold change score. As described in the 
“Methods” section, we used FC score to evaluate the enrichment of SNPs in given region set, which 
was defined as follow: 
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Where �� was the number of SNPs in given region set. �� was the length of the given region set. �
was the total number of SNPs. � was the genome length. We calculated this FC score for SNPs set 
filtered by threshold 1.0, 10-1, 10-2, 10-3, 10-4, 10-5, 10-6, 10-7, 10-8, 10-9. We hypothesized that if one 
GWAS was enriched in a region set, the FC score would increase along with the above thresholds 
and this strategy was used in many publications4. We applied this method to our study to make 
comparison with hReg-CNCC, CNCC peaks, and other tissues’ peaks. We found that while the 
increasing trend can be observed, the FC score of all three region sets decreased when threshold P-
value<10-6 (Figure R5A). We checked the number of SNPs of each threshold and found that when we 
set threshold to be 10-6, the number of SNPs was only 1,762 (Figure R5A), which was not enough to 
calculate a genuine FC score. So, we focused on the FC score curve from 1.0 to 10-5. We found that 
even though the enrichment level was a little weak, the FC score curve of hReg-CNCC REs and 
CNCC peaks had the increasing trend while the FC score curve of other tissues didn’t increase along 
with threshold (Figure R5A). This observation indicated that Facial GWAS SNPs were more 
enriched in tissue of CNCC than other tissue. We also found that the slope (0.063) of hReg-CNCC 
RE set was larger than that of CNCC peaks (0.018) (Figure R5A). This result showed that facial 
GWAS SNPs were more enriched in hReg-CNCC RE set. We used this enrichment analysis to 
demonstrate that hReg-CNCC can improve the quality of regulatory elements by integrating 
accessibility and expression data. 

Following the reviewers’ suggestion, we generated a random SNP set for 10-5 threshold filtered SNP 
set with SNPsnap. We repeated the analysis in Figure 4A to calculate the FC score of SNPsnap 
generated SNPs set in hReg-CNCC RE set, CNCC peak set, and other 76 tissues’ peak set. For facial 
GWAS SNPs, hReg-CNCC ranked the first among all 78 region sets and CNCC ranked the 15-th, 
showing that facial SNPs were more enriched in hReg-CNCC. And for random SNPs generated by 
SNPsnap, neither hReg-CNCC nor CNCC ranked top among 78 region sets, where hReg-CNCC 
ranked 5-th and CNCC ranked 61-th. This showed that the highest FC score of facial SNPs in hReg-
CNCC was not randomly generated. 

We thank the reviewers for the recommendation of recently published facial GWAS5. With cohort of 
8,246 individuals, Julie D. White and his colleagues found 17,612 SNPs that were significantly 
associated with segmentation of facial shape. These new discovered genetic variants were promising 
for more understanding of human facial variation. So, it would be interesting to apply hReg-CNCC 
to interpret significant SNPs found by these recent GWAS studies in the future. 

Excerpt from Manuscript: (Page 12) ……It’s not surprising that hReg-CNCC can only interpret limited 
number of SNPs and the overall enrichment is quite modest. The craniofacial tissues represent progressively 
later time points and the intermediate cell types during development and their regulatory networks should 
be reconstructed in future…… 



11

Figure R5. (A). Line chart: FC score of each threshold filtered SNPs in hReg-CNCC RE set, CNCC peak 
set, and other tissues’ peak sets; bar chart: the number of each threshold filtered SNPs. (B). Up: the ranked 
FC score of facial GWAS SNPs in hReg-CNCC RE set, CNCC peak set, and other 76 tissues’ peak sets. 
Down: the ranked FC score of SNPsnap generated SNPs in hReg-CNCC RE set, CNCC peak set, and other 
76 tissues’ peak sets. 

12.) The sentence in the Discussion “The human face is an exemplar complex morphological structure 
resulting from the intricate coordination of genetic, cellular, and environmental factors” bears a striking 
resemblance to a sentence in the above-mentioned recent bioRXiv preprint, which reads: “The human face 
is an exemplar complex morphological structure. It is a highly multipartite structure resulting from the 
intricate coordination of genetic, cellular, and environmental factors.” Perhaps this was an honest mistake 
by the authors, but this kind of copy-pasting of sentences without citation is not acceptable. 

Author’s Response: We are sorry to miss the citation about this sentence. We have added this 
citation of the formal Nature Genetics publication for this bioRXiv preprint in the revised manuscript. 
This is a truly insightful and inspiring work.  

Excerpt from Manuscript: (Page 11) ……The human face is an exemplar complex morphological 
structure resulting from the intricate coordination of genetic, cellular, and environmental factors63……

63. White, J.D. et al. Insights into the genetic architecture of the human face. Nature Genetics (2020). 

Minor Comments: 

1.) In the introduction the authors mention “Wilderman, et al. profiled multiple biochemical markers of 
chromatin activity as a comprehensive functional genomics data and predicted chromatin states for 4.5-8 
post-conception weeks of early human craniofacial development22” Was this data used in generating the 
network? This should be clarified. 

Author’s Response: We clarified in our revision that that we didn’t use this dataset and we have 
added this information in the overview of our method. This dataset was not used in construction of 
hReg-CNCC and all the data we used were from (Prescott, et al.)6. 

Excerpt from Manuscript: (Page 3) ……In the first step, we collected paired RNA-seq and ATAC-seq 
data from (Prescott, et al.)21 and applied PECA226 to R replicates (R=6 in this study, Table S1) to obtain R 
context-specific regulatory networks……
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2.) The authors validate their model using GRN from model organisms “hReg-CNCC predicted 703 
regulations among the 50 CNCC genes and 36 were in the known CNCC pathways.”. Recently Tatjana 
Sauka-Spengler and colleagues expanded the neural crest GRN, and could be incorporated into the analysis 
(https://doi.org/10.1016/j.devcel.2019.10.003). 

Author’s Response: We thank the reviewers’ suggestion to add recently published neural crest 
GRN as another validation of hReg-CNCC. This further demonstrate that hReg-CNCC can predict 
gene regulation with better accuracy. 

Tatjana Sauka-Spengler and colleagues profiled NC-specific epigenomic (ATAC-seq, H3K27ac 
ChIP-seq) and transcriptomic data in chick. By comparing with non-NC tissue, the NC-specific 
enhancer candidates were detected. Based on this NC-specific enhancer cluster, the authors 
constructed GRN for chick neural crest. This GRN of chick could be a reference for human neural 
crest. Following the suggestion of the reviewers, we conducted supplement validation with this chick 
GRN as gold standard and obtained the same conclusion as before. First, we compared hReg-CNCC 
with six original network and we found a significant outperformance for metric of precision, recall 
and F1 score (Figure R6A). Then we made comparison with intersection and union methods. hReg-
CNCC performed best for precision and ranked second for recall. The F1 score also revealed that 
hReg-CNCC was best among three methods (Figure R6B). These results again showed that hReg-
CNCC can predict gene regulation with best accuracy and satisfying coverage. We thank the 
reviewers and these results were added into our revised manuscript. 

Figure R6. Comparison with chick-GRN as gold standard. (A). Consensus optimization achieves 
significantly higher precision, recall, and F1 measure than single networks. (B). Consensus optimization 
outperforms the naive union and intersection methods in precision, recall, and F1 measure. 

Excerpt from Manuscript: (Page 4) ……Then we collected another GRN as gold standard for parallel 
validation, which was built with multi-omics data in chick27. We reached the same conclusion as with 
CNCC pathway: hReg-CNCC was significantly better than single networks for precision, recall, and F1 
score (Figure S1E). Compared with overlapping and union method, hReg-CNCC obtained the best precision, 
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with a trade-off of recall. And hReg-CNCC performed best for F1 score (Figure S1F), which again showed 
hReg-CNCC was the best among three methods.……

3.) In Figure 3C, the authors should also provide the corresponding recall values for each of the TF ChIP-
Seq datasets. 

Author’s Response: We thank the reviewers about the suggestion to add recall value in Figure 2C. 
For both recall and precision, hReg-CNCC outperformed the 6 single regulatory networks for 
TFAP2A and NR2F2 ChIP-seq validation (Figure R7). 

Figure R7. Precision and recall of NR2F1 and TFAP2A ChIP-seq validation. 

4.) Axes are missing for Figure 3E. 

Author’s Response: We thank the reviewer’s comment. We have added the axes for Figure 3E.

5.) Please provide a null model of the number of expected overlaps between hReg-CNCCs and either UCEs 
or HARs - is the observed overlap more than this? 

Author’s Response: We thank the reviewers about the suggestion to provide a null model of 
overlap with UCEs and HARs. To do this, we generated 10,000 random sequence sets for UCEs and 
HARs respectively. Every random set of UCEs was generated with command “bedtools shuffle -i 
UCEs.bed -g hg19.sizes” and every random set of HARs was generated with command “bedtools 
shuffle -i HARs.bed -g hg19.sizes”. The random sets were regarded as the null model. We intersected 
every of 10,000 random sequence sets of UCEs with REs in hReg-CNCC and obtained the number of 
overlapped sequences. We found only 74 random sets of UCEs had more than 5 overlapped sequences 
with hReg-CNCC, which gives P-value 0.0074 of UCEs’ overlapping with hReg-CNCC. This 
indicated that the overlapping between hReg-CNCC and UCEs was significant. Similarly, we 
obtained the significance (P-value=0.1001) of the overlapping between hReg-CNCC and HARs. We 
have added this information in our manuscript. 

Excerpt from Manuscript: (Page 10) ……We found five regulatory elements in hReg-CNCC were 
overlapped with human UCEs (P-value<0.0074, Method, Figure 6B) ……In total, 13 regulatory elements 
in hReg-CNCC were found to be associated with HAR (P-value<0.1001, Figure S4A) ……

6.) Please name the VISTA elements that were tested and overlap with UCEs in your analysis (Figure 6B). 
One element was stated to be positive, but in which tissues the enhancer was active was not stated, please 
clarify. Also, just because a sequence was tested in VISTA does not mean that it is necessarily important 
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(as the authors state) – many sequences tested in VISTA were also chosen because they are highly 
conserved, this is circular logic.  

Author’s Response: We added the additional information about the name and active tissue for 
VISTA enhancers into Figure 6B. We agree with the reviewers that “a sequence was tested in VISTA 
does not mean that it is necessarily important” and we re-worded the statements here to avoid the 
circular logic. 

Excerpt from Manuscript: (Page 10) ……Among them, three elements were also candidate enhancers
in VISTA database53. And one of these three VISTA enhancers “chr8:77690693-77691421” was positive 
for transgenic mouse assay (4/4 were limb positive and 1/4 was neural tube positive), showing its 
possible role in neural crest.……

7.) Please reword the statement “These results showed that hReg-CNCC helped find the conserved elements 
that were responsible for human face and illustrated their Regulations.” By definition, an ultraconserved 
element is exactly the same between humans and other species, and so cannot be responsible for the “human 
face” as it is unique from other species -- in fact it is more likely that it is responsible for aspects of 
craniofacial development shared between species. 

Author’s Response: We thank the reviewers to point out the problem about conclusion of UCE 
analysis. The UCEs were almost the same among different species, which made them the important 
elements. Here we overlapping UCEs with regulatory elements in CNCC and found 5 UCEs were 
linked to CNCC. The conservation among species and activity in CNCC prioritized these five UCEs 
to be important regulatory elements for neural crest and facial development among species. We 
reworded this sentence in the revised manuscript. 

Excerpt from Manuscript: (Page 10) ……These results showed that hReg-CNCC helped find the 
conserved elements that were responsible for facial development and illustrated their regulations……

8.) The importance or relevance of these statements is unclear, please provide some interpretation of this 
observation: “We also noticed that the TFs regulating the five annotated regulatory elements were 
consistent with hReg-CNCC revealed regulatory architecture. For example, TFAP2B, ALX4, and TCF4 
regulated 4/5 of the annotated regulatory elements and they were in Module 1 and upstream or core TFs in 
dense network. TWIST1 and TFAP4 only regulated one of the five annotated regulatory elements and they 
were in Module 2 or downstream TFs in dense network.” 

Author’s Response: We are sorry about the unclear statements here. The point we wanted to make 
here was the accordance between architecture of UCEs associated sub-network and whole hReg-
CNCC network. In hReg-CNCC, we found two modules of TFs: Module 1 TFs were in higher level 
of network and broadly bound on regulatory elements and regulated other genes; Module 2 TFs were 
responsible for more specific regulations and regulated a small group of genes. The TFs in the UCE 
associated regulatory network also revealed this architecture. TFAP2B, ALX4, and TCF4 were 
Module 1 TFs in hReg-CNCC. In the UCE associated network, they bound on 4 of the 5 UCEs, which 
agreed with their broad regulation property. TWIST1 and TFAP4 were Module 2 TFs in hReg-
CNCC. In the UCE regulatory network, they only bound on one of the five UCEs and regulated fewer 
genes. This was also consistent with their specific regulation property. We have rewritten these 
statements to make our point clearer. 
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Excerpt from Manuscript: (Page 10) ……In the UCE associated subnetwork, we noticed that there 
were two types of TFs that were consistent with hReg-CNCC revealed 2-Module regulatory architecture. 
For example, TFAP2B, ALX4, and TCF4 represented the first type of TFs and they regulated 4 of the 5 
annotated UCEs. Their property of broad regulation in UCE network agreed with the fact that they were in 
Module 1 and upstream or core TFs in dense network. On the other hand, TWIST1 and TFAP4 represented 
the second type TFs and they only regulated one of the five annotated UCEs, showing their feature of 
specific regulation. This was in accordance with the fact that they were in Module 2 or downstream TFs in 
dense network.……

9.) “TFs in Module 1, such as TFAP2A and NR2F133, were at higher level and broadly regulated other 
genes.” The authors should clarify what they mean by level here - there could be confusion they mean 
expression level, or level in the TF GRN hierarchy. 

Author’s Response: We are sorry we did not make this meaning of “level” clear. The “level” 
indicated the level of regulatory network hierarchy. We rewrote this sentence in the revised 
manuscript. 

Excerpt from Manuscript: (Page 7) ……TFs in Module 1, such as TFAP2A and NR2F133, were at 
higher level of regulatory network and broadly regulated other genes……

10.) For the facial GWAS section, please provide the number of SNP-TF-TG links at a 5e-08 genome-wide 
significance threshold for the GWAS SNPs. 

Author’s Response: We thank the reviewers’ suggestion. When we set the threshold of SNPs to be 
5e-8, we found no SNPs were overlapped with REs in hReg-CNCC. Instead we used 1e-5 as the 
relaxed threshold. 

11.) What do the authors mean in this section about ‘one paired data’, this is unclear. Please clarify in the 
text. “PECA was successfully applied to identify master regulator in stem cell differentiation24 and 
interpret regulatory element for non-model organism25. PECA2 further extended PECA to require one 
paired data (i.e., one sample) as input to infer the regulatory network and was applied to reveal causal 
regulations for time course data26.” 

Author’s Response: We are sorry that we did not make the concept of “paired data” clear. “One 
paired data” means one sample with match RNA-seq and ATAC-seq data. We revised it in our 
manuscript. 

Excerpt from Manuscript: (Page 2) ……PECA2 further extended PECA by removing the requirement 
of paired data from a diverse panel of cell types, so that inference of context specific regulatory network is 
possible from paired expression and chromatin accessibility data on just one sample.……

12.) The English is difficult to understand in places and could benefit from proof-reading. 

There are numerous typos, including: 

· evolutional 

· optimizaiton 

· intermidiate 



16

Author’s Response: We thank the reviewers pinpoint the typos and the problem of English. We 
corrected these typos and rewrote parts of our manuscript that were difficult to understand. 

Reviewer #4 (Remarks to the Author): 

Authors of Feng et al present hReg-CNCC, a network-based modeling tool that allows them "to annotate 
genetic variants of human facial GWAS and disease traits with associated cis- regulatory modules, 
transcription factors, and target genes." Linking distal regulatory regions to target genes is a major challenge 
for the chromatin and neural crest communities. Thus, the tools presented here could be quite useful. 
Additionally, hReg-CNCC has the potential to link human variation data from GWAS studies with 
functional data from genomics studies, enabling investigators to better understand how subtle difference in 
phenotype arise from modest impacts on gene regulation. This is a very interesting concept as it pertains to 
human evolution and sexual selection in the context on neural crest development. While there are many 
interesting observations in this study, which highlight the utility of hReg-CNCC, the study lacks sufficient 
validation of predictions. This shortcoming diminishes my enthusiasm. 

Author’s Response: We are happy the reviewer appreciated our major contribution to construct 
a regulatory network of human CNCC, which gives the TF-CRM-TG regulations and can 
hypothesize how genetic variants get involved in regulatory network and affect phenotypes. We also 
thank the reviewer’s comments about the problem of validation. In light of the reviewers’ suggestion, 
we include more datasets for validation and comparison to obtain more solid conclusion. 

1. The main issue deals with validation - authors perform several methods attempting to validate their results, 
including studies of GWAS SNPs at identified REs, and measurements of TFs from bonafide NCC derived 
datasets (Prescott et al.). In my view, these attempts fall short, especially with consideration to the more 
rigorous validation performed by these research groups in prior publications (Duren 2017 and 2020). More 
rigorous validation methods are necessary to assess the overall utility of hReg-CNCC. 

Author’s Response: We thank the reviewer to point out the limitation of validation of hReg-CNCC 
in our manuscript. Following the suggestion of the reviewer, we conducted more validation and 
comparison to show the accuracy and outperformance of hReg-CNCC. First, we used a most recently 
published GRN of CNCC of chick as reference to validate the TF-TG regulation in hReg-CNCC and 
comparison with other methods. Again, we showed the higher accuracy of hReg-CNCC. Then we 
used the H3K27ac ChIP-seq data to validate the REs in hReg-CNCC and we obtained 74.42% 
precision. Some regulation of RE to TG can be validated by independent Capture-C dataset. For 
example, the REs that were predicted to regulate SOX9 were contacted by loops to promoter of SOX9. 
Then we performed comprehensive comparison of accuracy of RE-TG regulation in hReg-CNCC 
with ABC model and hReg-CNCC showed the better performance. For the two-module architecture 
of hReg-CNCC, we added comparison of TFs’ information content to show that the classification of 
these two modules was biologically meaningful. Finally, we constructed regulatory using the same 
consensus optimization with recent published independent CNCC dataset. We found that the TF-
RE-TG regulations and two-module architecture were quite reproducible. We hope these supplement 
comparisons can solve the reviewer’s concern of validation. 

2. Was hReg-CNCC performed on data from ESCs and differentiated embryoid bodies as in Duren et al 
2020 (Genome Research), or was new data acquired from other sources as in Duren et al 2017 (PNAS)? 
This is a critical issue that has not been made clear in the manuscript. If the former, how is it possible that 
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NCC specific REs and TFs are active in ESCs and/or in embryoid bodies? Shouldn’t these factors be 
inactive in highly heterogeneous embryoid bodies, especially at stages prior to NCC specification? If the 
later, it is important for the reader to understand which published datasets were used for hReg-CNCC. 

Author’s Response: We were sorry that we did not make the dataset we used clear. We used the 
recently-published CNCC dataset for the construction of hReg-CNCC. In detail, paired RNA-seq 
and ATAC-seq data of CNCC were fetched from (Prescott, et al.)6 and used for hReg-CNCC network 
reconstruction. 

Excerpt from Manuscript: (Page 3) ……In the first step, we collected paired RNA-seq and ATAC-seq 
data from (Prescott, et al.)21 and applied PECA226 to R replicates (R=6 in this study, Table S1) to obtain R 
context-specific regulatory networks……

3. The ability to recreate the hierarchy of NCC-specific TFs using their network-based modeling approach 
is quite impressive. The authors should further validate their results using data from a recently published 
study - Long et al. (Cell Stem Cell 2020), where human cells were differentiated into NCCs and then 
chondrocytes. If the identified REs and TFs are indeed active during NCC differentiation these factors 
should be active in the Long et al datasets. As an orthogonal approach, data from Long et al could be 
analyzed independently using PECA2 and hReg-CNCC and the results could be compared with current 
findings to assess similarities and differences between tissue types or datasets. 

Author’s Response: We enormously thank the reviewer’s suggestion to utilize the recent CNCC 
dataset to validate our results. Long et al. (Cell Stem Cell 2020) indeed provides a valuable dataset 
and we formally cited this work in our revision. Our computation in this dataset leads to hReg-
CNCC-H9 and it persuasively validated our results as follows and greatly improved our manuscript.  

Following the suggestion of the reviewer, we constructed another regulatory network of CNCC, 
named hReg-CNCC-H9, using 4 RNA-seq replicates and 4 ATAC-seq replicates at passage 4 stage 
during hESC’s differentiation to neural crest. We chose this stage because it was the closest stage to 
hReg-CNCC. In total, there were 399 TFs, 9,146 TGs and 3,1145 REs in hReg-CNCC-H9. We first 
check the similarity of these two independent regulatory networks. We found a significant overlap of 
TF set, TG set, RE set, and TF-TG regulations between these two networks (Figure R8A). This 
indicated that the identified TFs, REs, and TGs were also active in (Long. et al.) dataset and they 
were indeed important regulators during neural crest differentiation. Second, we checked if the 
architecture of hReg-CNCC was reproducible in hReg-CNCC-H9 network. Again, we can also find 
two modules in the new CNCC regulatory network (Figure R8B). Module 1 was marked the its 18 
TFs, which broadly regulated most of the TGs. For Module 2, there were 76 TFs and they were 
responsible for much specific regulation. Furthermore, we observed a significant similarity between 
two modules in hReg-CNCC-H9 network and modules in hReg-CNCC (Figure R8C). These results 
showed that the two-module architecture of hReg-CNCC was reproducible in other datasets and 
indeed biologically meaningful for neural crest. Finally, we used the dense network strategy to obtain 
the hierarchy of TFs in hReg-CNCC-H9 (Figure R8D). There was some difference between dense TF 
network of hReg-CNCC-H9 and hReg-CNCC. For example, the upstream TFs were different. We 
also found the hierarchy of hReg-CNCC-H9 had common characteristics with hReg-CNCC. For 
example, the upstream and core TFs, which were higher level of regulatory network, were largely 
shared, including TFAP2A/B, ALX1/3/4, NR2F1, PRRX2, and MYCN. And the downstream TFs of 
hReg-CNCC-H9 and hReg-CNCC were also overlapped, such as TWIST1, SIX1, TCF7L1, LMX1B, 
and SOX4. These showed that the hierarchy of NCC-specific TFs was also reproducible in other 
datasets. In summary, our hReg-CNCC identified active TFs, REs, and TGs for CNCC, found two-
module architecture and hierarchy of NCC-specific TFs for CNCC regulatory network, which were 
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validated by an independent and valuable dataset in a recently published study - Long et al. (Cell 
Stem Cell 2020). 

On the other hand, we noticed that there was Capture-C data for SOX9 in (Long. et al.) dataset to 
provide physical chromatin interactions. We used this data to validate the regulation of SOX9 in 
hReg-CNCC. There were two REs that were predicted to regulate SOX9: one was on the promoter 
of SOX9 and the other was in the 45k downstream of SOX9. The distal REs was contacted by a loop 
with promoter of SOX9, demonstrating the accuracy of our prediction of RE-TG regulation (Figure 
R8E). We made comparison with ABC model, which obtain RE-TG regulation by ABC score. There 
were 6 REs that were predicted by ABC model to regulate SOX9 and only one of them can be 
validated by loops of Capture-C. ABC model also failed to identify the regulation of SOX9’s promoter. 
This supplement evidence showed that hReg-CNCC can reveal more accurate enhancer-target gene 
regulation. 

We thank the reviewer again and we added these validations into our revised manuscript. 

Excerpt from Manuscript:  

(Page 6) ……To evaluate the reproducibility of hReg-CNCC and its hierarchical architecture, we built 
another regulatory network (hReg-CNCC-H9) with an independent CNCC dataset36. hReg-CNCC-H9 was 
based on the paired RNA-seq and ATAC-seq data of human H9-ESC differentiated CNCC dataset36 and 
was reconstructed with the same consensus optimization model of hReg-CNCC. First, we found significant 
overlapping of TFs, TGs, REs, and TF-TG regulations between hReg-CNCC and hReg-CNCC-H9 (Figure 
S3A), revealing these genes and REs were indeed active in CNCC context. Second, we found that there 
were also two modules in hReg-CNCC-H9 (Figure S3B): TFs in the first module broadly regulated most 
of the TGs and were significantly shared with Module 1 TF in hReg-CNCC (Figure S3C, P-value≤5.11e-
22); the regulations of TFs in the second module were much more specific and was significantly overlapped 
with Module 2 TFs in hReg-CNCC (Figure S3C, P-value≤1.65e-40). This indicated that the two-module 
architecture of hReg-CNCC was reproducible. Third, we obtained the dense TF network of hReg-CNCC-
H9 as we did for hReg-CNCC. We observed consistence of hierarchy of TFs between hReg-CNCC and 
hReg-CNCC-H9 (Figure S3D). For example, the upstream and core TFs, which were higher level of 
regulatory network, were largely shared, including TFAP2A/B, ALX1/3/4, NR2F1, PRRX2, and MYCN. 
And the downstream TFs of hReg-CNCC-H9 and hReg-CNCC were also overlapped, such as TWIST1, 
SIX1, TCF7L1, LMX1B, and SOX4. These results showed that the hReg-CNCC and its hierarchical 
architecture was well-validated and revealed the biological property of CNCC.…… 

(Page 4) ……there were some CRM-TG regulations in hReg-CNCC that can be validated by Capture-C 
assay. For example, two REs were predicted by hReg-CNCC to regulate SOX9. One RE was located on 
SOX9’s promoter and the other RE was located at the 45k downstream of SOX9. It was noted that the distal 
RE and SOX9 were linked by a loop of Capture-C data (Figure 2G). As comparison, ABC model predicted 
6 REs to regulate SOX9 and only one of them can be validated by loops of Capture-C (Figure 2G). This 
again show the outperformance of hReg-CNCC to predict CRM-TG regulation.……

Figure R8. (A). Overlap of TFs, TGs, REs, and TF-TG regulations between hReg-CNCC-H9 and hReg-
CNCC. (B) Heatmap of hReg-CNCC-H9 reveals two-module architecture. (C) The TFs of two modules are 
significantly shared by hReg-CNCC-H9 and hReg-CNCC. (D) Dense TF network of hReg-CNCC-H9. (E) 
Integrative plot of regulation of SOX9. The upper track was Capture-C signal anchored by SOX9 promoter. 
The small black boxes in the middle are regulatory elements predicted to regulate SOX9. Figures are in 
next page. 
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3. Several of the REs identified appear to be inaccessible in the portion of the genome the authors selected 
to depict in figure 5. This raises the question - how many REs are accessible vs. inaccessible in total for the 
data used in this study? Are these regions marked by H3K27ac? Are the in-accessible REs accessible in 
other NCC-derived ATAC-Seq datasets? Authors should investigate these questions both to validate their 
results, and also to assess how REs might be utilized differently in distinct NCC-derived tissues. These 
types of comparisons were performed in Duren et al 2017, and were quite useful for assessing the 
performance of PECA. It would be especially interesting to assess whether REs become active or inactive 
in NC-derived cancer types where master NC regulators such as Sox9 or Sox10 are known to function. 
Publicly available TCGA data should allow the authors to investigate this question. 

Author’s Response: We thank the reviewer for the suggestions on the activity of REs. We agreed 
that some REs in Figure 5D were less accessible than some other peaks in this portion of genome, 
such as peak at promoter of TBL2. To check the accessibility of the 5 REs that regulate BAZ1B, we 
counted the ATAC-seq reads on the REs and calculated the “openness” score1 to evaluate their 
accessibility, which was defined as below: 

� =
(� + �)/�

(� + �)/��

Where � was the read count in this region with length �. � was read count in the background 
region with length ��. � was the pseudocount to avoid zero in denominator. A region with openness 
≥ � can be viewed as an accessible region. We found that even though some REs were less accessible, 
they were all above 2.0 openness (Figure R9A), indicating they were accessible regions in genome. 
Then we accessed all REs in hReg-CNCC and we found they were all with openness ≥ � and median 
openness of about 10.0 (Figure R9B). This showed that all the REs in hReg-CNCC were accessible in 
CNCC context. Second, we fetched the H3K27ac peaks from 10 samples in (Prescott. et al.) dataset 
and merged them into a union set of 109,671 H3K27ac peaks. There were 15,686 REs in hReg-CNCC 
and 11,673 of them were overlapped with H3K27ac peaks, which is statistically significant (empirical 
P-value < 1e-4) and gave the precision of 0.74 and recall of 0.11 (Figure R9C). This showed that most 
of REs in hReg-CNCC were marked by H3K27ac signal, indicating their potential role of active 
enhancers or promoter. Since all the REs in H3K27ac were accessible, we accessed the role of ATAC-
seq peaks that were not include in hReg-CNCC. There were totally 32,256 that were identified as 
ATAC-seq peaks but not inferred as a regulatory element in hReg-CNCC. We collected ATAC-seq 
data from 76 human tissues in ENCODE (Table R2) and overlapped them with these 32,256 ATAC-
seq peaks (Figure R9D). We found “Thyroid gland”, “CD4 primary cells”, “CD8 primary cells”, and 
“Fetal thymus” were top ranked by the overlapped number with the 32,256 ATAC-seq peaks that 
were not include in hReg-CNCC. It was noted that “Thyroid gland” and “Thymus” were part of the 
neck gland, which were the derivatives of neural crest. 

We agreed that it would be quite interesting to access the activity of REs in hReg-CNCC in NC-
derived cancer. In light of the reviewer’s suggestion, we collected ATAC-seq peaks for SKCM (Skin 
Cutaneous Melanoma) of TCGA at https://gdc.cancer.gov/about-data/publications/ATACseq-AWG. 
To make comparison with normal tissue, we collected tissue of “lower leg skin” in ENCODE under 
accession ENCSR864IGD. We overlapped the 15,686 REs in hReg-CNCC with ATAC-seq peaks of 
“lower leg skin” and “SKCM” respectively. We found that 12,297 of the hReg-CNCC’s REs (78.39%) 
were also accessible in the normal “lower leg skin”, which indicated that the neural crest derivatives 
shared some of the epigenomic landscape of neural crest. However, only 1,366 REs (8.71%) in hReg-
CNCC were accessible in “SKCM” (Figure R9E). And the REs that regulated important NC TFs, 
such as SOX9/10 as the reviewer mentioned, were all inactive in SKCM (Figure R9F). This different 
overlapping ratios with hReg-CNCC between normal skin and skin cancer were consistent with the 
huge difference between normal skin and skin cancer (Figure R3E). These observations showed that 
hReg-CNCC held the promise to study the pathology of cancer. 
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Figure R9. (A). Read counts and openness score of five REs regulating BAZ1B. (B). Distribution of 
openness score of 15,686 REs in hReg-CNCC. (C). Overlapping of REs in hReg-CNCC and H3K27ac 
peaks. (D). Overlapping of 32,256 CNCC peaks not included in hReg-CNCC and ATAC-seq peaks of 76 
human tissues. (E). Overlapping of REs in hReg-CNCC, ATAC-seq peaks of “lower leg skin”, and 
“SKCM”. (F). The REs regulating SOX9 and SOX10 were inactive in SKCM. 

Minor concerns: 

1. Authors should confirm abbreviations are defined the first time they are used. "RE" is defined only in 
the methods section. 

Author’s Response: We are sorry about the missing definition of “RE” in the “Results” section. 
We added this definition in the revised manuscript. 

2. In the introduction section "Marcos et al."" should be "Simoes-Costa et al." 

Author’s Response: We were sorry about the typos about the citation and we corrected it in our 
revision. 
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REVIEWERS' COMMENTS: 

Reviewer #1 (Remarks to the Author): 

The manuscript Feng et al. has been greatly improved during revision. I am quite satisfied with the 

additional analysis to validate prior results. I do have a few minor concerns which would improve the 

manuscript further. 

1) Given the strong overlap observed from the venn diagrams within figure S3, I feel readers would 

find this result valuable and thus, these panels should be included as part of the main figure 3 rather 

than the supplement. 

2) It was encouraging to see results from cancer data analysis provided in the rebuttal letter (Figure 

R9). These results provide strong biological and clinical support for the utility of the tools presented. I 

feel readers of this manuscript would value this information and the clinical context. Rather than 

excluding these analyses from the manuscript entirely, these data should be included as an additional 

supplemental figure. 

3) In the discussion section, the authors should provide biological reasoning for why overlaps from 

venn diagrams in figure S3 are not absolute. Clearly perfect overlap is not expected, but it would be 

nice if the authors discussed this. 

Reviewers #2-3 (Remarks to the Author): 

Overall, we believe the manuscript is improved with additional analyses and clarification in the text. 

However, we have a few remaining comments below. 

From major comments 

3. The datasets appear not to be paired based on the same experiment, therefore wouldn’t it be most 

accurate to say the data are paired based on the cell type not biosample level? 

5. We were pleased to see the authors have used the ABC model to predict regulatory relationships. In 

the ABC model, several different threshold cutoffs can be chosen. For example, in Fulco et al a cutoff 

of 0.02 is used, but later studies use 0.015 when assessing GWAS SNP enrichment (perhaps the more 

relevant application here). Can the authors state which threshold they chose? And if stringent, try a 

few other thresholds? 

6. In figure S2B, the authors should explain the meaning of the y axis (Number of bingding REs 

(*1000)), as this metric seems to nicely correlate with their module 1 and 2 regions. 

8. The authors make an overstatement here about the role of IRX3 and FOXM1 in CNCC biology. 

“These two motifs corresponded to IRX3 and FOXM1 respectively, which were highly expressed in 

CNCC (FPKM of IRX3 68.12, FOXM1 49.03) and important regulators of CNCC45,46 

The papers the authors cite do not support this conclusion, and instead indicate that these factors play 

important roles in craniofacial development or in CNCC derivatives. 

Could the authors also clarify if rs11609649 is also GWAS SNP? 

11. The authors have still not updated Figure 4A to show the full range of GWAS p-value cutoffs. It is 

misleading to only show the fold-enrichment for GWAS SNPs up to -log10(p) of 5. The authors say 

that beyond this, there are too few SNPs to calculate a “genuine FC score,” but what does a genuine 



FC score actually mean in this context? There is no objective criterion used to define this. If the 

authors are so concerned about the low number of SNPs in this analysis, then they should use the 

larger set of SNPs from White et al, 2021, as we suggested previously. Alternatively, they should show 

the full range of p-value cutoffs (i.e. replace Figure 4A with Figure R5), and explain in the text that 

after seeing these results, they then focused on the -log10(p) = 5 cutoff. Furthermore, the authors 

have not added the results for SNPsnap-matched random sets of SNPs to the manuscript, Figure R5 b) 

is only in the rebuttal document. Given that the random SNP set still shows a FC for hReg-CNCC 

regions above 1 (but still less than the true SNP set), this is also important to show in the manuscript 

as it further shows that the overall enrichment for facial GWAS SNPs is somewhat weak. 

From minor comments 

5. The overlap of hReg-CNCCs does not appear significant with HARs “Similarly, we obtained the 

significance (P-value=0.1001)”. Are the authors claiming that the hReg-CNCCs are enriched at HARs? 

6. The three hReg-CNCCs regions which overlap an enhancer tested in VISTA are all negative for facial 

reporter signal (Hs264 and Hs476 are completely negative in E11.5 embryos). This provides no 

evidence for craniofacial regulatory activity of these regions, and so we would recommend that the 

data is removed, or a statement to this effect is made - that the loci are not active in the developing 

facial structures at E11.5 of mouse embryonic development. The one element that was active as an 

enhancer is not reproducibly active in the face, and so the statement “showing its possible role in 

neural crest.……” is not true. 

10. Again, we would still ask here that the authors acknowledge in the manuscript that they have 

reduced the threshold, and that no SNPs overlapped with hReg-CNCC REs at 5e-8. It is misleading to 

the reader if this is not stated. 

Other comments 

Figure numbering for Figure 4 appears to be incorrect.
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Point-to-point responses to Reviewers' comments: 

Reviewer #1: 

1.) Given the strong overlap observed from the venn diagrams within figure S3, I feel readers would find 
this result valuable and thus, these panels should be included as part of the main figure 3 rather than the 
supplement. 

Author’s Response: We followed the suggestion to move the Venn diagram in Figure S3 into the 
Figure 3 in main text. This kind suggestion helps to show the reproducibility of hReg-CNCC and 
improves our manuscript. 

2.) It was encouraging to see results from cancer data analysis provided in the rebuttal letter (Figure R9). 
These results provide strong biological and clinical support for the utility of the tools presented. I feel 
readers of this manuscript would value this information and the clinical context. Rather than excluding 
these analyses from the manuscript entirely, these data should be included as an additional supplemental 
figure. 

Author’s Response: We thank the reviewer’s comments. Following the advice of the reviewer, we 
included the cancer data analysis into the Supplement Figure 6 and discussed these observations in 
our main manuscript. 

Excerpt from Manuscript: (Page 13) ......Another possible application is about the cancer of CNCC 
derivatives, such as skin. We found that most of the REs of hReg-CNCC were also accessible in “lower leg 
skin”, but inaccessible in Skin Cutaneous Melanoma (Supplementary Figure 6a). Many REs of CNCC 
regulators, such as SOX9/10, were also inactive in Skin Cutaneous Melanoma (Supplementary Figure 6b). 
These observation indicates the potential role of hReg-CNCC to study cancer of CNCC derivatives.…… 

3.) In the discussion section, the authors should provide biological reasoning for why overlaps from venn 
diagrams in figure S3 are not absolute. Clearly perfect overlap is not expected, but it would be nice if the 
authors discussed this.

Author’s Response: We followed the suggestion of the reviewer to discuss the overlapping between 
hReg-CNCC and hReg-CNCC-H9 in the revised manuscript. The difference between hReg-CNCC 
and hReg-CNCC-H9 may result from the different biological material used: iPSC for hReg-CNCC 
and hESC for hReg-CNCC-H9. 

Excerpt from Manuscript: (Page 7) ...... It was noted that hReg-CNCC and hReg-CNCC-H9 were 
significantly but not fully overlapped, which may result from the different biological material they used 
(iPSC for hReg-CNCC, hESC for hReg-CNCC-H9)…… 
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Reviewer #2/3: 

From major comments 

3. The datasets appear not to be paired based on the same experiment, therefore wouldn’t it be most accurate 
to say the data are paired based on the cell type not biosample level? 

Author’s Response: We thank the reviewer to point out the misleading point and we followed the 
reviewers’ suggestion to clarify that our paired data were at cell type level in the main manuscript. 

Excerpt from Manuscript: (Page 3) ……we collected paired RNA-seq and ATAC-seq data from 
(Prescott, et al.)21 and applied PECA226 to R replicates (R=6, samples were matched at cell type level, 
Supplementary Data 1) to obtain R context-specific regulatory networks…… 

2. We were pleased to see the authors have used the ABC model to predict regulatory relationships. In the 
ABC model, several different threshold cutoffs can be chosen. For example, in Fulco et al a cutoff of 0.02 
is used, but later studies use 0.015 when assessing GWAS SNP enrichment (perhaps the more relevant 
application here). Can the authors state which threshold they chose? And if stringent, try a few other 
thresholds? 

Author’s Response: The threshold was set to be 0.02 by default in the original ABC model 
publication. We think this threshold was not too stringent since 17,499 enhancer-target pairs were 
predicted, which was considerable to hReg-CNCC’s RE-TG prediction 15,686. We added this 
threshold information into our manuscript. 

Excerpt from Manuscript: (Page 16) ……The ABC model was conducted with CNCC ATAC-seq, 
H3K27ac ChIP-seq, and public averaged Hi-C data with default cutoff 0.02 as described in……

6. In figure S2B, the authors should explain the meaning of the y axis (Number of bingding REs (*1000)), 
as this metric seems to nicely correlate with their module 1 and 2 regions. 

Author’s Response: We are sorry for the misleading label of y axis in Figure S2B. The y axis 
represented the number of binding REs of TFs. For example, TFAP2A bound on 11,515 REs and 
LMX1B only bound on 1,393 REs. Number of binding REs showed the regulatory range of TF and 
was correlated with classification of Module 1 and Module 2. We relabeled the y axis in 
Supplementary Figure 2b to be “number of binding REs of TFs”. 

8. The authors make an overstatement here about the role of IRX3 and FOXM1 in CNCC biology. “These 
two motifs corresponded to IRX3 and FOXM1 respectively, which were highly expressed in CNCC (FPKM 
of IRX3 68.12, FOXM1 49.03) and important regulators of CNCC45,46 

The papers the authors cite do not support this conclusion, and instead indicate that these factors play 
important roles in craniofacial development or in CNCC derivatives. 

Could the authors also clarify if rs11609649 is also GWAS SNP? 
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Author’s Response: We are sorry for the overstatement of the function of IRX3 and FOXM1. We 

have reworded this sentences. Based on the � × ���� threshold, rs11609649 was a GWAS SNP, 
which P-value 1.55e-06. We added this information into our revised manuscript. 

Excerpt from Manuscript:  

(Page 6) ……SNP rs12810608 (P-value 3.30e-07) was located in ALX1’s promoter and SNP rs11609649 
(P-value 1.55e-06) was located in a distal regulatory region.…… 

11. The authors have still not updated Figure 4A to show the full range of GWAS p-value cutoffs. It is 
misleading to only show the fold-enrichment for GWAS SNPs up to -log10(p) of 5. The authors say that 
beyond this, there are too few SNPs to calculate a “genuine FC score,” but what does a genuine FC score 
actually mean in this context? There is no objective criterion used to define this. If the authors are so 
concerned about the low number of SNPs in this analysis, then they should use the larger set of SNPs from 
White et al, 2021, as we suggested previously. Alternatively, they should show the full range of p-value 
cutoffs (i.e. replace Figure 4A with Figure R5), and explain in the text that after seeing these results, they 
then focused on the -log10(p) = 5 cutoff. Furthermore, the authors have not added the results for SNPsnap-
matched random sets of SNPs to the manuscript, Figure R5 b) is only in the rebuttal document. Given that 
the random SNP set still shows a FC for hReg-CNCC regions above 1 (but still less than the true SNP set), 
this is also important to show in the manuscript as it further shows that the overall enrichment for facial 
GWAS SNPs is somewhat weak. 

Author’s Response: We followed the reviewers’ suggestion to include full range of GWAS P-value 
cutoffs in Figure 4a. In addition, we discussed the decreasing pattern after � × ����  and then 
focused on the SNPs with P-value ≤ 1 × 10�� . We also included the SNPsnap background into 
Supplement Figure 3 to show that true SNP set was more enriched in hReg-CNCC than random SNP 
set. 

(Page 7) ……First, we observed FC score of all three region sets decreased when threshold P-value≤ 1 ×
10�� and this may result from the insufficient number of SNPs. There were only 1,762 SNP with threshold 
P-value< 1 × 10��. This motivated us to focus the enrichment analysis on SNPs with P-value ≤ 1 ×
10��..……And the Facial SNPs’ enrichment in hReg-NCCC were higher than random SNP set generated 
by SNPsnap38 (Supplementary Figure 3)……

From minor comments:

5. The overlap of hReg-CNCCs does not appear significant with HARs “Similarly, we obtained the 
significance (P-value=0.1001)”. Are the authors claiming that the hReg-CNCCs are enriched at HARs? 

Author’s Response: We were sorry for the misleading expression here and we restated it in the 
manuscript.

(Page 17) ……Similarly, we obtained the P-value of the overlapping between hReg-CNCC and HARs.…… 

6. The three hReg-CNCCs regions which overlap an enhancer tested in VISTA are all negative for facial 
reporter signal (Hs264 and Hs476 are completely negative in E11.5 embryos). This provides no evidence 
for craniofacial regulatory activity of these regions, and so we would recommend that the data is removed, 
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or a statement to this effect is made - that the loci are not active in the developing facial structures at E11.5 
of mouse embryonic development. The one element that was active as an enhancer is not reproducibly 
active in the face, and so the statement “showing its possible role in neural crest.……” is not true. 

Author’s Response: We followed the reviewers’ advice to make statement that the loci were not 
active the developing facial structures at E11.5 of mouse embryonic development. 

(Page 10) ……And one of these three VISTA enhancers “chr8:77690693-77691421” was positive for 
transgenic mouse assay (4/4 were limb positive and 1/4 was neural tube positive), but showing no activity 
in the developing facial structures at E11.5 of mouse embryo.…… 

10. Again, we would still ask here that the authors acknowledge in the manuscript that they have reduced 
the threshold, and that no SNPs overlapped with hReg-CNCC REs at 5e-8. It is misleading to the reader if 
this is not stated. 

Author’s Response: We clarified  that no SNPs with P-value≤ � × ���� were overlapped with 
hReg-CNCC. 

(Page 7) ……we next scanned every facial shape-associated SNPs with P-value ≤ 1 × 10�� in TF-CRM-
TG triplet of hReg-CNCC (no SNPs with P-value ≤ 5 × 10�� were overlapped with hReg-CNCC).…… 

Other comments: 

Figure numbering for Figure 4 appears to be incorrect. 

Author’s Response: We thank the reviewer to point out the error of figure number and we have 
corrected them in the revised manuscript. 


