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Supplementary Note 1 

Rice also develops crown roots. On the basis of on their origins, crown roots can be divided into two 

categories: embryonic crown roots emerging from the coleoptile node and postembryonic crown roots 

differentiating from the nodes of the main stem and tillers. The radicle and crown roots can branch to 

generate two types of secondary roots: large lateral roots that are geotropic and indeterminate, and small 

lateral roots that are ageotropic and determinate. 

Previous studies revealed common features in the molecular regulation of root formation in cereals 

and Arabidopsis1-3. For example, auxin plays a conserved and critical role in the maintenance of the QC. 

A stabilizing mutation in domain II of rice AUX/IAA protein, OsIAA23, leads to a loss of QC identity 

during postembryonic development4. WUSCHEL-RELATED HOMEOBOX5 (WOX5) is exclusively 

expressed in the Arabidopsis QC5. Similarly, a rice WOX5-type homeobox gene, named quiescent-

center-specific homeobox (QHB), is specifically expressed in the central cells of QC6. Moreover, the 

CLAVATA3 (CLV3)/ENDOSPERM SURROUNDING REGION (ESR)-related CLE peptides have 

been found to inhibit the expression of WOX5 or QHB in both Arabidopsis and rice7-10. The lysigenous 

aerenchyma is an internal gas space generated by programmed cell death and lysis of cortical cells11,12. 

In rice, aerenchyma can be constitutively formed or induced under oxygen-deficient conditions13. Thus, 

the unique radial anatomy of the rice roots, i.e. the formation of exodermis, sclerenchyma and 

aerenchyma, reflects an adaptation to semiaquatic life conditions. 

A number of mutants involved in rice root development have been identified using a forward genetics 

approach14,15. However, only a limited number of these genes have been functionally characterized. The 

discoveries of new root developmental genes and construction of a comprehensive networks for root 

cell-specific functions and interactions require sophisticated mutant screens, reverse genetics, and the 

development of a root tissue or cell-specific transcriptome atlas. For instance, a population of rice UAS-

GAL4-GFP lines was used for the isolation of more than 100 lines displaying a cell-specific pattern of 

expression in roots16. In addition, a rice seedling transcriptome atlas which includes 40 cell types has 

been produced by laser capture microdissection17. However, this dataset is limited in scope to a few root 

cell types or encompass zones or tissues combining multiple cell types. 
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Supplementary Note 2 

Here we described how we annotated cell clusters of rice radicles. 

Epidermis 

Clusters 1, 4 and 9 belonged to the epidermis/root hair population (Fig. 1a). These clusters were 

separated from other cell clusters on the UMAP plot (Fig. 1a), suggesting a unique transcriptome 

signature. ROOT HAIRLESS1 (OsRHL1), a key regulator of rice root hair development, was highly 

expressed in cluster 4 (Fig. 1d; Supplementary Fig. 9)18,19. RNA in situ hybridization assays further 

reveled that the transcripts of the cluster 1 and 9-specific genes Os03g0155900 and Os10g0454200, 

accumulated to high levels in the epidermis (Supplementary Fig. 10a, b). In support of these findings, 

rice cellulose synthase-like D1 (OsCSLD1) and Sec14-nodulin domain protein (OsSNDP1) genes, 

which play important roles in root hair morphogenesis20,21, were overrepresented in cluster 4 (Fig. 1d; 

Supplementary Fig. 9). Likewise, transcripts of the phosphate (Pi) transporter gene OsPht1;2 (OsPT2), 

which is predominantly expressed in epidermal cells of primary roots22, were readily detected in clusters 

1 and 4 (Fig. 1d; Supplementary Fig. 9). Moreover, the epidermis/exodermis-specific gene purple acid 

phosphatases10c (OsPAP10c) was also predominantly expressed in clusters 1 and 9 (Fig. 1d; 

Supplementary Fig. 9)23. 

Intriguingly, cell cluster specific gene analysis revealed a strong enrichment of transporter genes in 

the epidermal clusters (Supplementary Fig. 11; Supplementary Data 2). We found, for example, that 

two potassium transporter genes (OsHAK11 and OsHKT1;1) were highly expressed in clusters 1 and 4 

(Supplementary Fig. 11; Supplementary Data 2)24,25. In addition, all three clusters had abundant 

transcripts for the nitrate transporter (OsNAR2.1, NRT2.1, and OsNRT2.2) and ammonium transporter 

(OsAMT1;2 and OsAMT3;2) genes (Supplementary Fig. 11; Supplementary Data 2)26,27. Moreover, we 

observed high levels of transcripts for the genes involved in calcium, iron, sulfur, and water transport 

(Supplementary Fig. 11). Thus, these results imply that the epidermis, including root hairs, plays an 

important role in nutrient uptake and ion homeostasis in rice. 

Ground tissue 

The rice ground tissue is made up of four cell layers, namely the exodermis, sclerenchyma, cortex and 

endodermis, from outside-in (Fig. 1). Clusters 3 and 8 were assigned as exodermis cells because the 
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cluster-specific gene Os04g0125700 was exclusively expressed in the exodermis (Supplementary Fig. 

10c). Clusters 6 and 0 were assigned as the sclerenchyma cell layer and cortex, respectively, as 

determined by the specific accumulation transcripts of the cluster-specific genes, Os08g0115800, 

Os01g914100 and Os03g135700, in the corresponding cell layers (Supplementary Fig. 10d-f). 

As mentioned earlier, plants have developed several strategies to control nutrient uptake for optimal 

growth. One such strategy is the formation of a lignin-based diffusion barrier called the Casparian strip 

(CS) at the exodermis and endodermis of rice roots. In Arabidopsis, the CS is formed by the concerted 

action of localized NADPH oxidase and peroxidases through the action of Casparian strip domain 

proteins (CASPs)28. Interestingly, we found that the genes encoding secreted (type III) peroxidases 

(prx4, prx27, prx34 and prx74) were overrepresented not only in the sclerenchyma cell layer (clusters 

6) but also in exodermal cells (clusters 3 and 8) (Supplementary Fig. 12; Supplementary Data 2). 

Therefore, these results imply that, in contrast to the endodermis of Arabidopsis, the formation of CS 

in rice sclerenchyma cell layer requires coordination of two adjacent cell layers: the secreted 

peroxidases from exodermis may also contribute to H2O2-dependent lignin polymerization in the 

sclerenchyma cell layer. 

Two cell clusters (2 and 13) were linked to endodermal cells. Casparian strip domain protein1 

(OsCASP1), which is required for endodermal CS formation in Arabidopsis29, was highly enriched in 

cluster 13 (Fig. 1d; Supplementary Fig. 9). In contrast, Low silicon rice1 (Lsi1), which encodes a silicon 

transporter localized at the distal side of endodermis30, was predominantly expressed in cluster 2 

(Supplementary Fig. 9). The expression of Os10g155100, the marker gene for cluster 13, was restricted 

to endodermal cells of the maturation zone (Supplementary Fig. 10g). Thus, these results suggest that 

rice root endodermal cells are not homogenous; endodermal cells involved in CS formation (cluster 13) 

feature a distinct transcriptome. Consistently, clusters 2 and 13 were topologically separated on the 

UMAP. The association of cluster 13 with cluster 5 suggests that this cluster may retain some 

meristematic activity. Similar to the enrichment of secreted peroxidases in the sclerenchyma cell layer, 

the elevated expression of peroxidase genes, including as prx5, prx54, prx86, prx111 and prx112, was 

observed in clusters 2 and 13 (Supplementary Fig. 12; Supplementary Data 2). 

Pericycle and vascular tissues 
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We annotated cluster 15 as root pericycle based on the reported expression patterns of the citrate 

transporter genes OsFRDL1 and Os07g0634400 (Fig. 1d; Supplementary Fig. 9; Supplementary Fig. 

10h)31. Interestingly, the expression of an outward-rectifying Shaker-like potassium channel gene 

OsSKOR and a putative auxin transport gene OsCOLE1‐INTERACTING PROTEIN (OsCLIP) was also 

detected in this cluster (Fig. 1D; Supplementary Fig. 9)32,33. 

Cluster 17 was designated as phloem based on the strong expression of the phloem-specific gene FT-

INTERACTING PROTEIN1 (OsFTIP) (Fig. 1d; Supplementary Fig. 9)34. Clusters 12 and 16 were 

assigned as xylem because three marker genes, Os01g0750300, Os08g0489300 and Os07g0638500, 

were strongly expressed in this tissue as revealed by in situ hybridization assays (Supplementary Fig. 

10i-k). In line with heavy deposition of lignin in the tracheary elements of xylem, genes related to the 

lignin monomer biosynthetic genes such as phenylalanine ammonia-lyase (PAL), 4-coumarate:CoA 

ligase (4CL), cinnamyl alcohol dehydrogenase (CAD) and caffeic acid O-methyl transferase (COMT) 

and cinnamoyl-CoA reductase (CCR) were highly enriched in cluster 12 (Supplementary Data 2)35. The 

assignment of cluster 16 as xylem was further confirmed by RNA in situ hybridization assays of two 

marker genes, a Class III HD-Zip gene OsHB4 which is expressed in the xylem tissue of vascular 

bundles, and SECONDARY WALL NAC DOMAIN PROTEIN6 (OsSWN6) which encodes one of the 

NAC transcription factors involved in secondary wall formation (Supplementary Fig. 9)36-38. 

We related clusters 7 and 10 to other cell types in the vascular tissues. Three previously identified 

vascular genes including SALT TOLERANCE RECEPTOR-LIKE CYTOPLASMIC KINASE1 (STRK1), 

SALT-RESPONSIVE ERF1 (SERF1) and ACTIN DEPOLYMERIZING FACTOR3 (OsADF3) were 

preferentially expressed in these two clusters (Supplementary Fig. 9)39-41. 

Meristematic cells 

Each cell type in the root tip is composed of dividing cells (i.e. transit-amplifying cells) and 

differentiated cells. Since the unsupervised cell clustering method sorts all the single cells into distinct 

cell clusters by the similarities in transcriptome, all the dividing cells in the root tip tend to group 

together, regardless which cell types they belong to. Clusters 5, 11, 18 and 19 consisted of root meristem 

cell populations. The genes involved in DNA synthesis such as histone H2A (H2A), H2B.2, H3, H3R-

11 were highly expressed in cluster 18, whereas transcripts of CyclinB1;1 (cycB1;1), cycB2;2 and 
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cyclin-dependent kinase B2;1 (OsCDKB2;1) accumulated in cluster 19 (Fig. 1d; Supplementary Fig. 9). 

Therefore, we designated clusters 18 and 19 as representing cells in the S and G2 phases, respectively. 

The cells in clusters 5 and 11 showed an enrichment of the genes encoding ribosomal proteins and 

biological processes related to translation (Supplementary Data 2). In yeast and mammals, translation 

rates are robust in the G1 phase of the cell cycle but are low during mitosis42. Thus, we concluded that 

the cells in clusters 5 and 11 represented the cells in the G0/G1 phase as well as those undergoing 

differentiation, also known as transit-amplifying cells43. Consistent with the above annotations, the 

transcripts of QUIESCENT-CENTER-SPECIFIC HOMEOBOX (QHB) gene, a putative orthologue of 

Arabidopsis root stem-cell niche organizer WUSCHEL (WUS)-RELATED HOMEOBOX5 (WOX5)6,7, 

was detected in cluster 5 (Supplementary Fig. 9). Moreover, in situ hybridization assays revealed most 

of the marker genes (Os01g0273100, Os02g0805200, Os03g0279200, Os04g0496300, Os05g438700 

and Os08g0490900) of clusters 5, 18 and 19 exhibited sporadic expression patterns in the RAM 

(Supplementary Fig. 10m-r).  

Os03g0247200, the marker gene for cluster 14, was specifically expressed in the root cap junction, a 

cell layer with thick cell wall between root cap and the proximal root meristem (Supplementary Fig. 

10l)44. As such, we assigned cluster 14 as root cap junction. Cluster 20 could not be annotated because 

of the lack of known marker genes. We did not annotate any cell clusters corresponding to the root cap, 

probably due to the fact that root cap cells are largely resistant to cell wall digestion during protoplast 

preparations. 

  



Zhang et al., The rice root cell atlas  Feb 27, 2021 

 6 

Supplementary Note 3 

We examined the expression pattern of known transcription factors genes involved in the root 

development on the UMAP. WUSCHEL-RELATED HOMEOBOX5 (WOX5) is exclusively expressed 

in the Arabidopsis QC5. OsWOX5 was expressed in meristematic cell clusters (Supplementary Fig. 13a). 

However, due to low number of WOX5 positive cells, we could not faithfully annotate a cell cluster 

corresponding to rice QC in our atlas. It has been shown that two transcription factors SCARECROW 

(SCR) and SHORT-ROOT (SHR) play important roles in ground tissue differentiation in Arabidopsis45. 

Consistently, both OsSCR1 and OsSCR2 were expressed in endodermal cluster (cluster 13), whereas 

OsSCR2 transcripts could be also detected in the cortex cell cluster (cluster 0). Similarly, OsSHR1 and 

OsSHR2 were predominantly expressed in meristematic and endodermal clusters (Supplementary Fig. 

13a). The transition from cell division to cell expansion and differentiation in distinct root 

developmental zones is guided by a gradient distribution of a group of transcription factors named 

PLETHORA (PLT)46. Four rice PLT genes (OsPLT2, OsPLT3, OsPLT5, and OsPLT9) were expressed 

in the root meristematic cell clusters (Supplementary Fig. 13a). 

Because auxin has been implicated in root development in Arabidopsis, we then probed the 

expression of the genes involved in auxin transport and signaling transduction including PIN-FORMED 

(PIN), AUXIN RESPONSE FACTOR (ARF) and AUX/IAA47-50. As shown in Supplementary Fig. 13b, 

while OsPIN1C (Os11g0137000) and OsPIN1D (Os12g0133800) were predominantly expressed in the 

meristematic cell clusters, OsPIN10B (Os05g0576900) was broadly expressed in the root tip. Among 

all the rice ARFs, the transcripts of ARF2, ARF7, ARF9 and ARF22 could be detected in the epidermal 

cells (Supplementary Fig. 13b). On the contrary, ARF16 was highly expressed in the RAM, endodermis 

and vascular tissues. IAA17 and IAA12 conferred highest and broadest expression within all the 

AUX/IAA genes. IAA2 was specifically expressed in one of the endodermal cell cluster (cluster 13). 
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Supplementary Figures 

 

Supplementary Fig. 1 | Summary the rice root scRNA-seq. 

a, The percentage of mitochondrial UMIs in each cell. b, The scatterplot showing top two dimensions 

of harmony. The batch-effect from two biological replicates was removed by the Harmony algorithm51. 

c, A ridge plot showing the UMIs proportion of protoplasting genes 52. Please note that protoplasting 

genes were not enriched in cell clusters. d, t-SNE visualization of 21 cell clusters of rice radicles. Each 

dot denotes a single cell. Colors denote corresponding cell clusters as in Fig. 1a. e,f, t-SNE (e) and 
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UMAP (f) visualization of two biological replicates. g, Proportion of the cells from two biological 

replicates in each cell cluster. h, Proportion of inferred cell cycle phases (G1, S and G2/M) in each cell 

cluster. The cell cycle phase was inferred from the transcriptome using the "CellCycleScoring" function 

in Seurat. Please note that meristematic cell populations (C5, C11, C18 and C19) were predominant in 

the G2/M and S phases, whereas differentiated cells (C1, C8, C10 and C14) were mainly in the G1 

phase. f, The perspective view of the 3D UMAP at different angles. Cluster names and colors are the 

same as in Fig. 1a.  
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Supplementary Fig. 2 | Differentiation trajectories of trichoblasts and atrichoblasts. 

a, t-SNE map showing the epidermal cell populations. Colored by clusters: C1, red; C4, purple; C9, 

green. b, UMAP plot showing the expression pattern of selected marker genes for clusters 1, 4 and 9. c, 

Expression of pOs10g10g0452700::VENUS-N7 reporter (green) in rice radicles. the positions (P1 to 

P4) for transverse sections are shown. Six individual plants were observed. Scale bar, 200 µm. d,e, Top 
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20 GO terms of trichoblasts (C4) and atrichoblasts (C1). The distinct GO enrichments of trichoblasts 

and atrichoblasts suggest that they are functionally specialized. -Log10FDR for each item is given. 

  



Zhang et al., The rice root cell atlas  Feb 27, 2021 

 11 

 

Supplementary Fig. 3 | Differentiation trajectories of ground tissues. 

a, t-SNE plot showing the topology of clusters 0, 3, 6 and 11. Please note that C3, C6 and C0 are all 

connected to C11. b,c, t-SNE plot showing clusters 0, 3, 6 and 11. Colored by Palantir pseudotime (b) 

or cell cluster (c). Three differentiation trajectories toward exodermis (Ex, C3), cortex (Co, C0) and 

sclerenchyma layer (Sc, C6) are shown. a to f (black circles), six nodes used for quantification of branch 

probabilities as in Fig. 3d. d,e, ForceAtlas2 layout showing differentiation path of ground tissues. 

Colored by cell type (d) or DPT pseudotime (e). Ex, orange; Co, red; Sc, green. The cells in cluster 11 

can be separated into three progenitor cell clusters, named to 11a, 11b and 11c. f-h, Top 20 GO terms 

of representative gene modules 1 and 2 for Ex, module 3 for Sc and module 4 for Co in Fig. 3h-j. -
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Log10FDR for each item is given. 
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Supplementary Fig. 4 | Characterization of rice OsGATA6 mutants. 

a, Schematic presentation of generation of the OsGATA6 mutants (KO #1 and #2). The target site 

(arrowhead), sgRNA sequence (green), the mutated nucleotide (red), and Sanger sequencing results 

(below) are shown. b, Expression pattern of OsGATA6 and OsGRF6 in the rice root tip revealed by 

RNA in situ hybridization assays (top panels) and UMAP plot (bottom panels). Eight individual plants 

for each gene were observed. Scale bar, 100 µm. c, The root length of WT (ZH11) and OsGATA6 

mutants (KO #1 and #2). Plants were grown on 1/2 MS mediums in long days at 29°C for 4 days. One-

way ANOVA was performed by the Turkey’s multiple comparisons test, **p < 0.01. n = 16 individual 

plants. d, RAM size of wild type (left) and OsGATA6 (right) mutants. Six individual plants were 

observed. One representative root for each genotype is shown. Line marks the RAM. The size of RAM 

is given. Scale bar, 100 µm. 
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Supplementary Fig. 5 | Analysis of ATAC-seq data. 

a, The genome-wide distribution of all ATAC-seq peaks among each sample. Window size: gene body 

± 3.0 kb. TSS, transcription start sites; TES, transcription end site. b, MA plots showing fold-change of 

differentially accessible peaks among the MZ and EZ. Blue, distribution of constitutive peaks; pink 

dots, individual differential peaks. c, Location of ATAC-seq peaks in the MZ (left) and EZ (right) 

samples. All the differential peaks can be sorted into nine categories based on their relative locations in 

the Nipponbare genome (shown in different colors). The percentage of each category is given. Please 

note that 39.36% peaks in the MZ resided in the promoter (<= 1 kb) region, in comparison to 33.42% 

in the EZ; In contrast, the EZ sample had a higher accessibility in the distal intergenic regions (24.79% 

in the MZ vs 29.33% in the EZ). This difference suggests a dynamics in chromatin accessibilities along 

cell differentiation from the MZ to EZ. d, GO analyses of differentially accessible genes. The selected 

50 enriched GO biological processes are indicated. -Log10(p.adj) is given. e, Representative ATAC-seq 

tracks for bHLH, GATA and MYB family transcription factor genes. The genomic loci are shown, and 

the representative genes are highlighted in black. Two representative genes for each transcription factor 

family are shown. 
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Supplementary Fig. 6 | Integrative analysis of ATAC-seq and scRNA-seq data. 

The accessibilities of cluster-specific genes are shown. Each dot represents one cluster- specific gene. 

Red, highly accessible in the MZ; Blue, highly accessible in the EZ. The genes associated with 

differential peaks (Log2(foldchange) >= 0.58 or <= -0.58) are shown. Twenty-one cell clusters (C0 to 
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C21, a-u) identified by scRNA-seq (Fig. 1a) are shown. Please note that the accessibilities of cluster-

specific gene are largely correlated with the nature of cell type. For example, the genes in cluster 9 

(meristematic cells for epidermal cells) exhibited higher accessibility in the MZ than in the EZ. In 

contrast, the genes enriched in clusters 1 and 4 (root hair and non-root hair cell clusters) are highly 

accessible in the EZ, rather than in the MZ. 
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Supplementary Fig. 7 | Integrative analysis of Arabidopsis root scRNA-seq datasets. 

a, UMAP plot showing Arabidopsis root cell clusters. Three published datasets were merged and re-

clustered (Methods). In total, 22 cell clusters (R0 to R21) were identified. The assignment of each 

cluster is given. Each dot denotes a single cell. Colors denote corresponding cell clusters. b, Broad 
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RH, root hairs; RMC, root meristematic cells; Stele/VC, stele/vascular tissues; X, xylem. c, Proportion 

of the cells from three published Arabidopsis root scRNA-seq datasets (Denyer, Ryu and Zhang) in each 

cluster. d, UMAP plot showing the distribution of the cells from three published Arabidopsis root 

scRNA-seq datasets (Denyer, Ryu and Zhang). e, Expression pattern of representative cluster-specific 

marker genes. Cluster number (R0 to R21) is given on the right. En/Cs+, endodermis/endodermis with 

Casparian strip; VC-P/-X, vascular tissue without phloem and xylem. Dot diameter, proportion of cluster 

cells expressing a given gene. The full names and references for these selected genes are given in 

Supplementary Data 3. 
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Supplementary Fig. 8 | Comparative analysis of rice and Arabidopsis root scRNA-seq datasets. 

a, Evaluation of batch effects across species. The top two PCs showing the batch-effects between rice 

and Arabidopsis scRNA-seq datasets (top). After dataset integration using Canonical Correlation 

Analysis (CCA) in Seurat, this effect was eliminated (bottom). b, t-SNE plot showing 30 super root cell 

clusters (I0 to I29) revealed by the integration of rice and Arabidopsis scRNA-seq datasets. Each dot 

denotes a single cell. Colors denote corresponding cell clusters. 
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Supplementary Fig. 9 | Expression pattern of selected marker genes for cell cluster annotation. 

UMAP plot showing the expression levels of selected marker genes in each cell type. The marker genes 

for epidermal, exodermal, vascular cylinder, endodermal, pericycle, xylem, phloem and meristematic 

cells were shown, respectively. The full names and referenced of these selected genes are summarized 

in Supplementary Data 3. 
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Supplementary Fig. 10 | Validation of cell types by in situ hybridization assays 

The expression patterns of selected marker genes in root tissues using RNA in situ hybridization assays 

(a to x) and UMAP plots (a’ to r’). We have examined over 30 cluster-specific genes. However, some 

of them did not give reliable signals (data not shown). Roots are longitudinally (a to r) or transversely 

(s to x) sectioned. Eight individual plants for each gene were observed. Scale bar, 100 µm. 
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Supplementary Fig. 11 | Expression pattern of the genes involved in nutrition and ion assimilation. 

The expression levels of transporter genes were visualized on the UMAP plot. Please note that these 

transporter genes are highly enriched in the epidermal cell populations and exhibited cell-type 

specificity. For example, OsTIP4;3 was predominately expressed in cluster 4. The full names and 

referenced expression pattern of selected genes are summarized in Supplementary Data 3. 
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Supplementary Fig. 12 | Distinct expression pattern of peroxidases genes. 

UMAP plot showing the expression pattern of PRX genes across rice root cell types. Please note that 

the expression of PRX genes are highly cell-type specific. For example, PRX54 and PRX5 were highly 

expressed in cluster 13 (endodermis), whereas PRX86, PRX111 and PRX112 were predominantly 

expressed in cluster 2 (endodermis). In contrast, PRX27, PRX32 and PRX74 and PRX86 were detected 

low high

Gene expression

PRX111_Os07g0677200

PRX135_Os12g0112000

PRX74_Os05g0499300

PRX126_Os10g0109600

PRX112_Os07g0677300

PRX2_Os01g0205900

PRX4_Os01g0270300

PRX5_Os01g0263000PRX17_Os01g0543100

PRX27_Os02g0236600

PRX32_Os02g0833900 PRX46_Os03g0369000PRX34_Os03g0121300

PRX54_Os04g0423800

PRX55_Os04g0465100PRX71_Os05g0135500

PRX80_Os06g0490400

PRX86_Os06g0547400

PRX88_Os06g0546500

PRX92_Os06g0695300 PRX93_Os06g0695200 PRX95_Os07g0104500

PRX97_Os07g0104100

PRX98_Os07g0115300

PRX102_Os07g0499500 PRX104_Os07g0531400

PRX105_Os07g0638600 PRX129_Os10g0566800



Zhang et al., The rice root cell atlas  Feb 27, 2021 

 27 

in cluster 0 (cortex). These expression patterns suggest that PRXs may exert different roles in distinct 

cell types. 
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Supplementary Fig. 13 | Expression pattern of known genes involved in root development. 

a, UMAP plot showing the expression pattern of OsWOX5, OsPLTs, OsSCRs and OsSHRs across rice 

root cell types. b, UMAP plot showing the expression pattern of auxin transport gene (OsPINs) and 

signaling factors (ARFs and AUX/IAAs) across rice root cell types. 
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