
Editorial Note: This manuscript has been previously reviewed at another journal that is not 

operating a transparent peer review scheme. This document only contains reviewer comments and 

rebuttal letters for versions considered at Nature Communications. 
 
In the fourth round of peer review Reviewer #1 was unavailable to review the manuscript,  
therefore Reviewer #5 was recruited to comment on the author’s response to Reviewer #1 
 

Reviewers' comments: 

Reviewer #1 (Remarks to the Author): 

The new focus on premalignant lesions avoids some of the major issues I outlined previously. The 

most interesting conclusion is that “Cell-specific phenotypic behavior can be “overridden” by the 

tissue architecture, allowing the tumor to realize increased fitness”. However, I still have major 

reservations about multiple technical aspects of the model and the applicability of the chosen 

parameters to DCIS. Without running simulations that closely model the specific generation times 

and population sizes for DCIS and without any attempts to validate the findings in actual DCIS, this 

new model delivers purely theoretical results without any evidence that this is actually relevant in 

this premalignant lesions. I am for example surprised that the authors did not comment on my 

suggestions to try and compare their data to single cell DCIS sequencing results from Navin et al 

which could have been a first step to reality-check their data. 

Furthermore, their revised model is not presented in the context of what is known about the 

evolution, population sizes, mutation rates or genomic aberration types in DCIS but broadly 

continues to reference results from evolution studies done on established cancers (see for example 

the abstract which mainly references studies investigating advanced cancers). This is confusing and 

makes it difficult to understand what is novel. 

There are also problems with the evolutionary terminology: calling some tumors Darwinian and 

others neutral establishes an unnecessary division as all of these models are evolving based on 

Darwinian principles. 

Major comments on the results: 

The authors state that heterogeneity measures do not approach steady states until extreme time 

scales (20,000 generations; 50 years). Thus, their model assumes a generation time <1 day which is 

highly questionable for a usually benign lesion such as a DCIS. 

The results in figure 1 appear quite surprising when looking at the probabilities of driver mutations 

based on the model parameters. The simulation is run for 4000 generations with 700 driver loci in 

the genome and a mutation rate of 10^-8. The per driver mutation rate per cell division is therefore 

only 0.000007. Despite this, most cells have 7-9 drivers at the end of the simulation which seems 

highly unlikely. The data in figure 1 does also not tally with video 1 where a similar numberof drivers 

is seen in most cells of the population at 9 seconds out of 21 seconds runtime (with 21 seconds 

representing 100.000 generations). 7-9 driver mutations therefore only seem to appear after ~40000 

generations rather than 4000 in a model with the above parameters. What is correct? 



Furthermore, it is not clear if such high driver loads are realistic for DCIS. Relevant references are not 

included, showing a lack of integration with what is known about the biology of DCIS. 

“In short, small domain sizes increase the selection pressure enabling fast sweeping and low 

diversity.” 

The authors make this conclusion based on the observation of low diversity and fast sweeping in 

small domain sizes. However, the number of drivers is higher in many cells in the population with 

large domain sizes in Figure 1. I would therefore argue that selection pressure is higher and results in 

a faster increase in fitness in larger domain sizes than in the model with the small size. A sweep is 

unfortunately a poor surrogate of selection pressure as it heavily depends on populations size. 

“Bounded, non-interacting regions play a role in human cancers, which are often locally constrained 

to a single gland or a duct” 

This is one of the statements I specifically criticised in my previous comments. Most advanced 

cancers are not constrained by ductal or gland structures but show highly chaotic growth. Although 

the authors say in the rebuttal that they revised the text, the sentence is still unchanged. 

Figure 2: I was surprised that the single region always seems to follow a neutral trajectory, 

particularly given the heterogeneity of drivers observed for a single region in figure 1. This is 

unfortunately neither explained in the text, nor are representative pictures included in figure 2 to 

allow readers ro assess why there is this big difference. I could also not find any information on the 

number of cells in this simulation which precluded a more detailed assessment of these results. 

“The branching topology of a breast ductal and glandular network structure acts as a evolutionary 

accelerant, where spatially segregated regions (ductal branches) work in combination with cell 

mixing (subject to varied branching topology) to accelerate tumor evolution43.” 

This sentence suggests that evolution has already been studied in great detail in DCIS which 

questions what is novel about the authors work. However, looking at reference 43, I could not find 

any statement about the ductal network acting as an evolutionay accelerant though. This is very 

confusing. 

“Tumors initiated further from the ductal root in smaller, more constrained branches (e.g. purple 

curve) are characterized by clonal sweeping (vertical trajectories) early. At later times, the tumor 

expands into new unexplored territories, shifting toward neutral trajectories” 

Does this not contradict the overall theory the authors follow which is that spread into new but 

spatially confined compartment accelerated adaptive evolution? 

“Whilst this type of quantification is not currently possible for clinical tissues, our results indicate 

that we must be cautious when interpreting non-spatial measures of evolution” 



This is not correct as resected DCIS lesions should be readily obtainable and Navin et al have shown 

that these can be analyzed at the single cell level to test for example the hypothesis that populations 

are more homogenous in small ducts. 

Reviewer #3 (Remarks to the Author): 

In revising the manuscript and figures, West, Anderson, and colleagues have satisfyingly addressed 

most of the suggestions and concerns from the initial review. This revised paper more clearly 

describes their spatial model of tumor progression, offers additional compelling visualizations of the 

role of spatial constraints and mixing rates on clonal evolution and genetic heterogeneity, and more 

accurately summarizes several insights regarding realized tumor fitness and the Darwinian-to-

neutral spectrum of emergent evolutionary dynamics. 

Pages 2 and 4: Both pages contain the sentence "We view this as a paradigm-shifting insight: the 

surrounding spatial context modulates the 'realized tumor fitness.'" This claim is sweeping but 

vague, so rather than repeat it twice verbatim, it would be useful to alter at least its second 

appearance so that it instead precisely defines the quantity referred to as "realized tumor fitness" 

and clearly identifies which paradigm is being shifted. 

Page 8, equation 3: There appears to be an erroneous equals sign. 

Reviewer #4 (Remarks to the Author): 

This review is focused on the biological accuracy of the spatial model presented in Figure 3 and 4 of 

the manuscript. While the breast phantom ductal network reconstructions seem to accurately model 

the branching network of the breast epithelium from larger lactiferous ducts to major ducts and 

finally the smaller terminal ducts that connect to the lobules, one important aspect that is not 

integrated in these reconstructions is the actual terminal lobular region of the breast epithelium. 

The main problem here is that the epithelium in the lobular areas are considered to be the sites with 

the highest cellular turnover, and the terminal ductal lobular units (TDLUs) represent the most 

common sites of tumor formation in the human breast both within the lobular ducts as well the 

lobules themselves (see Honeth et al, 2015, Stem Cell Reports; 10.1016/j.stemcr.2015.02.013; and 

O’Malley M.B. et al, Breast Pathology. Elsevier, Philadelphia, 2011). 

Can the authors explain in more detail what levels of epithelial ducts are being modeled using their 

breast phantom ductal network reconstructions? In particular, does the size of the ducts in their 

models reflect lactiferous ducts and major ducts, or would the sizes of terminal ducts be reflected as 

well? 



Considering that terminal ductal lobular units (TDLUs) are the main sites of breast cancer initiation, it 

would be important to adjust their reconstruction shapes so that the smaller sized terminal ducts 

and lobular shapes of the breast epithelium are reflected. 



Summary of changes to the manuscript for the reviewers:  
Summary of the manuscript: In summary, the manuscript helps to clarify the debate over neutral evolution by exploring a key mechanism which can explain the transition from strong Darwinian effects characteristic of lesions early in tumorigenesis to neutral dynamics of late-stage cancers. This mechanism is the cellular competition for space.  
Summary of changes: We thank the reviewers for the advice to validate the parameterizations used in the model, which we have done in figure 3. Our manuscript is organized as follows: figures 1 and 2 represent a systematic understanding of the mathematical model constrained to various spatial domains. This generalized understanding of the model is subsequently applied to precancerous tumor evolution in figure 4. Parameterizations for figure 4 were determined by confronting the model to data of clonal heterogeneity from DCIS patients in Casasent et. al. Cell, 2018, shown in figure 3. As such, figure 4 represents biologically realistic cell numbers and biologically realistic spatial topologies (ductal network structures). Note: the modeling herein does not address late-stage invasive cancers.  
Summary of novelty: In figure 4B we show that the non-spatial modeling commonly used to describe bulk-sequencing data drastically underestimates the propagation of new driver mutations. Intriguingly, even 2- or 3-dimensional models which explicitly consider spatial competition cannot account for this Darwinian-neutral evolutionary transition (see figure 4B). The precise spatial structure of ductal carcinomas strongly influences the competition for space, accelerating evolution by the combination of two factors: spatial constraints and limited cellular mixing. The two factors are subject to the branching topology of the ductal structure, modulating the rate of evolution over time.   The surprising role of spatial constraints is as follows: without changes in cell-specific fitness, tumors 
may undergo accelerated acquisition of driver mutations. The time-dependent evolutionary dynamics are not binary (Darwinian or neutral) but rather continuous.   
Brief summary of changes: While this central message in the manuscript remains unaltered, our updated manuscript represents the following substantial changes in response to reviewer feedback: 1. The key addition in this revision is the parameterizations of the model for all polyclonal DCIS tumors in Casasent et. al., which were compared to diversity outcomes of the mathematical model. 2. Parameterizations (figure 3) follow a linear-relationship between driver fitness and mutation rate (on a log-scale; characterized by a best-fit to eqn. 4. As heterogeneity increases in A-F, the slope of this best fit m also increases in G-L (see figure S6). 3. Figure 4 simulates heterogeneity outcomes for two DCIS patients (DC13 and DC18), showing the transition from Darwinian to neutral evolution for both.     
  



Reviewer #1 (Remarks to the Author): The new focus on premalignant lesions avoids some of the major issues I outlined previously. The most interesting conclusion is that “Cell-specific phenotypic behavior can be “overridden” by the tissue architecture, allowing the tumor to realize increased fitness”. However, I still have major reservations about multiple technical aspects of the model and the applicability of the chosen parameters to DCIS.   Without running simulations that closely model the specific generation times and population sizes for DCIS and without any attempts to validate the findings in actual DCIS, this new model delivers purely theoretical results without any evidence that this is actually relevant in this premalignant lesions. I am for example surprised that the authors did not comment on my suggestions to try and compare their data to single cell DCIS sequencing results from Navin et al which could have been a first step to reality-check their data.  We thank the reviewer for the suggestion to validate our model findings using Navin et. al. The new version of the manuscript now contains a new figure (figure 3) dedicated to parameterizing the model using data from Navin et. al, as suggested. We have also added a paragraph describing the parameterization procedure, copied below for convenience:  
“As mentioned in the introduction, the seminal study by Casasent et. al. performed single-
cell DNA sequencing on 10 synchronous DCIS-IDC patients to quantify intratumoral 
heterogeneity while preserving spatial information. Synchronous patients provide an 
advantage over comparisons of DCIS with recurrent IDC samples which are often collected 
many years apart. Their findings, reproduced in figure 4A-F, indicate a high degree of 
intratumor heterogeneity within ductal regions with the major clones also present in 
invasive regions. These data provide evidence for the multiclonal invasion model in DCIS, 
where one or more clones escape the ducts and migrate into adjacent tissues, maintaining 
much of the heterogeneity (the IDC heterogeneity is not shown here). This section focuses 
on the role tissue architecture plays in shaping the pattern of ductal carcinoma 
heterogeneity. 
 and: 

 
Here, the mathematical model is extended to a three-dimensional domain and constrained 
to grow inside a ductal network reconstructed with data from anthropomorphic breast 
phantoms. The model is parameterized (see figure 4G-L; see Methods) by performing by 
10,000 stochastic simulations for a range of driver mutation rates (μd = [10-7, 1]) and 
fitness (sd = [10-3, 10]). The simulated evolution of DCIS is initialized and constrained to 
grow inside a realistic three-dimensional topology of a continuously connected series of 
progressively smaller branches, as shown in figure 4A (see also video V4 and V5). Measures 
of clonal heterogeneity for all polyclonal DCIS tumors in Navin et. al. were compared to 
diversity outcomes of the mathematical model (eqn. 3). The range of parameterizations 
which recapitulate the heterogeneity for each DCIS tumor are shown in figure 3G-L. 
Parameterizations follow a linear-relationship between driver fitness and mutation rate 
(on a log-scale; characterized by a best-fit to eqn. 4. As heterogeneity increases in A-F, the 
slope of this best fit m also increases in G-L (see figure S6).  Furthermore, their revised model is not presented in the context of what is known about the evolution, population sizes, mutation rates or genomic aberration types in DCIS but broadly continues to reference results from evolution studies done on established cancers (see for example the abstract which mainly references studies investigating advanced cancers). This is confusing and makes it difficult to understand what is novel. 



 Thank you for the suggestion. We have revised the introduction to include several additional appropriate references.  We have clarified the central focus of the manuscript: to understand the role of spatial structure on the multiclonal invasion model of premalignant heterogeneity.  We do feel that the results and implications in the manuscript can be applied to various disease cases which rely on a segregation-dispersal structure. However, we have attempted to focus the manuscript results on ductal carcinomas.   There are also problems with the evolutionary terminology: calling some tumors Darwinian and others neutral establishes an unnecessary division as all of these models are evolving based on Darwinian principles.  We appreciate this response, as it is of course true that the simulated tumors are all operating according to Darwinian processes. The main result in figure 4 is two-fold:   1) Although cellular interactions are governed by Darwinian processes, the surrounding context of tissue architecture may accelerate these processes 2) Although cellular interactions are governed by Darwinian processes, subclonal selection may be below the detectable threshold. This leads to the false assumption that tumors are evolving neutrally, when in reality cell-specific fitness is governed by Darwinian principles.  To highlight these two results, this is the reason we originally introduced this terminology to distinguish between cell-scale Darwinian processes and tumor-scale processes. We labor in the manuscript to explain that cell-specific fitness advantages are held constant.   The authors state that heterogeneity measures do not approach steady states until extreme time scales (20,000 generations; 50 years). Thus, their model assumes a generation time <1 day which is highly questionable for a usually benign lesion such as a DCIS.  The model is agnostic to the length of a generation time in days, so we have removed this mention. All plots in figure 1 and 2 reference time in units of ‘generations.’ Additionally, the key figure in the paper (figure 4B) shows comparisons for identical lesion size and not time period.  The results in figure 1 appear quite surprising when looking at the probabilities of driver mutations based on the model parameters. The simulation is run for 4000 generations with 700 driver loci in the genome and a mutation rate of 10^-8. The per driver mutation rate per cell division is therefore only 0.000007. Despite this, most cells have 7-9 drivers at the end of the simulation which seems highly unlikely.   We thank the reviewer for the detailed comment. Your description of mutation driver rate is correct (7x1e-6, as given by refs 12, 13). The time shown is generation time, in which each cell in the population undergoes a birth-death process. Even in a small population domain of 100x100 cells (~104 cells), the rate of at least one driver event is: 104(7x10-6). This places the rate of each additional driver appearing in the population on the order of 10-2/generation. On average, a new driver event would be expected every 100 generations. This is consistent with findings from MacFarland et. al.  The data in figure 1 does also not tally with video 1 where a similar number of drivers is seen in most cells of the population at 9 seconds out of 21 seconds runtime (with 21 seconds representing 100,000 generations). 7-9 driver mutations therefore only seem to appear after ~40000 generations rather than 4000 in a model with the above parameters. What is correct? 



 We apologize for not providing a timescale to video 1 (the previous version of Video 1 represented ONLY the first 10,000 generations of simulations in figure 1).   We have remedied this by providing a timestep on the video, in the top left corner of each simulation. We have added passenger mutations to the supplemental videos as well. The supplemental Video 1 and 2 now represent the exact simulations shown in figure 1 (top row and bottom row, respectively).  Furthermore, it is not clear if such high driver loads are realistic for DCIS. Relevant references are not included, showing a lack of integration with what is known about the biology of DCIS.  As explained above, parameterizations were done again in light of DCIS measurements from Navin et. al. The simulations in figures 3 and 4 now lie within the clonal heterogeneity reported in Navin et. al (their figure 4B, and 4D).  “In short, small domain sizes increase the selection pressure enabling fast sweeping and low diversity.”  The authors make this conclusion based on the observation of low diversity and fast sweeping in small domain sizes. However, the number of drivers is higher in many cells in the population with large domain sizes in Figure 1. I would therefore argue that selection pressure is higher and results in a faster increase in fitness in larger domain sizes than in the model with the small size. A sweep is unfortunately a poor surrogate of selection pressure as it heavily depends on populations size.  This is a fair critique, and we have re-worded the explanation to focus on heterogeneity (rather than selection).  The reviewer is correct that the highlighted sentence is somewhat ambiguous, so we have updated the wording to the following:  
“In short, small domain sizes enable clonal sweeping and low diversity.”  

On selection: 
• The metric of selection used in the latter half of manuscript is the average number of drivers per cell (kd). A high selection pressure is indicated by a higher average driver number.  
• We agree that a clonal sweep is domain size dependent, which is why we’ve included figure 1, bottom row for identical domain size. We have re-worded the explanation to focus on heterogeneity (rather than selection). 
• As the reviewer intuits, there is indeed an inherent trade-off in population size. A large population undergoes many more birth events, resulting in higher likelihood of new driver mutations. But a large population is more heterogeneous, across a range of metrics (see figure S5).  “Bounded, non-interacting regions play a role in human cancers, which are often locally constrained to a single gland or a duct” This is one of the statements I specifically criticised in my previous comments. Most advanced cancers are not constrained by ductal or gland structures but show highly chaotic growth. Although the authors say in the rebuttal that they revised the text, the sentence is still unchanged.  We apologize for the oversight, and have now changed this sentence to the following:  

“Bounded, non-interacting regions play a role in human precancerous lesions, which are 
often locally constrained to a single gland or a duct.”  Figure 2: I was surprised that the single region always seems to follow a neutral trajectory, particularly given the heterogeneity of drivers observed for a single region in figure 1. This is unfortunately neither 



explained in the text, nor are representative pictures included in figure 2 to allow readers to assess why there is this big difference. I could also not find any information on the number of cells in this simulation which precluded a more detailed assessment of these results.  First, it is important to note that the single-region case in figure 2 traces out a trajectory which is slightly above the neutral line of slope = μd/(μp + μd). By our definition, this is a Darwinian (non-neutral) tumor, although very low Darwinian fitness. We have clarified this in the manuscript.  The segregation-dispersal paradigm allows for increased Darwinian fitness (figure 2B), accelerating an already non-neutral trajectory.  We thank the reviewer for the suggestion to add a single-region case to figure 2, and have done so. We have also added the size of the domain (500 by 500, which matches the bottom row of figure 1).  “The branching topology of a breast ductal and glandular network structure acts as a evolutionary accelerant, where spatially segregated regions (ductal branches) work in combination with cell mixing (subject to varied branching topology) to accelerate tumor evolution43.”  This sentence suggests that evolution has already been studied in great detail in DCIS which questions what is novel about the authors work. However, looking at reference 43, I could not find any statement about the ductal network acting as an evolutionay accelerant though. This is very confusing.  The reviewer is correct: the novelty of our study is indeed the ductal network acting as an evolutionary accelerant. The reference links to an alternative mathematical model of DCIS which found that the rate of 
advance by the tumor is inversely correlated to ductal radius, but generally ignores the key role of cellular mixing and dispersal. This is clarified in the text.  “Tumors initiated further from the ductal root in smaller, more constrained branches (e.g. purple curve) are characterized by clonal sweeping (vertical trajectories) early. At later times, the tumor expands into new unexplored territories, shifting toward neutral trajectories”  Does this not contradict the overall theory the authors follow which is that spread into new but spatially confined compartment accelerated adaptive evolution?  No, the lesion is subject to time-varying spatial constraints. Early in time, the lesion is subject to high spatial constraints (low heterogeneity, easy clonal sweeping). Later, cellular dispersal allows for expansion into less constrained environments.  Larger population sizes also limit expansion rates of new clones, giving rise to neutral evolution at later times. This trend is seen both in controlled domains with low mixing rates (figure 2) and DCIS ductal networks (figure 4), across low/high heterogeneity patients (figure 4B; DC13 and DC18, respectively).  “Whilst this type of quantification is not currently possible for clinical tissues, our results indicate that we must be cautious when interpreting non-spatial measures of evolution”  This is not correct as resected DCIS lesions should be readily obtainable and Navin et al have shown that these can be analyzed at the single cell level to test for example the hypothesis that populations are more homogenous in small ducts.  We thank the reviewer for noting the relevance of Navin et. al. to this manuscript. We have clarified this sentence in the manuscript. We would like to note that the model in our manuscript provides a key insight which Navin’s paper does not: time-dependence of intratumoral heterogeneity.  



Reviewer #3 (Remarks to the Author): In revising the manuscript and figures, West, Anderson, and colleagues have satisfyingly addressed most of the suggestions and concerns from the initial review. This revised paper more clearly describes their spatial model of tumor progression, offers additional compelling visualizations of the role of spatial constraints and mixing rates on clonal evolution and genetic heterogeneity, and more accurately summarizes several insights regarding realized tumor fitness and the Darwinian-to-neutral spectrum of emergent evolutionary dynamics.  Pages 2 and 4: Both pages contain the sentence "We view this as a paradigm-shifting insight: the surrounding spatial context modulates the 'realized tumor fitness.'" This claim is sweeping but vague, so rather than repeat it twice verbatim, it would be useful to alter at least its second appearance so that it instead precisely defines the quantity referred to as "realized tumor fitness" and clearly identifies which paradigm is being shifted.  Thank you for your remarks. We appreciate the reviewer’s continued investment in the manuscript.  We have clarified the sentence as suggested, which now reads: 
“This leads us to the following insight: the surrounding spatial context modulates the 
‘realized tumor fitness,’ defined as the rate of change of the ratio of driver mutations to 
mutation burden.”  Page 8, equation 3: There appears to be an erroneous equals sign.  Thank you for catching this error! We have removed the erroneous equals sign.  

  



Reviewer #4 (Remarks to the Author): This review is focused on the biological accuracy of the spatial model presented in Figure 3 and 4 of the manuscript. While the breast phantom ductal network reconstructions seem to accurately model the branching network of the breast epithelium from larger lactiferous ducts to major ducts and finally the smaller terminal ducts that connect to the lobules, one important aspect that is not integrated in these reconstructions is the actual terminal lobular region of the breast epithelium.   The main problem here is that the epithelium in the lobular areas are considered to be the sites with the highest cellular turnover, and the terminal ductal lobular units (TDLUs) represent the most common sites of tumor formation in the human breast both within the lobular ducts as well the lobules themselves (see Honeth et al, 2015, Stem Cell Reports; 10.1016/j.stemcr.2015.02.013; and O’Malley M.B. et al, Breast Pathology. Elsevier, Philadelphia, 2011).  We thank the reviewer for the additional references and the opportunity to clarify the model. The reviewer is correct, the branching network shown in figure 3 represents breast epithelium including major ducts and the smaller terminal ducts. We have updated the manuscript to reflect the fact that the lobular areas are indeed the sites of most common tumor initiation, with a reference to Honeth et. al. (see “Spatial context modulates DCIS realized tumor fitness,” paragraph 5).  We invite the reviewer to consider our expanded explanation of figure 2, which we hope will clarify the biological interpretation behind our modeling framework: 
“Bounded, non-interacting regions play a role in human precancerous lesions, which are 
often locally constrained to a single gland or a duct. Such glandular or ductal structures 
allow for limited cellular mixing during premalignant growth, enabling the tumor to 
explore new (and often less constrained) environments. In figure 2, each segregated region 
may now circulate cells into a neighboring region at a low or high rate of mixing (left and 
right columns, respectively). This model mimics the structure of precancerous breast 
lesions, the vast majority of which originate within the terminal ductal lobular units 
(TDLUs) which are connected through a series of extralobular ducts. Similar to the spatially 
segregated patches (or habitats) commonly found in ecological models, the structure of 
mammary lobules provides the segregation (i.e. the lobule) with some limited dispersal 
(through the ductal network).”  It is our point of view that figure 2 can represent a very simplified reflection of the effect of lobule size on evolutionary dynamics. For example, larger TDLUs (figure 2D, 2E) acquire drivers more slowly than smaller TDLUs.  After tumor initiation in the TDLU structure, figure 4 addresses a similar but distinct question: the role of the ductal network structure on evolutionary dynamics after initiation in lobules and subsequent growth into terminal ducts. We have added an additional data-driven parameterization section to the manuscript as well: 
“As mentioned in the introduction, the seminal study by Casasent et. al. performed single-
cell DNA sequencing on 10 synchronous DCIS-IDC patients to quantify intratumoral 
heterogeneity while preserving spatial information. Synchronous patients provide an 
advantage over comparisons of DCIS with recurrent IDC samples which are often collected 
many years apart. Their findings, reproduced in figure 4A-F, indicate a high degree of 
intratumor heterogeneity within ductal regions with the major clones also present in 
invasive regions. These data provide evidence for the multiclonal invasion model in DCIS, 
where one or more clones escape the ducts and migrate into adjacent tissues, maintaining 
much of the heterogeneity (the IDC heterogeneity is not shown here). This section focuses 



on the role tissue architecture plays in shaping the pattern of ductal carcinoma 
heterogeneity.” 
  We show that continued evolutionary dynamics depend on the size and branching structure of these terminal ductal structures. We have clarified the language around figures 2 and 4, and would welcome any further clarifying comments from the reviewer.  Can the authors explain in more detail what levels of epithelial ducts are being modeled using their breast phantom ductal network reconstructions? In particular, does the size of the ducts in their models reflect lactiferous ducts and major ducts, or would the sizes of terminal ducts be reflected as well? Considering that terminal ductal lobular units (TDLUs) are the main sites of breast cancer initiation, it would be important to adjust their reconstruction shapes so that the smaller sized terminal ducts and lobular shapes of the breast epithelium are reflected. 

 Below is a figure from ref. 44 (Jeon, H. et. al. PloS One), where we obtained for the branching topology of ductal networks. The data represents the full ductal network structure, including the terminal ducts. In figure 3, we do not simulate the lobules, but instead focus on the key role that the constrained space that terminal ducts play (after tumor initiation, and growth into the ducts) in accelerating evolutionary dynamics. As explained above, figure 2 can be thought of as a simplified model of evolutionary dynamics within TDLU units, which show that size correlates to the acquisition rate of new drivers.  

     



Reviewers' comments: 

Reviewer #1 (Remarks to the Author): 

I had asked to include evidence and references to show that modelled population sizes and 

generation numbers are reflecting DCIS lesions. I think this is necessary as a) the model can only be 

informative if it represents the biological entity with reasonable precision and b) as the authors 

explicitly state that their model uses realistic cell numbers and timing. Unfortunately, this 

information is still not there. The authors now included an analysis of data from the Navin lab but it 

is superficial: It is very hard to understand how the parameters for mutation rate and driver fitness 

were derived by the insufficiently explained figure 3. In addition, they missed the main opportunity 

this dataset offers: to assess whether smaller ducts harbour higher or lower numbers of drivers and 

whether heterogeneity is lower in smaller ducts. They could also have measured the genetic 

distance between cells in small and large ducts to assess where genetic evolution is fastest. 

However, the most important reason for me to remain unconvinced about this manuscript is the 

authors’ reply to this comment I made previously: 

“In short, small domain sizes increase the selection pressure enabling fast sweeping and low 

diversity.” 

The authors make this conclusion based on the observation of low diversity and fast sweeping in 

small domain sizes. However, the number of drivers is higher in many cells in the population with 

large domain sizes in Figure 1. I would therefore argue that selection pressure is higher and results in 

a faster increase in fitness in larger domain sizes than in the model with the small size. A sweep is 

unfortunately a poor surrogate of selection pressure as it heavily depends on populations size. 

Author Reply: 

This is a fair critique, and we have re-worded the explanation to focus on heterogeneity (rather than 

selection). 

The reviewer is correct that the highlighted sentence is somewhat ambiguous, so we have updated 

the wording to the following: 

“In short, small domain sizes enable clonal sweeping and low diversity.” 

On selection: 

• The metric of selection used in the latter half of manuscript is the average number of drivers per 

cell (kd). A high selection pressure is indicated by a higher average driver number. 

• We agree that a clonal sweep is domain size dependent, which is why we’ve included figure 1, 

bottom row for identical domain size. We have re-worded the explanation to focus on heterogeneity 

(rather than selection). 

• As the reviewer intuits, there is indeed an inherent trade-off in population size. A large population 

undergoes many more birth events, resulting in higher likelihood of new driver mutations. But a 

large population is more heterogeneous, across a range of metrics (see figure S5). 

So if they consider the average number of drivers per cell the best metric for selection then: 



Figure 1: shows the highest average driver number in the population without constraints (panel J) 

Figure 2: shows the highest number of drivers in tumours with no or limited constraints if the same 

generation time is considered (Muller plots in panels A, F and G). I realize that the authors try to 

interpret each simulation at different times, when populations size are equal, but allowing the 

segregated tumors much more time to evolve is a highly questionable approach when assessing the 

speed of evolution. 

Thus, selection according to the definition the authors provide in their rebuttal is HIGHEST in 

tumours without constraints. This is exactly the opposite of neutral evolution and therefore 

contradicts the authors’ own manuscript title, abstract and conclusions. 

Reviewer #4 (Remarks to the Author): 

The authors have appropriately addressed my concerns. 

Kai Kessenbrock 



Reviewer #1 (Remarks to the Author):  I had asked to include evidence and references to show that modelled population sizes and generation numbers are reflecting DCIS lesions. I think this is necessary as a) the model can only be informative if it represents the biological entity with reasonable precision and b) as the authors explicitly state that their model uses realistic cell numbers and timing. Unfortunately, this information is still not there.  
On representing the biological entity with reasonable precision:  We have previously addressed the reviewer’s concerns about model parameterizations. The model is now directly validated by DCIS evolutionary data (figure 3), via over 20,000 stochastic realizations to recapitulate heterogeneity measured in DCIS patients from Casasent et. al. Cell, 2018.   It is our opinion that this is adequate validation of biological realism given the fact that the conclusions drawn from the model primarily focus on tumor heterogeneity (specifically, the acquisition of driver mutations). The heterogeneity represented in DCIS is demonstrably recapitulated via the model in figure 3.  For further clarification, we will update this claim to focus on the mathematical model’s novelty of biologically realistic branching topology:  “We extend these findings on the importance of structure, dispersal, migration, and turnover to a more biologically realistic setting: the 3-dimensional branching topology of a breast ductal network spatial structure, recapitulating the intratumoral heterogeneity in precancerous lesions of ductal carcinoma in situ (DCIS).”  The authors now included an analysis of data from the Navin lab but it is superficial: It is very hard to understand how the parameters for mutation rate and driver fitness were derived by the insufficiently explained figure 3.  We apologize for the insufficient explanation and would welcome further clarification or feedback from the reviewer. We provide a more detailed explanation below.  10,000 stochastic realizations were performed, across a wide range of parameterizations (varied sd and µd). After the tumor is grown to a fixed size (1e4 cells), the clonal heterogeneity is measured (Shannon index) and compared to the Shannon index for all DCIS patients in Casasent et. al. If the simulated Shannon lies within error bounds of DCIS-measured Shannon, the parameterization is kept, and plotted in figure 3G through L.  From 3G through L, it is straightforward to see that driver fitness (sd) and mutation rate (µd) are linearly coupled. This novel result shows that increased patient heterogeneity can only be recapitulated by the model with an increased slope of the line describing the relationship between these linearly coupled parameters (called “m” in the manuscript).  To ensure that the final tumor size chosen is not a confounding factor, we’ve repeated the analysis for several tumor sizes (1e3 and 1e4) in figure S6, which show the same qualitatively trend (high mutation rate results in high heterogeneity).     



 In addition, they missed the main opportunity this dataset offers: to assess whether smaller ducts harbour higher or lower numbers of drivers and whether heterogeneity is lower in smaller ducts. They could also have measured the genetic distance between cells in small and large ducts to assess where genetic evolution is fastest.  We view this manuscript as primarily addressing the impact of 1) spatial competition and 2) cellular mixing on cancer evolution. The results of figures 1 and 2 are broadly applicable across a range of precancerous lesions (not just DCIS). We apply this broad theme to the particular case study of DCIS by modeling realistic topology of ductal network architecture. We wish to note that this is a first – to our knowledge the relationship between DCIS functional and genetic heterogeneity has not been modeled at this scale of network topology. We labor to show in 4B the inadequacy of traditional (non-spatial) methods. Therefore, at this time, we believe that measuring the genetic distance between cells in small or large ducts is outside the reasonable scope of this manuscript.   However, the most important reason for me to remain unconvinced about this manuscript is the authors’ reply to this comment I made previously: “In short, small domain sizes increase the selection pressure enabling fast sweeping and low diversity.” The authors make this conclusion based on the observation of low diversity and fast sweeping in small domain sizes. However, the number of drivers is higher in many cells in the population with large domain sizes in Figure 1. I would therefore argue that selection pressure is higher and results in a faster increase in fitness in larger domain sizes than in the model with the small size. A sweep is unfortunately a poor surrogate of selection pressure as it heavily depends on populations size. Author Reply: 
This is a fair critique, and we have re-worded the explanation to focus on heterogeneity (rather than 
selection). The reviewer is correct that the highlighted sentence is somewhat ambiguous, so we have 
updated the wording to the following: 
“In short, small domain sizes enable clonal sweeping and low diversity.” 
 
On selection: 
• The metric of selection used in the latter half of manuscript is the average number of drivers per 
cell (kd). A high selection pressure is indicated by a higher average driver number. 
• We agree that a clonal sweep is domain size dependent, which is why we’ve included figure 1, 
bottom row for identical domain size. We have re-worded the explanation to focus on heterogeneity 
(rather than selection). 
• As the reviewer intuits, there is indeed an inherent trade-off in population size. A large population 
undergoes many more birth events, resulting in higher likelihood of new driver mutations. But a 
large population is more heterogeneous, across a range of metrics (see figure S5).   So if they consider the average number of drivers per cell the best metric for selection then:  Figure 1: shows the highest average driver number in the population without constraints (panel J) Figure 2: shows the highest number of drivers in tumours with no or limited constraints if the same generation time is considered (Muller plots in panels A, F and G). I realize that the authors try to interpret each simulation at different times, when populations size are equal, but allowing the segregated tumors much more time to evolve is a highly questionable approach when assessing the speed of evolution.  Thus, selection according to the definition the authors provide in their rebuttal is HIGHEST in tumours without constraints. This is exactly the opposite of neutral evolution and therefore contradicts the authors’ own manuscript title, abstract and conclusions.  



This review contains a fundamental misunderstanding. In our manuscript, we do not address the speed of evolution. In fact, the word ‘speed’ never appears in the text. Although figures 1 and 2 have not significantly changed from initial submission, the above review suggests that these results as contradictory – with no mention of this in the previous two reviews. In fact, the first review had noted that figure 1 appeared to be “intuitively correct.”  We are puzzled at this misunderstanding because previous feedback (in the April 2019 review) that “slow expansion of subclones may simply indicate that selective sweeps are much slower” was addressed by removing any reference to timescale, instead focusing on drivers per cell, not per unit time.  
The central result of the manuscript is the apparent “contradiction”: Figure 1 (bottom) indicates that large domains lead to high driver acquisition (constant time). Figure 2 indicates that small segregated domains lead to high driver acquisition (constant tumor size).   
Indeed, figure 1 and 2 present opposite conclusions, which is the main focal result of our manuscript! Ignoring the key role of spatial constraints will lead to incorrect conclusions about evolutionary dynamics. The reviewer has stumbled upon the common trap which our manuscript aims to correct.  To be fair, we believe that this fundamental understanding likely derives from our poor word choice of “acceleration” in the title. The manuscript is a study of accelerated evolution of drivers per cell, not drivers per time. Again, speed of evolution is never considered, but only acquisition of drivers per tumor cell “accelerated” (or, put simply, increased) by spatial constraints. Given this fundamental confusion, we have revised the manuscript title, as well as the manuscript text in key sections and added a new figure to better articulate these points for further clarification. We welcome further input from the reviewer to aid clarity in understanding.  
A more direct comparison of spatial configurations: The manuscript figures 1 and 2 are initialized with slightly different parameterizations and 
initial conditions, making a direct comparison difficult. Below, we have included an “apples-to-apples” analysis (exact parameterizations and initial conditions) for each spatial structure considered: circles (left column), squares without dispersal (middle column) and squares with dispersal (right column). Spatial constraints increase from left to right (harsher constraints). Our best measure of selection, the average number of drivers (kd) is measured twice: (i) identical tumor sizes, and (ii) identical time points (see figure, below).                 



                                  The figure measures the effect of spatial constraints on kd. The relationship is shown in each subpanel by a linear trend line fit to data, above.  
Top row: average # drivers, measured at identical tumor size, n*: 
 1. For circular domains, there is a flat-line relationship: spatial constraints have no effect on kd. 2. For segregated square domains, there is a slight positive relationship: spatial constraints have a slight positive effect on kd. 3. For segregated square domains with dispersal, there is a strong positive relationship: spatial constraints have a strong positive effect on kd. 
 
Bottom row: average # drivers, measured at identical time, t*: 
 4. For circular domains, there is a flat-line relationship: spatial constraints have no effect on  kd. 5. For segregated square domains, there is a slight negative relationship: spatial constraints have a slight negative effect on kd. 
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6. For segregated square domains with dispersal, there is a strong negative relationship: spatial constraints have a strong negative effect on kd.  This new supplementary figure clearly shows that dispersal is required for spatial constraints to 
increase positive selection for driver mutations. The key result of our manuscript is confirmed: Drivers are increased for simulations with dispersal (green box), relative to the no dispersal baseline in blue. This effect continues to increase with harsh spatial constraints (positive slope).  Contrast this to the bottom row, where we perform the same analysis at a specified time, t*=1000 generations. The effect is the opposite: highly constrained tumors grow more slowly, leading to lower driver numbers.  
Our manuscript clearly shows how spatial constraints can push tumors, with identical 
parameterizations, into a range of emergent modes of evolution (Darwinian to neutral), 
governed by selection pressure acting on new driver clones.  We strongly believe that using tumors of the same size is a better metric of evolution because this can be (approximately) measured experimentally in mouse models or patients. Within patients, it is difficult to determine the time period over which evolution occurs. Regardless, our 
manuscript makes clear that the role of spatial competition on selection pressure within 
tumors cannot be ignored in either case.  The mechanism of ‘accelerated’ evolution (or, put simply, increased) is as follows: spatial constraints maintain smaller tumors for prolonged periods of time, which facilitate clonal sweeps.  We have added some clarification centered around this apparent contradiction to the Discussion section:  “There is an apparent discrepancy between figures 1 and 2. Highest levels of driver acquisition, kd, are found in large domains in figure 1 (see panel I). In contrast, the maximal kd is found in collections of small domains with low mixing in figure 2 (see panel C). This illustrates the importance of considering the role of time (figure 1) as well as the role of tumor size (figure 2) when studying evolution. For example, large domains (see figure 2F,H,J) accrue more drivers in equal time, but comparisons of tumors with identical size (figure 2F,H,J; vertical dashed lines) reverses this result. The mechanism of increased evolution per cell (or, simply, increased driver acquisition) is as follows: spatial constraints maintain smaller tumors for prolonged periods of time, which facilitate easier clonal sweeps.”  We feel that this additional supplementary figure clarifies the concerns of the reviewer, and are thankful for their continued advice which has continually made the manuscript stronger.   

  



Reviewer #4 (Remarks to the Author):  The authors have appropriately addressed my concerns.  Kai Kessenbrock   We thank the reviewer for their investment in the manuscript and their helpful suggestions throughout the process.  



Reviewer	#1	(Remarks	to	the	Author):	
	
I	had	asked	to	include	evidence	and	references	to	show	that	modelled	population	sizes	and	generation	
numbers	are	reflecting	DCIS	lesions.	I	think	this	is	necessary	as	a)	the	model	can	only	be	informative	if	it	
represents	the	biological	entity	with	reasonable	precision	and	b)	as	the	authors	explicitly	state	that	their	
model	uses	realistic	cell	numbers	and	timing.	Unfortunately,	this	information	is	still	not	there.	
	

On	representing	the	biological	entity	with	reasonable	precision:		
We	have	previously	addressed	the	reviewer’s	concerns	about	model	parameterizations.	The	model	
is	 now	 directly	 validated	 by	 DCIS	 evolutionary	 data	 (figure	 3),	 via	 over	 20,000	 stochastic	
realizations	to	recapitulate	heterogeneity	measured	in	DCIS	patients	from	Casasent	et.	al.	Cell,	2018.		
	
It	 is	 our	 opinion	 that	 this	 is	 adequate	 validation	 of	 biological	 realism	 given	 the	 fact	 that	 the	
conclusions	 drawn	 from	 the	 model	 primarily	 focus	 on	 tumor	 heterogeneity	 (specifically,	 the	
acquisition	 of	 driver	 mutations).	 The	 heterogeneity	 represented	 in	 DCIS	 is	 demonstrably	
recapitulated	via	the	model	in	figure	3.	
	
For	further	clarification,	we	will	update	this	claim	to	focus	on	the	mathematical	model’s	novelty	of	
biologically	realistic	branching	topology:	
	

“We	extend	these	findings	on	the	importance	of	structure,	dispersal,	migration,	and	turnover	
to	 a	more	 biologically	 realistic	 setting:	 the	3-dimensional	 branching	 topology	 of	 a	 breast	
ductal	 network	 spatial	 structure,	 recapitulating	 the	 intratumoral	 heterogeneity	 in	
precancerous	lesions	of	ductal	carcinoma	in	situ	(DCIS).”	
	

I	think	here	the	reviewer	asks	whether	the	simulation	models	the	size	of	a	real	DCIS	lesion,	which	I	
guess	is	in	the	order	of	some	billions	of	cells?	Therefore,	in	2D	a	section	of	a	lesion	would	be	“circle”	
of	~1.2M	cells.	I	do	appreciate	that	simulating	10,000	instances	of	large	spatial	models	would	take	
a	long	time,	I	think	it	could	be	sufficient	just	to	show	how	the	heterogeneity	would	scale	in	a	few	
instances	of	a	larger	simulation	with	some	100k	or	1M	cells.	Regarding	the	generation	times,	nobody	
knows	and	reliable	estimates	are	hard	to	have,	usual	cell	cycle	time	varies	from	1	to	7	days.	A	4	days	
generation	 time	 has	 been	 used	 in	 the	 past,	 but	 the	 reviewer	 may	 not	 request	 to	 use	 precise	
estimates,	as	there	are	none.	

	
The	authors	now	included	an	analysis	of	data	from	the	Navin	lab	but	it	is	superficial:	It	is	very	hard	to	
understand	how	the	parameters	for	mutation	rate	and	driver	fitness	were	derived	by	the	insufficiently	
explained	figure	3.	
	

We	apologize	for	the	insufficient	explanation	and	would	welcome	further	clarification	or	feedback	
from	the	reviewer.	We	provide	a	more	detailed	explanation	below.	
	
10,000	stochastic	realizations	were	performed,	across	a	wide	range	of	parameterizations	(varied	sd	
and	µd).	After	the	tumor	is	grown	to	a	fixed	size	(1e4	cells),	the	clonal	heterogeneity	is	measured	
(Shannon	index)	and	compared	to	the	Shannon	index	for	all	DCIS	patients	in	Casasent	et.	al.	If	the	
simulated	Shannon	lies	within	error	bounds	of	DCIS-measured	Shannon,	 the	parameterization	 is	
kept,	and	plotted	in	figure	3G	through	L.	
	
From	3G	through	L,	it	is	straightforward	to	see	that	driver	fitness	(sd)	and	mutation	rate	(µd)	are	
linearly	 coupled.	 This	 novel	 result	 shows	 that	 increased	 patient	 heterogeneity	 can	 only	 be	
recapitulated	by	the	model	with	an	increased	slope	of	the	line	describing	the	relationship	between	
these	linearly	coupled	parameters	(called	“m”	in	the	manuscript).	



	
To	ensure	that	the	final	tumor	size	chosen	is	not	a	confounding	factor,	we’ve	repeated	the	analysis	
for	several	tumor	sizes	(1e3	and	1e4)	in	figure	S6,	which	show	the	same	qualitatively	trend	(high	
mutation	rate	results	in	high	heterogeneity).	
	
Here	the	authors	use	the	Shannon	Index	as	a	summary	statistic,	which	is	OK.	They	infer	
parameters	in	a	way	that	is	commonly	used.	Size	and	sampling	may	have	an	impact	here	and	in	
theory	inference	should	be	done	on	the	same	conditions,	but	I	do	appreciate	it’s	not	feasible	to	run	
10k	large	spatial	simulations.	
	

	
	In	addition,	they	missed	the	main	opportunity	this	dataset	offers:	to	assess	whether	smaller	ducts	
harbour	higher	or	lower	numbers	of	drivers	and	whether	heterogeneity	is	lower	in	smaller	ducts.	They	
could	also	have	measured	the	genetic	distance	between	cells	in	small	and	large	ducts	to	assess	where	
genetic	evolution	is	fastest.	
	

We	view	this	manuscript	as	primarily	addressing	the	impact	of	1)	spatial	competition	and	2)	cellular	
mixing	on	cancer	evolution.	The	results	of	figures	1	and	2	are	broadly	applicable	across	a	range	of	
precancerous	lesions	(not	just	DCIS).	We	apply	this	broad	theme	to	the	particular	case	study	of	DCIS	
by	modeling	realistic	topology	of	ductal	network	architecture.	We	wish	to	note	that	this	is	a	
first	–	to	our	knowledge	the	relationship	between	DCIS	functional	and	genetic	heterogeneity	has	not	
been	 modeled	 at	 this	 scale	 of	 network	 topology.	 We	 labor	 to	 show	 in	 4B	 the	 inadequacy	 of	
traditional	(non-spatial)	methods.	Therefore,	at	 this	 time,	we	believe	that	measuring	the	genetic	
distance	between	cells	in	small	or	large	ducts	is	outside	the	reasonable	scope	of	this	manuscript.		
	
I	guess	if	the	data	are	available,	the	authors	could	measure	heterogeneity	in	individual	ducts,	of	
course	only	if	the	data	are	annotated	appropriately,	are	they?	On	the	driver	events	issue,	it’s	much	
harder,	as	in	these	data	the	original	authors	just	report	any	CNV	that	falls	in	a	cancer	driver	gene	
annotated	by	cosmic.	That	is	not	how	one	should	identify	drivers	(there	are	X	COSMIC	drivers	in	
chr1	but	a	gain	of	one	copy	of	chr1	does	not	imply	one	has	X	number	of	drivers	in	the	cancer).	
CNVs,	unless	an	LOH	event	associated	to	a	mutation	or	a	focal	amplification	(of	several	copies),	are	
not	generally	drivers.	Hence	almost	all	annotated	drivers	in	this	dataset	are	not	drivers.	
	

	
However,	the	most	important	reason	for	me	to	remain	unconvinced	about	this	manuscript	is	the	authors’	
reply	to	this	comment	I	made	previously:	“In	short,	small	domain	sizes	increase	the	selection	pressure	
enabling	fast	sweeping	and	low	diversity.”	The	authors	make	this	conclusion	based	on	the	observation	of	
low	diversity	and	fast	sweeping	in	small	domain	sizes.		
	
Yes,	just	because	time	to	sweep	for	a	given	s	is	smaller	in	small	N.	
	
However,	the	number	of	drivers	is	higher	in	many	cells	in	the	population	with	large	domain	sizes	in	
Figure	1.		
	
Yes,	just	because	there	are	more	cells.	
	
I	would	therefore	argue	that	selection	pressure	is	higher	and	results	in	a	faster	increase	in	fitness	in	
larger	domain	sizes	than	in	the	model	with	the	small	size.		
	
I	think	it’s	clear	that	“faster	accumulation	of	drivers”	here	is	just	driven	by	population	size,	as	there	are	
larger	clones	with	1	driver	in	the	unconstrained	case,	it’s	easier	to	get	additional	driver	mutations.	It’s	not	



driven	by	selection	and	competition,	but	by	mutation	and	population	size.	This	would	be	true	also	for	
passenger	mutations	with	all	the	same	s=1.		
	
A	sweep	is	unfortunately	a	poor	surrogate	of	selection	pressure	as	it	heavily	depends	on	populations	size.		
	
I	think	both	definition	of	‘selection	pressure’	used	by	authors	and	reviewers	depend	on	population	size.	
	
Author	Reply:	

This	is	a	fair	critique,	and	we	have	re-worded	the	explanation	to	focus	on	heterogeneity	(rather	than	
selection).	The	reviewer	is	correct	that	the	highlighted	sentence	is	somewhat	ambiguous,	so	we	have	
updated	the	wording	to	the	following:	
“In	short,	small	domain	sizes	enable	clonal	sweeping	and	low	diversity.”	
	
On	selection:	
•	The	metric	of	selection	used	in	the	latter	half	of	manuscript	is	the	average	number	of	drivers	per	
cell	(kd).	A	high	selection	pressure	is	indicated	by	a	higher	average	driver	number.	
•	We	agree	that	a	clonal	sweep	is	domain	size	dependent,	which	is	why	we’ve	included	figure	1,	
bottom	row	for	identical	domain	size.	We	have	re-worded	the	explanation	to	focus	on	heterogeneity	
(rather	than	selection).	
•	As	the	reviewer	intuits,	there	is	indeed	an	inherent	trade-off	in	population	size.	A	large	population	
undergoes	many	more	birth	events,	resulting	in	higher	likelihood	of	new	driver	mutations.	But	a	
large	population	is	more	heterogeneous,	across	a	range	of	metrics	(see	figure	S5).	

	
I	think	believe	it	is	true	now	what	the	authors	say	in	the	revised	wording,	that	smaller	domain	size	allows	
for	more	driver	heterogeneity.	
	
So	if	they	consider	the	average	number	of	drivers	per	cell	the	best	metric	for	selection	then:	
	
Figure	1:	shows	the	highest	average	driver	number	in	the	population	without	constraints	(panel	J)	
Figure	2:	shows	the	highest	number	of	drivers	in	tumours	with	no	or	limited	constraints	if	the	same	
generation	time	is	considered	(Muller	plots	in	panels	A,	F	and	G).	I	realize	that	the	authors	try	to	interpret	
each	simulation	at	different	times,	when	populations	size	are	equal,	but	allowing	the	segregated	tumors	
much	more	time	to	evolve	is	a	highly	questionable	approach	when	assessing	the	speed	of	evolution.	
	
Thus,	selection	according	to	the	definition	the	authors	provide	in	their	rebuttal	is	HIGHEST	in	tumours	
without	constraints.	This	is	exactly	the	opposite	of	neutral	evolution	and	therefore	contradicts	the	
authors’	own	manuscript	title,	abstract	and	conclusions.	
	
I	think	what	the	authors	are	trying	to	state	is	that	in	a	large,	exponentially	expanding	population	without	
constraints,	as	there’s	not	much	competition,	clones	with	high	fitness	do	not	outcompete	significantly	(or	
a	tall)	the	other	clones,	hence	the	dynamics	are	effectively	neutral.	In	a	large	cancer	with	1	billion	cells,	
being	a	new	clone	with	s=1.2	won’t	make	any	difference.	In	a	small	domain,	being	a	new	clone	with	s=1.2	
will	lead	to	the	entire	domain	being	replaced	by	the	new	mutant.	
	
Possibly	the	authors	could	resolve	this	discussion	by	looking	at	‘significant’	clonal	expansions	/	sweeps,	
and	state	that	they	observe	a	lot	of	those	in	small	domains,	but	very	few	in	large	domains,	as	one	expects.	
What	is	most	relevant	biologically	is	large	subclones,	since	small	subclones	will	never	become	large	
enough	to	be	detected	in	an	expanding	population	before	the	patient’s	death.	
	
Moving	towards	a	discussion	of	‘driver	heterogeneity’	is	OK	in	my	opinion.	Staying	away	from	hazy	
definitions	of	“pressure”	and	“speed”	is	helpful.	



	
	
	

This	review	contains	a	fundamental	misunderstanding.	In	our	manuscript,	we	do	not	address	the	
speed	of	evolution.	In	fact,	the	word	‘speed’	never	appears	in	the	text.	Although	figures	1	and	2	
have	not	significantly	changed	from	initial	submission,	the	above	review	suggests	that	these	results	
as	contradictory	–	with	no	mention	of	this	in	the	previous	two	reviews.	In	fact,	the	first	review	had	
noted	that	figure	1	appeared	to	be	“intuitively	correct.”	
	
We	are	puzzled	at	this	misunderstanding	because	previous	feedback	(in	the	April	2019	review)	that	
“slow	 expansion	of	 subclones	may	 simply	 indicate	 that	 selective	 sweeps	 are	much	 slower”	was	
addressed	by	removing	any	reference	to	timescale,	instead	focusing	on	drivers	per	cell,	not	per	unit	
time.	
	
The	central	result	of	the	manuscript	is	the	apparent	“contradiction”:	
Figure	 1	 (bottom)	 indicates	 that	 large	 domains	 lead	 to	 high	 driver	 acquisition	 (constant	 time).	
Figure	2	indicates	that	small	segregated	domains	lead	to	high	driver	acquisition	(constant	tumor	
size).		
	
Indeed,	figure	1	and	2	present	opposite	conclusions,	which	is	the	main	focal	result	of	our	manuscript!	
Ignoring	the	key	role	of	spatial	constraints	will	 lead	to	 incorrect	conclusions	about	evolutionary	
dynamics.	The	reviewer	has	stumbled	upon	the	common	trap	which	our	manuscript	aims	to	correct.	
	
To	be	fair,	we	believe	that	this	fundamental	understanding	likely	derives	from	our	poor	word	choice	
of	“acceleration”	in	the	title.	The	manuscript	is	a	study	of	accelerated	evolution	of	drivers	per	cell,	
not	drivers	per	time.	Again,	speed	of	evolution	is	never	considered,	but	only	acquisition	of	drivers	
per	 tumor	 cell	 “accelerated”	 (or,	 put	 simply,	 increased)	 by	 spatial	 constraints.	 Given	 this	
fundamental	confusion,	we	have	revised	the	manuscript	title,	as	well	as	the	manuscript	text	in	key	
sections	 and	 added	 a	 new	 figure	 to	 better	 articulate	 these	 points	 for	 further	 clarification.	We	
welcome	further	input	from	the	reviewer	to	aid	clarity	in	understanding.	
	
A	more	direct	comparison	of	spatial	configurations:	
The	manuscript	 figures	 1	 and	 2	 are	 initialized	with	 slightly	 different	 parameterizations	 and	
initial	conditions,	making	a	direct	comparison	difficult.	Below,	we	have	included	an	“apples-to-
apples”	 analysis	 (exact	 parameterizations	 and	 initial	 conditions)	 for	 each	 spatial	 structure	
considered:	 circles	 (left	 column),	 squares	without	 dispersal	 (middle	 column)	 and	 squares	with	
dispersal	(right	column).	Spatial	constraints	increase	from	left	to	right	(harsher	constraints).	Our	
best	measure	of	selection,	the	average	number	of	drivers	(kd)	is	measured	twice:	(i)	identical	tumor	
sizes,	and	(ii)	identical	time	points	(see	figure,	below).			
	
	
	
	
	
	
	
	
	
	
	
	



	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
The	 figure	 measures	 the	 effect	 of	 spatial	 constraints	 on	 kd.	 The	 relationship	 is	 shown	 in	 each	
subpanel	by	a	linear	trend	line	fit	to	data,	above.	
	
Top	row:	average	#	drivers,	measured	at	identical	tumor	size,	n*:	
	
1. For	circular	domains,	there	is	a	flat-line	relationship:	spatial	constraints	have	no	effect	on	kd.	
2. For	segregated	square	domains,	there	is	a	slight	positive	relationship:	spatial	constraints	have	

a	slight	positive	effect	on	kd.	
3. For	segregated	square	domains	with	dispersal,	there	is	a	strong	positive	relationship:	spatial	

constraints	have	a	strong	positive	effect	on	kd.	
	
Bottom	row:	average	#	drivers,	measured	at	identical	time,	t*:	
	
4. For	circular	domains,	there	is	a	flat-line	relationship:	spatial	constraints	have	no	effect	on		kd.	
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5. For	segregated	square	domains,	there	is	a	slight	negative	relationship:	spatial	constraints	have	
a	slight	negative	effect	on	kd.	

6. For	segregated	square	domains	with	dispersal,	there	is	a	strong	negative	relationship:	spatial	
constraints	have	a	strong	negative	effect	on	kd.	

	
This	new	supplementary	figure	clearly	shows	that	dispersal	is	required	for	spatial	constraints	to	
increase	positive	selection	for	driver	mutations.	The	key	result	of	our	manuscript	is	confirmed:	
Drivers	 are	 increased	 for	 simulations	 with	 dispersal	 (green	 box),	 relative	 to	 the	 no	 dispersal	
baseline	in	blue.	This	effect	continues	to	increase	with	harsh	spatial	constraints	(positive	slope).	
	
Contrast	this	to	the	bottom	row,	where	we	perform	the	same	analysis	at	a	specified	time,	t*=1000	
generations.	The	effect	 is	 the	opposite:	highly	 constrained	 tumors	grow	more	 slowly,	 leading	 to	
lower	driver	numbers.	
	
Our	 manuscript	 clearly	 shows	 how	 spatial	 constraints	 can	 push	 tumors,	 with	 identical	
parameterizations,	 into	 a	 range	 of	 emergent	modes	 of	 evolution	 (Darwinian	 to	 neutral),	
governed	by	selection	pressure	acting	on	new	driver	clones.	
	
We	strongly	believe	that	using	tumors	of	the	same	size	is	a	better	metric	of	evolution	because	this	
can	be	(approximately)	measured	experimentally	in	mouse	models	or	patients.	Within	patients,	it	
is	difficult	to	determine	the	time	period	over	which	evolution	occurs.	Regardless,	our	manuscript	
makes	clear	that	the	role	of	spatial	competition	on	selection	pressure	within	tumors	cannot	
be	ignored	in	either	case.	

	
The	mechanism	of	‘accelerated’	evolution	(or,	put	simply,	increased)	is	as	follows:	spatial	constraints	
maintain	smaller	tumors	for	prolonged	periods	of	time,	which	facilitate	clonal	sweeps.	
	
We	have	added	some	clarification	centered	around	this	apparent	contradiction	to	the	Discussion	
section:	
	

“There	 is	 an	 apparent	 discrepancy	 between	 figures	 1	 and	 2.	 Highest	 levels	 of	 driver	
acquisition,	kd,	are	found	in	large	domains	in	figure	1	(see	panel	I).	In	contrast,	the	maximal	
kd	is	found	in	collections	of	small	domains	with	low	mixing	in	figure	2	(see	panel	C).	This	
illustrates	 the	 importance	of	 considering	 the	role	of	 time	 (figure	1)	as	well	 as	 the	 role	of	
tumor	size	(figure	2)	when	studying	evolution.	For	example,	large	domains	(see	figure	2F,H,J)	
accrue	more	drivers	 in	equal	 time,	but	 comparisons	of	 tumors	with	 identical	size	 (figure	
2F,H,J;	vertical	dashed	lines)	reverses	this	result.	The	mechanism	of	increased	evolution	per	
cell	 (or,	 simply,	 increased	 driver	 acquisition)	 is	 as	 follows:	 spatial	 constraints	 maintain	
smaller	tumors	for	prolonged	periods	of	time,	which	facilitate	easier	clonal	sweeps.”	

	
We	feel	 that	 this	additional	supplementary	 figure	clarifies	 the	concerns	of	 the	reviewer,	and	are	
thankful	for	their	continued	advice	which	has	continually	made	the	manuscript	stronger.	 	

	
	 	



Reviewer	#4	(Remarks	to	the	Author):	
	
The	authors	have	appropriately	addressed	my	concerns.	
	
Kai	Kessenbrock	
	
	
We	thank	the	reviewer	for	their	investment	in	the	manuscript	and	their	helpful	suggestions	throughout	
the	process.	
	



Color-coding legend: 

• BLACK text: Reviewer #1’s original review 
• BLUE text: author initial response 
• RED text: Reviewer #5’s review of our author’s response to #1 
• GREEN text: author response to #5 

Summary of changes to the manuscript: In summary, Reviewer #5’s response can be grouped into 3 broad categories: 
1. Simulating realistic cell sizes  The reviewer’s first response deals with realistic cell size. Reviewer 5 has suggested showing how heterogeneity scales up to ~1.2 million cells. This was easily addressable, and we’ve included a new supplementary figure (Supplemental Figure S1).  
2. Validation of model via Casasent et. al. dataset.  We note that we have used this dataset to validate the model by matching the summary statistic in the data (Shannon diversity) to model output. Reviewer #5 agrees that this method is reasonable.  While Reviewer #1 suggests further validation by this dataset (Casasent, 2018), Reviewer #5 suggests several issues with this approach. We have provided expanded discussion on the issues and challenges of validating our model with this dataset (in agreement w/ reviewer 5).  Given these issues and the disagreement between reviewers we humbly suggest not pursuing reviewer #1’s original request any further.   
3. Significant clonal expansion Reviewer #5 provides an insightful suggestion to look at ‘significant’ clonal expansions to quantify the effect of domain size on clonal sweeping. This is easily addressable, and we’ve included a new supplementary figure and video (Supplemental Figure S9, Supplemental Video V6). We have also prepared point-by-point response to each point below. 

 

  



Reviewer #1 (Remarks to the Author):  I had asked to include evidence and references to show that modelled population sizes and generation numbers are reflecting DCIS lesions. I think this is necessary as a) the model can only be informative if it represents the biological entity with reasonable precision and b) as the authors explicitly state that their model uses realistic cell numbers and timing. Unfortunately, this information is still not there.  
On representing the biological entity with reasonable precision:  We have previously addressed the reviewer’s concerns about model parameterizations. The model is now directly validated by DCIS evolutionary data (figure 3), via over 20,000 stochastic realizations to recapitulate heterogeneity measured in DCIS patients from Casasent et. al. Cell, 2018.  It is our opinion that this is adequate validation of biological realism given the fact that the conclusions drawn from the model primarily focus on tumor heterogeneity (specifically, the acquisition of driver mutations). The heterogeneity represented in DCIS is demonstrably recapitulated via the model in figure 3.  For further clarification, we will update this claim to focus on the mathematical model’s novelty of biologically realistic branching topology:  “We extend these findings on the importance of structure, dispersal, migration, and turnover to a more biologically realistic setting: the 3-dimensional branching topology of a breast ductal network spatial structure, recapitulating the intratumoral heterogeneity in precancerous lesions of ductal carcinoma in situ (DCIS).”  I think here the reviewer asks whether the simulation models the size of a real DCIS lesion, which I guess is in the order of some billions of cells? Therefore, in 2D a section of a lesion would be “circle” of ~1.2M cells. I do appreciate that simulating 10,000 instances of large spatial models would take a long time, I think it could be sufficient just to show how the heterogeneity would scale in a few instances of a larger simulation with some 100k or 1M cells.  Previously, the 2d cross sections were ~600,000 cells, and we have now scaled to include ~1.5 million cells (circular domain with 1500 cells in diameter). We’ve repeated the analysis in figure 1 (top), to indicate how heterogeneity scales with more realistic cell numbers (see figure A, B, C below). This is now supplemental figure S1 in the manuscript. The driver and passenger heterogeneity (Shannon) at the final time point (100,000 generations) is shown in D, E, respectively. Heterogeneity increases with increased domain size. The heterogeneity begins to taper off at larger domain sizes because heterogeneity has not reached steady state (see A,B) even at extreme time scales). 



 

  Regarding the generation times, nobody knows and reliable estimates are hard to have, usual cell cycle time varies from 1 to 7 days. A 4 days generation time has been used in the past, but the reviewer may not request to use precise estimates, as there are none.  We agree with the Reviewer’s assessment of issues converting generation times & doubling times. To deal with this, figures 1 and 2 report time in units of “generations” (not days), directly obtained from our mathematical modeling results. Precise estimates of conversion from generations to days is not necessary for the main results in the manuscript. The authors now included an analysis of data from the Navin lab but it is superficial: It is very hard to understand how the parameters for mutation rate and driver fitness were derived by the insufficiently explained figure 3.  We apologize for the insufficient explanation and would welcome further clarification or feedback from the reviewer. We provide a more detailed explanation below.  10,000 stochastic realizations were performed, across a wide range of parameterizations (varied sd and μd). After the tumor is grown to a fixed size (1e4 cells), the clonal heterogeneity is measured (Shannon index) and compared to the Shannon index for all DCIS patients in Casasent et. al. If the simulated Shannon lies within error bounds of DCIS-measured Shannon, the parameterization is kept, and plotted in figure 3G through L.  From 3G through L, it is straightforward to see that driver fitness (sd) and mutation rate (μd) are linearly coupled. This novel result shows that increased patient heterogeneity can only be recapitulated by the 



model with an increased slope of the line describing the relationship between these linearly coupled parameters (called “m” in the manuscript).  To ensure that the final tumor size chosen is not a confounding factor, we’ve repeated the analysis for several tumor sizes (1e3 and 1e4) in figure S6, which show the same qualitatively trend (high mutation rate results in high heterogeneity).  Here the authors use the Shannon Index as a summary statistic, which is OK. They infer parameters in a way that is commonly used. Size and sampling may have an impact here and in theory inference should be done on the same conditions, but I do appreciate it’s not feasible to run 10k large spatial simulations.  Correct, Shannon Index is used as a summary statistic. Additionally, in figure S7 we have previously provided insight into the effect of tumor size on Shannon diversity. In addition, they missed the main opportunity this dataset offers: to assess whether smaller ducts harbour higher or lower numbers of drivers and whether heterogeneity is lower in smaller ducts. They could also have measured the genetic distance between cells in small and large ducts to assess where genetic evolution is fastest.  We view this manuscript as primarily addressing the impact of 1) spatial competition and 2) cellular mixing on cancer evolution. The results of figures 1 and 2 are broadly applicable across a range of precancerous lesions (not just DCIS). We apply this broad theme to the particular case study of DCIS by 
modeling realistic topology of ductal network architecture. We wish to note that this is a first – to our knowledge the relationship between DCIS functional and genetic heterogeneity has not been modeled at this scale of network topology. We labor to show in 4B the inadequacy of traditional (non-spatial) methods. Therefore, at this time, we believe that measuring the genetic distance between cells in small or large ducts is outside the reasonable scope of this manuscript.  I guess if the data are available, the authors could measure heterogeneity in individual ducts, of course only if the data are annotated appropriately, are they? On the driver events issue, it’s much harder, as in these data the original authors just report any CNV that falls in a cancer driver gene annotated by cosmic. That is not how one should identify drivers (there are X COSMIC drivers in chr1 but a gain of one copy of chr1 does not imply one has X number of drivers in the cancer). CNVs, unless an LOH event associated to a mutation or a focal amplification (of several copies), are not generally drivers. Hence almost all annotated drivers in this dataset are not drivers.  The reviewer is correct, to do this analysis we would need the following annotations within the dataset: 

• number of cells per duct (or ductal area to be able to infer total cell count) 
• annotation of mutations classified as driver or passenger  

o mutational frequencies with copy number corrections 
• number of drivers per duct 
• number of passengers per duct Unfortunately, the Casasent et. al. dataset is not appropriate to draw robust conclusions for measuring the heterogeneity of drivers or passengers within individual ducts. The Casasent et. al. draws inferences between invasive and DCIS regions of synchronous DCIS-IDC patients. Within the manuscript, they report representative samplings from single duct data, but we see no clear method of expanding this to the resolution necessary for inferring heterogeneity based on duct size. 



For example, it’s challenging to determine accurate cell counts for each duct based on this dataset. However, if serially aligned histologies with LCM of individual ducts was present, this may be possible. There is an additional challenge. These data report copy-number corrected mutational frequencies at an impressive resolution; however, there is ill-consensus on how structural variations precede and contribute to driver mutational events.  We agree with the reviewer’s point that additional copies of chromosomes does not imply a 1-to-1 addition of drivers.  For these broad reasons, we continue to maintain that this analysis is outside the scope of our manuscript, and likely not possible given the constraints of the dataset. Our model talks to the dynamics within and cellular mixing between ducts of varied size. In this response, we have not planned to further investigate the Casasent et. al. dataset (at the discretion of the editor).  However, the most important reason for me to remain unconvinced about this manuscript is the authors’ reply to this comment I made previously: “In short, small domain sizes increase the selection pressure enabling fast sweeping and low diversity.” The authors make this conclusion based on the observation of low diversity and fast sweeping in small domain sizes.  Yes, just because time to sweep for a given s is smaller in small N.  Agreed. We have previously mentioned this in the manuscript with this sentence: “Small, tightly-coupled homogeneous populations of cells are able to quickly sweep each successive driver mutation.” However, the number of drivers is higher in many cells in the population with large domain sizes in Figure 1.  Yes, just because there are more cells.  Agreed, therein lies the tradeoff between more cells (more opportunity for driver mutations), and smaller domain sizes (lower time for clonal sweep).  I would therefore argue that selection pressure is higher and results in a faster increase in fitness in larger domain sizes than in the model with the small size.  I think it’s clear that “faster accumulation of drivers” here is just driven by population size, as there are larger clones with 1 driver in the unconstrained case, it’s easier to get additional driver mutations. It’s not driven by selection and competition, but by mutation and population size. This would be true also for passenger mutations with all the same s=1.  Agreed (see full response below). A sweep is unfortunately a poor surrogate of selection pressure as it heavily depends on populations size.  I think both definition of ‘selection pressure’ used by authors and reviewers depend on population size.  Agreed (see full response below). Author Reply:  



This is a fair critique, and we have re-worded the explanation to focus on heterogeneity (rather than 
selection). The reviewer is correct that the highlighted sentence is somewhat ambiguous, so we have 
updated the wording to the following: 
“In short, small domain sizes enable clonal sweeping and low diversity.”  

On selection: 
• The metric of selection used in the latter half of manuscript is the average number of drivers per cell (kd). 
A high selection pressure is indicated by a higher average driver number. 
• We agree that a clonal sweep is domain size dependent, which is why we’ve included figure 1, bottom row 
for identical domain size. We have re-worded the explanation to focus on heterogeneity (rather than 
selection). 
• As the reviewer intuits, there is indeed an inherent trade-off in population size. A large population 
undergoes many more birth events, resulting in higher likelihood of new driver mutations. But a large 
population is more heterogeneous, across a range of metrics (see figure S5).  I think believe it is true now what the authors say in the revised wording, that smaller domain size allows for more driver heterogeneity.  Figure 1 now focuses on heterogeneity, avoiding some of the pitfalls that both reviewers have mentioned. Please see full response below. So if they consider the average number of drivers per cell the best metric for selection then:  Figure 1: shows the highest average driver number in the population without constraints (panel J) Figure 2: shows the highest number of drivers in tumours with no or limited constraints if the same generation time is considered (Muller plots in panels A, F and G). I realize that the authors try to interpret each simulation at different times, when populations size are equal, but allowing the segregated tumors much more time to evolve is a highly questionable approach when assessing the speed of evolution.  Thus, selection according to the definition the authors provide in their rebuttal is HIGHEST in tumours without constraints. This is exactly the opposite of neutral evolution and therefore contradicts the authors’ own manuscript title, abstract and conclusions.  I think what the authors are trying to state is that in a large, exponentially expanding population without constraints, as there’s not much competition, clones with high fitness do not outcompete significantly (or a tall) the other clones, hence the dynamics are effectively neutral. In a large cancer with 1 billion cells, being a new clone with s=1.2 won’t make any difference. In a small domain, being a new clone with s=1.2 will lead to the entire domain being replaced by the new mutant.  Possibly the authors could resolve this discussion by looking at ‘significant’ clonal expansions / sweeps, and state that they observe a lot of those in small domains, but very few in large domains, as one expects. What is most relevant biologically is large subclones, since small subclones will never become large enough to be detected in an expanding population before the patient’s death.  Thank you for the suggestion, this is an insightful technique to quantify the effect of domain size on clonal sweeping. We’ve added a new supplemental figure (figure S9) showing the fraction of tumor cells belonging to the largest clone at a given time. The smallest domain size (100 cells in diameter) corresponds to the highest fraction. This follows the reviewer’s intuition that clonal sweeps are more likely in small domains.  



The analysis is repeated for no passengers (exaggerating the effect), deleterious and neutral passengers. In all three scenarios, smaller domains are more likely to have significant clones with a large tumor fraction.  Note: when passenger mutations are included the domain contains more clones overall, leading to a smaller fraction taken by the largest clone. Yet, in all cases the largest fraction occurs for small domains. 

 We also note that whilst this new metric is important, it is supplemental to the main analysis in the manuscript. Our main metric (average number of drivers) provides a more continuous measure of driver acquisition because it accounts for the current sweeping clone, as well as any additional more fit clones sweeping quickly thereafter. We have also added Supplemental Video V6 to accompany this figure and analysis. In this video the largest clone at each point in time is colored dark blue, with second largest colored light blue. All other cells are colored dark gray.  Visually, smaller domains (left) consist of these two dominant clones, while the fraction of largest clone is smaller for large domains. See the stacked bar chart to the right of each domain for a more relative quantification of the sizes. Moving towards a discussion of ‘driver heterogeneity’ is OK in my opinion. Staying away from hazy definitions of “pressure” and “speed” is helpful.  This review contains a fundamental misunderstanding. In our manuscript, we do not address the speed of evolution. In fact, the word ‘speed’ never appears in the text. Although figures 1 and 2 have not significantly changed from initial submission, the above review suggests that these results as contradictory – with no mention of this in the previous two reviews. In fact, the first review had noted that figure 1 appeared to be “intuitively correct.”  



We are puzzled at this misunderstanding because previous feedback (in the April 2019 review) that “slow expansion of subclones may simply indicate that selective sweeps are much slower” was addressed by removing any reference to timescale, instead focusing on drivers per cell, not per unit time.  
The central result of the manuscript is the apparent “contradiction”:  Figure 1 (bottom) indicates that large domains lead to high driver acquisition (constant time). Figure 2 indicates that small segregated domains lead to high driver acquisition (constant tumor size).  
Indeed, figure 1 and 2 present opposite conclusions, which is the main focal result of our manuscript!  Ignoring the key role of spatial constraints will lead to incorrect conclusions about evolutionary dynamics. The reviewer has stumbled upon the common trap which our manuscript aims to correct.  To be fair, we believe that this fundamental understanding likely derives from our poor word choice of “acceleration” in the title. The manuscript is a study of accelerated evolution of drivers per cell, not drivers per time. Again, speed of evolution is never considered, but only acquisition of drivers per tumor cell “accelerated” (or, put simply, increased) by spatial constraints. Given this fundamental confusion, we have revised the manuscript title, as well as the manuscript text in key sections and added a new figure to better articulate these points for further clarification. We welcome further input from the reviewer to aid clarity in understanding.  
A more direct comparison of spatial configurations: The manuscript figures 1 and 2 are initialized with slightly different parameterizations and initial 
conditions, making a direct comparison difficult. Below, we have included an “apples-to- apples” analysis (exact parameterizations and initial conditions) for each spatial structure considered: circles (left column), squares without dispersal (middle column) and squares with dispersal (right column). Spatial constraints increase from left to right (harsher constraints). Our best measure of selection, the average number of drivers (kd) is measured twice: (i) identical tumor sizes, and (ii) identical time points (see figure, below). The figure measures the effect of spatial constraints on kd. The relationship is shown in each subpanel by a linear trend line fit to data, above.  
Top row: average # drivers, measured at identical tumor size, n*:  1. For circular domains, there is a flat-line relationship: spatial constraints have no effect on kd.  2. For segregated square domains, there is a slight positive relationship: spatial constraints have  a slight positive effect on kd.  3. For segregated square domains with dispersal, there is a strong positive relationship: spatial  constraints have a strong positive effect on kd.  
Bottom row: average # drivers, measured at identical time, t*:        4.   For circular domains, there is a flat-line relationship: spatial constraints have no effect on kd.  5. For segregated square domains, there is a slight negative relationship: spatial constraints have a slight negative effect on kd.  6. For segregated square domains with dispersal, there is a strong negative relationship: spatial constraints have a strong negative effect on kd.  



This new supplementary figure clearly shows that dispersal is required for spatial constraints to 
increase positive selection for driver mutations. The key result of our manuscript is confirmed: Drivers are increased for simulations with dispersal (green box), relative to the no dispersal baseline in blue. This effect continues to increase with harsh spatial constraints (positive slope).  Contrast this to the bottom row, where we perform the same analysis at a specified time, t*=1000 generations. The effect is the opposite: highly constrained tumors grow more slowly, leading to lower driver numbers.  
Our manuscript clearly shows how spatial constraints can push tumors, with identical 
parameterizations, into a range of emergent modes of evolution (Darwinian to neutral), governed 
by selection pressure acting on new driver clones.  We strongly believe that using tumors of the same size is a better metric of evolution because this can be (approximately) measured experimentally in mouse models or patients. Within patients, it is difficult to determine the time period over which evolution occurs. Regardless, our manuscript makes clear that 
the role of spatial competition on selection pressure within tumors cannot be ignored in either 
case.  The mechanism of ‘accelerated’ evolution (or, put simply, increased) is as follows: spatial constraints maintain smaller tumors for prolonged periods of time, which facilitate clonal sweeps.  We have added some clarification centered around this apparent contradiction to the Discussion section:  “There is an apparent discrepancy between figures 1 and 2. Highest levels of driver acquisition, kd, are found in large domains in figure 1 (see panel I). In contrast, the maximal kd is found in collections of small domains with low mixing in figure 2 (see panel C). This illustrates the importance of considering the role of time (figure 1) as well as the role of tumor size (figure 2) when studying evolution. For example, large domains (see figure 2F,H,J) accrue more drivers in equal time, but comparisons of tumors with identical size (figure 2F,H,J; vertical dashed lines) reverses this result. The mechanism of increased evolution per cell (or, simply, increased driver acquisition) is as follows: spatial constraints maintain smaller tumors for prolonged periods of time, which facilitate easier clonal sweeps.”  We feel that this additional supplementary figure clarifies the concerns of the reviewer, and are thankful for their continued advice which has continually made the manuscript stronger.   



REVIEWERS' COMMENTS 

Reviewer #5 (Remarks to the Author): 

The authors addressed all my comments. 



Point by Point response to reviews: 
 
 Reviewer #5 (Remarks to the Author):  The authors addressed all my comments. 
 
We thank the reviewer for their time and attention responding and critiquing our manuscript. It 
was very beneficial! 


