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eMethods 

1. Estimation of the interval parameters 

The incubation period, the onset-to-isolation interval, and the serial interval (time interval between symptom onsets 
in an infector-infectee pair) were estimated from the dates (or date intervals if the exact date is unknown) of 
exposure, symptom onset, isolation of the confirmed SARS-CoV-2 cases in Taiwan. We estimated the distributions 
of these interval parameters using a Bayesian framework1 that deals with the situation where the exact date is 
uncertain for both ends of the interval (i.e., doubly interval-censored). This method uses a hierarchical model to 
estimate the exact two ends of the time interval for each individual as well as the overall distribution of the interval 
among the population. In the case of incubation period estimation, the exact infection and onset times were 
unobserved and uniform priors bounded by individual exposure and onset windows were assumed. For each 
individual the exact time points of infection and symptom onset are modelled as follows. 

𝑋𝑋𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ∼ 𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈�𝑋𝑋𝑙𝑙,𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑋𝑋𝑢𝑢,𝑖𝑖
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠� 

𝑋𝑋𝑖𝑖𝑒𝑒𝑒𝑒𝑒𝑒 ∼ 𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈�𝑋𝑋𝑙𝑙,𝑖𝑖𝑒𝑒𝑒𝑒𝑒𝑒 ,𝑋𝑋𝑢𝑢,𝑖𝑖
𝑒𝑒𝑒𝑒𝑒𝑒� 

𝑌𝑌𝑖𝑖 = 𝑋𝑋𝑖𝑖𝑒𝑒𝑒𝑒𝑒𝑒 − 𝑋𝑋𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 

𝑋𝑋𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 is the exact time of infection, which was not observed. �𝑋𝑋𝑙𝑙,𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,  𝑋𝑋𝑢𝑢,𝑖𝑖
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠� represents the time window within 

which transmission could have occurred, and was obtained based on patients’ travel/exposure history in case 
investigation reports. Likewise, 𝑋𝑋𝑖𝑖𝑒𝑒𝑒𝑒𝑒𝑒 is the unobserved exact time of symptom onset and �𝑋𝑋𝑙𝑙,𝑖𝑖𝑒𝑒𝑒𝑒𝑒𝑒 ,  𝑋𝑋𝑢𝑢,𝑖𝑖

𝑒𝑒𝑒𝑒𝑒𝑒� is the time 
window within which symptom onset could occurred. 𝑌𝑌𝑖𝑖 is the individual incubation period, and was assumed to 
follow a gamma distribution with the shape (𝛼𝛼) and the scale (𝛽𝛽). We applied flat exponential priors to 𝛼𝛼 and 𝛽𝛽 as 
follows. 

𝑌𝑌𝑖𝑖 ∼ 𝐺𝐺𝐺𝐺𝑈𝑈𝑈𝑈𝐺𝐺(𝛼𝛼,𝛽𝛽) 
𝛼𝛼 ∼ 𝐸𝐸𝐸𝐸𝐸𝐸𝑈𝑈𝑈𝑈𝐸𝐸𝑈𝑈𝐸𝐸𝑈𝑈𝐺𝐺𝐸𝐸(1/1,000) 
𝛽𝛽 ∼ 𝐸𝐸𝐸𝐸𝐸𝐸𝑈𝑈𝑈𝑈𝐸𝐸𝑈𝑈𝐸𝐸𝑈𝑈𝐺𝐺𝐸𝐸(1/1,000) 

To estimate the serial interval, we simply replaced the exposure-to-onset quantities with onset-to-onset quantities 
between the primary and secondary cases. To estimate the onset-to-isolation interval, we simply replaced the 
exposure-to-onset quantities with onset-to-isolation quantities Specifically, we added an offset of 1 days for both the 
serial interval and the onset-to-isolation interval (i.e. add 1 days on each interval 𝑌𝑌 𝑈𝑈) because there are negative 
values generated by the observed windows. We included these observations for that negative serial intervals and 
negative onset-to-isolation intervals are plausible in practice. Particularly, negative onset-to-isolation intervals 
occurred due to contact tracing and active surveillance measures, and negative serial intervals occurred when the 
incubation period of the index case happened to be much longer than the incubation period of the secondary case. 

For each estimation, we ran 4 Markov chain Monte Carlo (MCMC) chains using the Non-U-Turn Sampler in Stan.2 
Each chain contains 1,000 warm-up iterations and 500 samples, rendering to a total of 2,000 samples. The credible 
intervals are obtained from the 2.5th and 97.5th percentiles in the posterior predictive simulations of the gamma 
distributions. 

 

2. The dynamical transmission model 

2.1 Overview 

We adopted the structure of the branching process model developed by Hellewell, et al.,3 which in essence consists 
of two components: 1) the branching process, and 2) the intervention model. The branching process simulates the 
disease transmission dynamics in the early phase of an outbreak. The intervention model considers the effects of 
various case-based interventions for COVID-19 control. Specifically, case detection, contact tracing, and quarantine 
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of close contacts are considered. The parameters and their values for this dynamical transmission model are listed in 
Table 1. 

2.2 The branching process 

The branching process simulates growing transmission trees starting from some given initial cases. This process is 
implemented by the following steps.  

i. Initiate with initial active cases. 
ii. For each active symptomatic case, determine the onset time and the testing time by drawing an individual 

incubation period and an onset-to-isolation interval from their probability distributions (estimated from 
case series data). The testing time for active asymptomatic cases are set to infinite. 

iii. For each active case (both symptomatic and asymptomatic), draw the number of newly infected cases from 
the distribution of secondary cases. 

iv. For each active case (both symptomatic and asymptomatic), apply the intervention model (see eMethods 
2.3 for more details) and determine the period of quarantine and isolation. 

v. For each secondary case, determine the infection time by drawing an individual generation interval 
(infection times in an infector-infectee pair). 

vi. For each transmission pair, determine whether the transmission is realized, or prevented by comparing the 
infection time of the secondary case and the period of quarantine/ isolation of the index case. 

vii. Deactivate the index cases, and activate the realized secondary cases. 
viii. Repeat step ii~vii, until there is no active case, or when the maximal number of generations is reached. 

The distributions of the incubation period and onset-to-isolation interval were estimated from case series data with 
the method described in eMethods 1. We assumed a negative binomial distribution for the secondary case 
distribution, which is governed by the reproduction number (𝑅𝑅) and the dispersion parameter (𝑘𝑘). We assume that 
𝑅𝑅 = 𝑅𝑅0 = 2.5 in the counterfactual scenario where no interventions and behavioral changes were in effect. In the 
real-world setting 𝑅𝑅 should equal 𝑅𝑅𝑝𝑝, denoting for the reproduction number under the effect of population-based 
interventions. 𝑅𝑅𝑝𝑝 and 𝑘𝑘 were estimated by fitting the dynamical model to the observed cluster sizes (see eMethods 
3.3). The generation interval distribution was assumed to be a skewed normal distribution centered at each index 
case’s onset time to avoid the inconsistent length of incubation periods and generation intervals. This 
parameterization also makes the proportion of pre-symptomatic transmission (𝐸𝐸𝑝𝑝𝑠𝑠𝑒𝑒) an explicit parameter in our 
model. The standard deviation of the generation interval (𝜎𝜎), and the proportion of pre-symptomatic transmission 
(𝐸𝐸𝑝𝑝𝑠𝑠𝑒𝑒) were estimated by fitting the dynamical model to the observed serial intervals (see eMethods 3.2). Regarding 
the possibility of asymptomatic infection, we assumed a fixed probability of being asymptomatic (𝐸𝐸𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎 = 0.4), and 
fixed relative transmissibility (𝑈𝑈𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎 = 0.5) for all infections. 

2.3 The intervention model 

The intervention model is composed of a set of rules which determine whether and when active cases and their 
contacts are quarantined or isolated and hence unable to transmit disease. Specifically, case detection, contact 
tracing, and quarantine of close contacts were implemented as described in the following. 

i. Case detection:  Each active, untraced, and symptomatic case was tested with probability 𝜃𝜃, and was 
immediately isolated if tested positive. The secondary cases generated during the incubation period (pre-
symptomatic period) and the onset-to-isolation interval cannot be prevented. 

ii. Contact tracing: Each secondary case (except for initial introductions) was ascertained as a close contact 
(successfully traced) of the detected index case with probability 𝜌𝜌. If a secondary case was ascertained and 
showed symptoms on the time of contact tracing (the onset time of the detected index case), the secondary 
case was immediately isolated, unless the case had already been detected and isolated.  Case detection plus 
contact tracing was able to prevent the transmission during the onset-to-isolation interval, but not during 
the incubation period. 

iii. Quarantine of close contacts: Each active and traced case (regardless of the presence of symptoms) was 
immediately quarantined at the time of being traced. If the case develops symptoms during the quarantine 
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period, he/she will be immediately isolated. Only the combination of detection, tracing, and quarantine was 
able to prevent pre-symptomatic transmissions and transmissions from asymptomatic cases. 

Note that asymptomatic cases were never detected, traced or isolated, but could be quarantined. We also assumed 
perfect compliance with isolation and quarantine order, and all transmissions were prevented during that period. 
eFigure 2 gives examples that illustrate the effects of these interventions on the prevention of disease transmission. 
eFigure 3 provides the one-way sensitivity analysis of all the parameters in this model. 

 

3. Parameter estimation and model calibration 

3.1 Overview and the Sequential Monte Carlo (SMC) algorithm 

The observed serial intervals and size distribution of stuttered transmission chains were utilized to calibrate the 
dynamical model and to estimated related parameters. We note that the reproduction number (𝑅𝑅) and the dispersion 
parameter (𝑘𝑘) only affect the number of infections, not the temporal relationship between successive generations, 
e.g. the distribution of the serial interval. In contrast, the probability of pre-symptomatic transmission (𝐸𝐸𝑝𝑝𝑠𝑠𝑒𝑒) and the 
standard deviation of the generation interval (𝜎𝜎) affect the number of secondary infections because they interact 
with case-based interventions, such that pre-symptomatic transmissions are hardly prevented by case-based 
interventions. Therefore, we first calibrated the model and estimated 𝐸𝐸𝑝𝑝𝑠𝑠𝑒𝑒 and 𝜎𝜎 using the observed serial intervals. 
Then the resulting model was used for further calibration to the observed cluster sizes, and for the estimation of 𝑅𝑅𝑝𝑝 
and 𝑅𝑅𝑝𝑝𝑝𝑝. 

Since the likelihood of the dynamical model is intractable, we used a sequential Monte Carlo algorithm to obtain 
posterior distributions of parameters of interest. This algorithm was used to fit branching process-based dynamical 
models in a similar context.4,5.  The algorithm started from a population of 1,000 parameter sets drawn from the 
prior distributions. Data were simulated with the branching process model parameterized by these parameter sets, 
and the distance between the simulated and empirical data was measured by Kolmogorov–Smirnov (KS) statistics. 
In each round of iteration, the parameter set was resampled, perturbed, and passed on until the criteria of 
convergence were met. We ran 4 chains of SMC algorithms to generate a total of 4,000 posterior samples for 
inference.  

The steps of an SMC algorithm are as follows: 

i. Initiation: generate a population of 1,000 parameter sets by Latin Hypercube sampling from prior 
distributions. 

ii. Simulation: simulate data points with each parameter set and the dynamical model. 
iii. Evaluation: calculate the KS statistics. 
iv. Evolution: resample a new population of 1,000 parameter sets from the current population weighted by 

1/KS2 . 
v. Mutation: perturb each new parameter set by up to 10%. 

vi. Repeat step ii~v until the median KS statistics of the population is less than 0.05 and is within 10% of each 
of the previous two rounds. 

3.2 Model calibration with observed serial intervals 

The probability of pre-symptomatic transmission (𝐸𝐸𝑝𝑝𝑠𝑠𝑒𝑒) and the standard deviation of the generation interval (𝜎𝜎) 
were estimated by fitting the model to the observed serial interval distribution. Wide uniform priors were assigned to 
both parameters. The posterior mean estimates are 0.55 (95%CrI 0.41-0.68) and 2.70 (95%CrI 1.88-3.76), for 
𝐸𝐸𝑝𝑝𝑠𝑠𝑒𝑒and 𝜎𝜎, respectively. eTable 1 lists the values of priors, posterior estimates and other fixed parameters used in 
this calibrating stage. eFigure 4 presents the posterior distributions, the convergence plots, and the posterior 
predictive of the serial interval.  
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3.3 Model calibration with observed cluster sizes 

The reproduction number under population-based interventions only (𝑅𝑅𝑝𝑝), and the dispersion parameter (𝑘𝑘) were 
estimated in this stage, by fitting the model to observed cluster sizes. Wide uniform priors were assigned to the 
parameters. The posterior mean estimates are 1.30 (95%CrI 1.03-1.58) and 29.21 (95%CrI 6.28, 50.00), for 𝑅𝑅𝑝𝑝and 
𝑘𝑘, respectively. eTable 2 lists the values of priors, posterior estimates and other fixed parameters used in this 
calibrating stage. eFigure 5 presents the posterior distributions, the convergence plots, and the posterior predictive of 
the cluster sizes. The limited amount of observations for cluster sizes make it hard to infer the dispersion parameter, 
as the posterior distribution of 𝑘𝑘did not converge well (eFigure 5B). However, the posterior distribution of 𝑅𝑅𝑝𝑝 did 
converge to consistent estimates (eFigure 5A) which had accounted for the uncertain in 𝑘𝑘 simultaneously. 

 

4. Estimation of the time-varying reproduction numbers 

The time-varying reproductive number (𝑅𝑅𝑠𝑠) for SARS-CoV-2 and influenza were estimated using Wallinga and      
Teunis method,6 also known as the “case reproduction number”.7 This method attributes the transmission events and 
assigns the value of 𝑅𝑅𝑠𝑠 to the cohort of primary cases at time 𝐸𝐸. Since 𝑅𝑅𝑠𝑠  represents the transmissibility of primary 
cases, it explains the future incidence, and can reflect the subsequent impacts of events after specific time points.8. 
Practically, this method estimates the transmission probabilities between every possible transmission pair, according 
to their observed serial intervals. The probability that case 𝑈𝑈 was infected by case 𝑗𝑗 (𝐸𝐸𝑖𝑖𝑖𝑖) is given as  

𝐸𝐸𝑖𝑖𝑖𝑖 =
𝑤𝑤�𝐸𝐸𝑖𝑖 − 𝐸𝐸𝑖𝑖�

∑ 𝑤𝑤(𝐸𝐸𝑖𝑖 − 𝐸𝐸𝑎𝑎)𝑎𝑎≠𝑖𝑖
 

𝐸𝐸𝑖𝑖𝑖𝑖 is calculated by normalizing the likelihood of case  infecting case  by the sum of the likelihood from all 
possible infector cases 𝑈𝑈 ≠ 𝑈𝑈. 𝑤𝑤�𝐸𝐸𝑖𝑖 − 𝐸𝐸𝑖𝑖� is the transmission likelihood quantifying how well the observed serial 
interval (the onset time difference between case 𝑈𝑈 and 𝑗𝑗, 𝐸𝐸𝑖𝑖 − 𝐸𝐸𝑖𝑖) fits the serial interval distribution of ascertained 
transmission pairs. The effective reproduction number of case 𝑗𝑗 is by definition (the expected number of secondary 
infections) the sum of all the transmission probabilities where case 𝑗𝑗 is the infector. 

𝑅𝑅𝑖𝑖 = �𝐸𝐸𝑖𝑖𝑖𝑖
𝑖𝑖

 

We then summarized the 𝑅𝑅𝑖𝑖’s into the time-varying reproduction numbers (𝑅𝑅𝑠𝑠) by calculating the 7-day moving 
averages according to their onset time. The confidence intervals were calculated by the 2.5th and 97.5th percentiles 
in the 𝑅𝑅𝑠𝑠 of 100 simulated transmission trees from the 𝐸𝐸𝑖𝑖𝑖𝑖’s matrix, as in Cori, et al.5 

For SARS-CoV-2, we directly used the daily incidence based on the symptom onset date to estimate 𝑅𝑅𝑠𝑠. For 
influenzae, the weekly incidence from two different data sources were used, including the notified influenzae cases 
with severe complications in the National Notifiable Disease Surveillance System, and the influenzaee-like illness 
(ILI) consulting rate in the out-patient and emergency departments. The ILI consultation rate was further multiplied 
by the positive rate of influenzae according to the laboratory surveillance data. Cubic spline smoothing was used to 
disaggregate the weekly-basis data into daily-basis incidence.9 To avoid the problem of right truncation, we used the 
influenzae data through the end of March to estimate the Rt until Feb 21st (one month after the first reported case of 
Covid-19 in Taiwan). Another key input to 𝑅𝑅𝑠𝑠 estimation is the distribution of the serial interval. For SARS-CoV-2, 
the serial interval was estimated using the ascertained transmission pairs in our case series data. For seasonal 
influenzae, we assumed the mean and standard deviation of the serial interval to be 3.6 and 1.6 according to a 
previous study10. In addition to the Wallinga and Teunis method, we also estimated the instantaneous (real-time) 
reproduction number Rt by Cori et al. for the influenzae analysis, and the results were shown in eFigure 6.  
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eFigure 1. Conceptual framework for the transmission model.  
The transmission model is a stochastic branching process model that simulates the epidemic based on given input parameters (in a 
forward fashion). On the other hand, the transmission model could be used to estimate the parameter values through 
fitting/calibrating the model output to the observed data (in a backward fashion). A two-step approach was used in this study. First, 
the stochastic model was calibrated to the observed serial interval distribution to estimate the proportion of pre-symptomatic 
transmission and the standard deviation of generation interval (eMethods 3.2). Second, the calibrated model from the first step was 
used to estimate and project the potential effectiveness of case-based interventions in the absence of population-based 
interventions (the arrow from R0 to Rc). In this case, R0 is the input parameter and Rc is the output from the model. The model was 
also used to estimate potential effectiveness of population-based interventions and joint interventions (the arrow from Rp to Rpc). In 
this case, Rp is the (unknown) input parameter and Rpc is the output from the model that depended on Rp. By fitting the cluster size 
distribution from the model to the cluster size distribution observed in contact tracing,  Rp and  Rpc were jointly estimated.  
R0, basic reproduction number (assumed); Rc, effective reproduction number with case-based interventions (estimated); Rp: effective 
reproduction number with population-based interventions (estimated); Rpc, effective reproduction number with both case-based and 
population-based interventions.    
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eFigure 2. Examples of the effects of case detection, contact tracing, and quarantine.  
Case A and A* demonstrate the effect of mere detection, which can only prevent the transmission once the active cases are tested 
and isolated. That is, the active cases can transmit the disease during their incubation and delay of case detection. Case B and B* 
demonstrate the effect of detection plus tracing (without quarantine), where case B was successfully traced and onset within a buffer 
period. Therefore, case B was immediately isolated when the source was detected. Detection plus tracing can prevent transmission 
during the delay of case detection. Case C and C* demonstrate the combined effect of detection, contact tracing, and quarantine. 
Only in this scenario that transmission during the incubation period can be prevented. We assume that there is no delay between 
testing and isolation, the buffer of contact tracing to be one day, and the same effect of quarantine and isolation. Besides, 
asymptomatic cases are never detected or traced but could be quarantined and have lower transmissibility. 
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eFigure 3. Tornado diagrams from the one-way sensitivity analysis on the effects of case-
based interventions.  
The effective reproduction number under case-based interventions (𝑅𝑅𝑝𝑝). The blue bars represent the change in the measured 
outcome when the corresponding parameter value decreased; the red bars represent the change when the parameter value 
increased. The tuning ranges of the parameters are shown next to ends of the bars. 
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eFigure 4. Model fitting to the observed serial intervals. 
(A) The posterior distribution of the proportion of pre-symptomatic transmission (𝐸𝐸𝑝𝑝𝑠𝑠𝑒𝑒). (B) The posterior distribution of the standard 

deviation of the generation interval (𝜎𝜎). (C) The convergence plot of the sequential Monte Carlo algorithm, with the median 
Kolmogorov–Smirnov (KS) statistics as the distance measure. (D) The distribution of observed serial intervals (grey bar) and the 
posterior predictive simulation of the serial interval distribution (100 times of simulation).  
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eFigure 5. Model fitting to the observed cluster sizes.  
(A) The posterior distribution of the effective reproduction number under population-based interventions (𝑅𝑅𝑝𝑝). (B) The posterior 
distribution of the dispersion parameter (𝑘𝑘). (C) The convergence plot of the sequential Monte Carlo algorithm, with the median 
Kolmogorov–Smirnov (KS) statistics as the distance measure. (D) The observed cluster sizes and the posterior predictive simulation 
of the cluster size distribution (100 times of simulation). 
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eFigure 6. The incidence and instantaneous reproduction number (Rt) of influenzae in 
Taiwan, 2018–2020.  
(A) Estimates from the notified number of severe influenzae with complications. (B) Estimates from the overall influenzae cases 
derived from influenzae-like illness consultation rate and the positive rate from laboratory testing for influenzae (eMethods). The 
gray bars represent the number of weekly incidence cases, and the red lines represent the Rt with 95% confidence intervals in the 
shaded area. Thirty days before and after (yellow and blue background) January 21, the date of the first SARS-CoV-2 infection 
confirmed in Taiwan, was highlighted. 
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eTable 1. The values of fixed parameters and the priors of fitted parameters in 
model fitting to the serial interval. 
 

Parameter Fixed value/ prior range Posterior mean (95% 
CrI) 

Mean incubation period, days 5.50  

Standard deviation of incubation period, days 3.26  

Mean onset-to-isolation interval, days 5.02  

Standard deviation of onset-to-isolation interval, 
days 

5.80  

Basic reproduction number, R0 2.5  

Dispersion parameter, 𝑘𝑘 20  

Probability of asymptomatic infection, 𝐸𝐸𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎 0,4  

Relative transmissibility of asymptomatic case, 
𝑈𝑈𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎 

0.5  

Proportion of pre-symptomatic transmission, 𝐸𝐸𝑝𝑝𝑠𝑠𝑒𝑒 Uniform (0.01–0.99) 0.55 (0.41–0.68) 

Standard deviation of the generation interval, 𝜎𝜎 Uniform (0.001–5) 2.70 (1.88–3.76) 

Probability of case detection, 𝜃𝜃 0.95  

Probability of contact ascertainment, 𝜌𝜌 0.90  

Duration of quarantine, days 14  

Backtracking days for quarantined contacts 4  
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eTable 2. The values of fixed parameters and the priors of fitted parameters in 
model fitting to the cluster size distribution 

Parameter Fixed value/ prior 
range 

Posterior mean (95% 
CrI) 

Mean incubation period, days 5.50  

Standard deviation of incubation period, days 3.26 
 

Mean onset-to-isolation interval, days 5.02 
 

Standard deviation of onset-to-isolation interval, 
days 

5.80 
 

 
Effective reproduction number, 𝑅𝑅𝑝𝑝 Uniform (0.1–3.0) 1.30 (1.03–1.58) 

Dispersion parameter, 𝑘𝑘 Uniform (0.001–50) 29.21 (6.28–50) 

Probability of asymptomatic infection, 𝐸𝐸𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎 0.4  

Relative transmissibility of asymptomatic case, 
𝑈𝑈𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎 0.5  

Proportion of pre-symptomatic transmission, 𝐸𝐸𝑝𝑝𝑠𝑠𝑒𝑒 0.55  

Standard deviation of the generation interval, 𝜎𝜎 2.70  

Probability of case detection, 𝜃𝜃 0.95  

Probability of contact ascertainment, 𝜌𝜌 0.90  

Duration of quarantine, days 14  

Backtracking days for quarantined contacts 4  
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eTable 3. Scenarios in the assessment of case-based interventions. 

Scenario Probability of 
detection (𝜽𝜽) 

Probability of 
contact 
ascertainment 
(𝝆𝝆) 

Duration of 
quarantine, days 

No intervention 0  0  0  

Detection 0.95 0 0 

Detection + Tracing 0.95 0.9 0 

Detection + Tracing + 7-day 
Quarantine 0.95 0.9 7 

Detection + Tracing + 14-day 
Quarantine 0.95 0.9 14 
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eTable 4. The estimated time-varying reproduction number (Rt) of influenzae in 
Taiwan on January 21, February 4, and February 18, 2018–2020.  
 

 Notified severe influenzae Estimated total influenzae 

Year January 21 February 4 February 18 January 21 February 4 February 18 

2018 1.01  
(0.88–1.15) 

1.08  
(0.96–1.21) 

0.89 
(0.78–0.98) 

0.97  
(0.96–0.99) 

1.01  
(1–1.03) 

0.98  
(0.96–0.99) 

2019 0.95  
(0.85–1.08) 

1.08  
(0.95–1.21) 

0.95 
(0.84–1.05) 

0.92  
(0.91–0.94) 

1.01  
(0.99–1.04) 

1.07  
(1.05–1.09) 

2020 0.87  
(0.76–0.97) 

0.78  
(0.67–0.94) 

0.27  
(0.12–0.53) 

1.07  
(1.06–1.09) 

0.72  
(0.71–0.74) 

0.57  
(0.54–0.60) 

The daily incidence of influenzae was derived from the notified influenzae patients with severe 
complications or an estimated overall number of medical visits cases due to influenzae-like illness. 
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