

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

BMJ Open

Gender differences in publications related to COVID-19

Journal:	BMJ Open
Manuscript ID	bmjopen-2020-045176
Article Type:	Original research
Date Submitted by the Author:	27-Sep-2020
Complete List of Authors:	Lerchenmüller, Carolin; University Hospital Heidelberg, Schmallenbach, Leo; University of Mannheim Jena, Anupam; Harvard University, Health Care Policy Lerchenmueller, Marc ; University of Mannheim,
Keywords:	GENERAL MEDICINE (see Internal Medicine), COVID-19, Health policy < HEALTH SERVICES ADMINISTRATION & MANAGEMENT

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

review only

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Gender differences in publications related to COVID-19

Carolin Lerchenmüller, MD,^{1,2,3} Leo Schmallenbach, MSc,⁴ Anupam B. Jena, MD,^{5,6,7*} PhD, Marc J. Lerchenmueller, MPH, PhD^{4,8*}

¹Department of Cardiology, Angiology, Pulmonology, University Hospital Heidelberg, Germany
²German Center for Heart and Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, Germany
³Cardiology Division and Corrigan Minehan Heart Center, Massachusetts General Hospital, Boston, MA
⁴Area Management, University of Mannheim, Mannheim, Germany
⁵Department of Health Care Policy, Harvard Medical School Boston, MA
⁶Department of Medicine, Massachusetts General Hospital, Boston, MA
⁷National Bureau of Economic Research, Cambridge, MA
⁸School of Management, Yale University, New Haven, CT

*These authors contributed equally

Word count: 1795 Keywords: COVID-19, Health policy, Gender equity

Corresponding author:

Carolin Lerchenmueller, MD Department of Cardiology, Angiology, Pulmonology University Hospital Heidelberg INF 410 69120 Heidelberg, Germany Email: carolin.lerchenmueller@med.uni-heidelberg.de

BMJ Open

Gender differences in publications related to COVID-19

Abstract

Objective: When concerns have been raised that the COVID-19 pandemic has disproportionally involved male scientific authors, potentially to the disadvantage of women's careers and societies' response to the pandemic, we sought to investigate the gender distribution of first authorships for publications on COVID-19.

Methods and Results: We compared gender distribution of first authorships for publications on COVID-19 from 2020 versus publications appearing in the same journals during the previous year and find that the gender gap widens by 18 percentage points with the COVID-19 pandemic. Globally, female researchers' productivity goes down in relation to their male peers across all continents.

Conclusion: The reduction in women's research output regarding COVID-19 appears particularly concerning as many disciplines informing the response to the pandemic had near equal gender shares of first authorship in 2019. Academic and funding institutions may need to consider potential remedies to mitigate the pandemic's negative effect on women's scientific productivity.

Strengths and limitations of this study

• Using a natural experiment design, this study provides evidence for a ~3.5x increase in the gender gap among leading authors on 27,821 COVID-19 publications relative to a set of 365,914 control articles appearing in the same journals the previous year

• Particularly fields that are pertinent to addressing the pandemic, like virology, infectious diseases, public health, and internal medicine, show a pronounced slump in women's productivity as the pandemic unfolds

• With fewer women contributing to COVID-19 research than one would expect, concerns mount that the academic community can offer the best ideas for addressing the pandemic

• To our knowledge, this is the most up to date and the largest study investigating gender differences in first authorships of COVID publications, including data from articles published between February 1st, and September 10th

• Our large-scale study design does not allow, however, to discern the multifactorial mechanisms leading to the decline in women's productivity, which may range from displaced work hours needed for child care to gender differences in the allocation of COVID-19 funding schemes

Introduction

It is now widely accepted that women are integral to productive and innovative science communities (1, 2). Nonetheless, women remain underrepresented in prestigious author positions on publications in the life sciences and medicine (3), are less likely to be promoted to higher academic ranks, and are paid less, despite the continuously growing number of female academics in those fields (4). Projections indicate that this gap will persist if targeted interventions are not implemented (5).

It is in this setting that concerns have been raised that research and expert reporting on the COVID-19 (Coronavirus Disease 2019, COVID) pandemic has disproportionately involved male scientific authors, at least in part because closures of academic institutions, schools, and childcare facilities likely have led to greater household responsibilities borne by female scientists (6, 7). Consistent with this, previous research has shown that parental leaves taken by men often result in increased productivity, while no such phenomenon can be observed for women, suggesting that working women still contribute significantly to childrearing and household tasks (8). These dynamics likely affect early-career female scholars disproportionally.

The proliferation of COVID related publications provide a unique window into these gendered dynamics for two reasons. First, COVID publications have been produced rapidly under unusual conditions that likely disfavor female scientists relative to usual conditions that can serve as a control, offering a natural experiment setting. Second, COVID publications are mainly produced in the life sciences and medicine where long-standing authorship standards reserve the first author position to early career investigators, which allows estimating the effect for this group in particular. In this study, we assessed the pandemic's effect on women's COVID-related scientific publishing worldwide.

Methods

We compared the gender composition of 27,821 PubMed-indexed articles published between February 1st and September 10th, 2020 that included the term "COVID" in the title or the abstract to the gender composition of 365,914 articles published in the same journals during the same period in 2019 (see **Supplementary Materials** for data and methods). We allocated 2,618 represented journals to scientific disciplines based on Clarivate journal categories and determined author gender with the Genderize database (9). We assessed changes in the gender composition of authors between periods (COVID and pre-COVID) within scientific discipline (e.g., medicine/internal medicine, infectious diseases, virology, etc.), to account for the possibility that the scientific areas in which COVID research has predominantly been published may at baseline (i.e. pre-COVID) have had disproportionately more male authors. We also used detailed affiliation data to determine the geographic locale of the first author.

Patient and Public Involvement

No patients were involved in setting the research question or the outcome measures, nor were they involved in developing plans for design or implementation of the study. No patients were asked to advise on the interpretation or write up of the results. There are no plans to disseminate the results of the research to study participants or the relevant patient community.

Results

Our data shows that disciplines producing most COVID-relevant publications had near equal gender shares of first authorship pre-COVID. For example, in the fields

Page 7 of 24

BMJ Open

of virology, general/internal medicine, and infectious diseases, the proportions of first authors who were female prior to COVID were 52%, 45%, and 49%, respectively. The share of female first authors in relevant fields like public environmental and occupational health was even higher (58%). However, significant reductions in female first authorships have occurred in almost all disciplines, including the above, since the pandemic began. Across all disciplines that published research related to COVID, we found that the average gender gap in first authorships was 7% (54% male vs 46% female first authors) in 2019, rising to 25% (63% male vs 37% female first authors) for COVID related research. The average gender gap in first authorships has thus risen by 18 percentage points in the wake of the pandemic (Figure 1). In the fields of virology, general/internal medicine, and infectious diseases in particular, the gender rift in first authorships has widened above average (29, 18, and 20 percentage points, respectively), while there was no gap in the control group (Figure 1). The previously female first author-dominated field of public environmental and occupational health now presents a gender gap of 18% (total increase from pre-COVID of 34 percentage points) (Figure 1).

Since the pandemic has affected countries differently, we further performed analyses based on the country affiliation of the first author. Female researchers' productivity goes down in relation to their male peers across all continents. Publishing activity by women located in Brazil, for example, is reduced by 36%, the average reduction of first authorships in Europe, where the pandemic first gathered speed, is 31% (**Figure 2**). In Canada and the United States, the reduction to date is 10% and 22%, respectively (**Figure 2**).

Discussion

Our results provide the largest and latest systematic evidence for the COVID pandemic's effect on women's publishing productivity across disciplines worldwide. In light of previous research and observations (*6-8, 10*), we suspect that the overcontribution of women to household and child rearing responsibilities that leaves less opportunity to participate in writing, submitting and publishing research related to COVID-19 leads to the reduced productivity of women as borne out by our data. Despite at an early stage and still during an ongoing pandemic, these results already suggest cause for concern, both on the individual and societal level. Our findings indicate that the current scientific/medical response to one of the most incisive global crises is overly male dominated, particularly when considering that the fields being called upon to offer scientific insights have historically had more gender balance in scientific representation. The present effects may be amplified as the pandemic wanes on and perceptions of women at earlier career stages may lead them to be less often allocated to leading roles on projects in the current circumstances.

Women are a vital part of the research and medical enterprise, impacting patient care, science and society. To avoid long-term impacts on the academic advancement and scientific contributions, the disproportionate impact of COVID-19 on early career women investigators needs serious consideration. As a first step, the problem needs to be openly and consciously discussed. Naturally, pre-existing inequities must be evaluated, and a long-term strategy has to be established to support equity and inclusion in science (*11*). But more acutely, COVID-related gender inequities need to be addressed with direct measures, monetary and non-monetary, on both the political (e.g. federal funding agencies) and institutional level. For example, modifications for grant deadlines, timelines, extensions for granted expenses, as well as additional (bridge)

BMJ Open

funding programs, are likely warranted (12). Extension of tenure evaluation and promotion should be considered on the individual level accounting for constraints posed by COVID. Resources for childcare should be provided for parents, additional funds for expanded childcare arrangements could help to reallocate time to regular professional duties. Financial support for postdoctoral/graduate students could help to facilitate a research set-back in a recently established laboratory.

Without policy interventions, our communities may miss out on some of the best ideas for tackling the pandemic, across scientific/medical disciplines and potentially beyond in other professions.

References

- 1. World Economic Forum, The Global Gender Gap Report 2017. http://www3.weforum.org/docs/WEF_GGGR_2017.pdf (accessed 08 June 2018), (2017).
- 2. K. R. O'Brien, M. Scheffer, E. H. van Nes, R. van der Lee, How to Break the Cycle of Low Workforce Diversity: A Model for Change. *PloS one* **10**, (2015).
- 3. C. Lerchenmuller, M. J. Lerchenmueller, O. Sorenson, Long-Term Analysis of Sex Differences in Prestigious Authorships in Cardiovascular Research Supported by the National Institutes of Health. *Circulation* **137**, 880-882 (2018).
- 4. D. M. Blumenthal *et al.*, Sex Differences in Faculty Rank Among Academic Cardiologists in the United States. *Circulation* **135**, 506-517 (2017).
- 5. L. Holman, D. Stuart-Fox, C. E. Hauser, The gender gap in science: How long until women are equally represented? *PLoS Biol* **16**, e2004956 (2018).
- 6. C. Kitchener, in *The Lily / The Washington Post*. (thelily.com, 2020).
- 7. F. Staniscuaski *et al.*, Impact of COVID-19 on academic mothers. *Science* **368**, 724 (2020).
- 8. H. Antecol, K. Bedard, J. Stearns, Equal but Inequitable: Who Benefits from Gender-Neutral Tenure Clock Stopping Policies? *American Economic Review* **108**, 2420-2441 (2018).
- 9. V. Lariviere, C. Ni, Y. Gingras, B. Cronin, C. R. Sugimoto, Bibliometrics: global gender disparities in science. *Nature* **504**, 211-213 (2013).
- 10. Boston Consulting Group. Easing the covid-19 burden on working parents. https://www.bcg.com/en-us/publications/2020/helping-working-parents-easethe-burden-of-covid-19.aspx (accessed 14 September 2020), (2020).
- 11. J. L. Malisch *et al.*, Opinion: In the wake of COVID-19, academia needs new solutions to ensure gender equity. *Proceedings of the National Academy of Sciences of the United States of America* **117**, 15378-15381 (2020).
- 12. E. M. Gibson *et al.*, How Support of Early Career Researchers Can Reset Science in the Post-COVID19 World. *Cell* **181**, 1445-1449 (2020).

Availability of data and materials

The datasets generated and analysed during the current study are available from the corresponding author.

Conflicts of interest

Dr. Jena reports receiving consulting fees unrelated to this work from Pfizer, Hill Rom Services, Bristol Myers Squibb, Novartis, Amgen, Eli Lilly, Vertex Pharmaceuticals, AstraZeneca, Celgene, Tesaro, Sanofi Aventis, Biogen, Precision Health Economics, and Analysis Group.

Funding

Support was provided by the Office of the Director, National Institutes of Health (1DP5OD017897, Dr. Jena). The funding sources had no role in the design and conduct of the study; collection, management, analysis, and interpretation of the data; and preparation, review, or approval of the manuscript.

Author's contributions

LS and MJL collected data, LS, MJL and CL performed data analysis. CL, MJL, ABJ wrote the manuscript, LS edited the manuscript. All authors read and approved the final manuscript. Patients and public did not contribute to the study.

Acknowledgements

The authors acknowledge support by the German state of Baden-Württemberg through bwHPC—high performance cluster computing resources.

Supplementary Materials

Detailed methods and supporting data are available in the supplementary materials. All data and source code will be made publicly available with publication of this article.

tor peer teriew only

3	
4	
5	
6	
7	
, 0	
0	
9	
10	
11	
12	
13	
14	
15	
16	
17	
10	
10	
19	
20	
21	
22	
23	
24	
25	
26	
20	
27	
28	
29	
30	
31	
32	
33	
34	
35	
26	
30	
3/	
38	
39	
40	
41	
42	
43	
44	
15	
45	
46	
4/	
48	
49	
50	
51	
52	
53	
54	
54	
22	
56	
57	
58	
59	
60	

	Gender difference 2019	Gender difference COVIE
MEDICINE GENERAL & INTERNAL		
PUBLIC ENVIRONMENTAL & OCCUPATIONAL HEALTH		
SURGERY		
IMMUNOLOGY		
CARDIAC & CARDIOVASCULAR SYSTEMS		
PHARMACOLOGY & PHARMACY		
ONCOLOGY		
PSYCHIATRY		
VIROLOGY		
RADIOLOGY NUCLEAR MEDICINE & MEDICAL IMAGING		
DERMATOLOGY		
MEDICINE RESEARCH & EXPERIMENTAL		
HEALTH CARE SCIENCES & SERVICES		
GASTROENTEROLOGY & HEPATOLOGY		
NEUROSCIENCES		
RESPIRATORY SYSTEM		
MULTIDISCIPLINARY SCIENCES		
RHEUMATOLOGY		
OPHTHALMOLOGY		
OBSTETRICS & GYNECOLOGY		
MICROBIOLOGY		
GERIATRICS & GERONTOLOGY		
CELL BIOLOGY		
DENTISTRY ORAL SURGERY & MEDICINE		
CRITICAL CARE MEDICINE		
OTORHINOLARYNGOLOGY		
ORTHOPEDICS		
MEDICAL LABORATORY TECHNOLOGY		
SPORT SCIENCES		
ETHICS		
NUTRITION & DIETETICS		
GENETICS & HEREDITY		
PSYCHOLOGY CLINICAL		
BIOLOGY		
VETERINARY SCIENCES		
PERIPHERAL VASCULAR DISEASE		
PHYSIOLOGY		
SUBSTANCE ABUSE		

Figure 1. Reduction in female first authorships during the COVID-19 pandemic by discipline

Heatmap depicting the percentage share of female vs. male first authorships for COVIDpublications and control publications during the same period in 2019 in COVID-intensive disciplines (\geq 55 articles, descending frequency from top to bottom). Overall difference in female (compared to male) first authorships in %.

Figure 2. Reduction in female first authorships during the COVID-19 pandemic by country

Worldmap depicting the change in the gender gap in first authorship (percent female first authorship minus percent male first authorship) for COVID publications versus non-COVID publications. Included countries had at least 30 COVID publications up to September 10th, 2020.

BMJ Open

1	
2	
3	Supplementary materials for
4	
5	Cander differences in publications related to COVID-19
6	Gender unterences in publications related to COVID-17
7	
8	
9	Carolin Lerchenmüller, MD, Leo Schmallenbach, MSc,
10	Anupam B. Jena, MD. PhD. Marc J. Lerchenmüller, MPH, PhD
11	,,,,,,,,,
12	
13	T-ble of Contents
14	Table of Contents
15	
16	Additional information on data (page 2)
17	Additional information on methods (page 3)
18	References (page 4)
19	
20	Figure S1: Sample construction for COVID articles and non-COVID (control) articles
21	Figure 51. Sample construction for COVID articles and non-COVID (control) articles
22	
23	Figure S2: Gender designation accuracy for COVID articles and non-COVID (control)
24	articles for female and male first authors
25	
20	Figure S3: Gender designation accuracy for first authors for COVID articles and non-
27	COVID (control) articles separately
28	
29	Table S1. Major disciplines for COVID articles and non COVID (control) articles and
5U 21	Table S1. Major disciplines for COVID articles and non-COVID (control) articles and
27	concordance statistics
32	
34	Table S2: Major countries for COVID articles and non-COVID (control) articles and
35	concordance statistics
36	
37	Table S3: Hierarchical linear probability model for the likelihood of female first
38	authorship for COVID articles versus non-COVID (control) articles
39	authorship for COVID articles versus hon COVID (control) articles
40	T-ble CA. History histolic static structure for the libertite of a first static for the structure his for
41	Table 54: Hierarchical logistic regression for the likelihood of female first authorship for
42	COVID articles versus non-COVID (control) articles
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	

Additional Information on Data

We merged several databases to analyze potential gender differences in first authorships of COVID publications relative to a set of control publications in the same journals in the prior year. First, we extracted all articles from the PubMed database for which the term "COVID" appeared in the title or abstract and obtained all available article characteristics including, among others, the names of all authors, country affiliation per author, the journal ISSN (International Standard Serial Number), and time of publication (months and year). The U.S. National Library of Medicine maintains the PubMed XML database and a detailed data inventory can be found here

(https://www.nlm.nih.gov/databases/download/pubmed_medline.html). We obtained the journals' major scientific discipline from the Clarivate Journal Citation Report of 2018 via the unique journal ISSNs. We used journal names as a crosswalk to identify publications that appeared a year earlier in the exact same journals as the COVID articles.

An overview of the sample creation is provided in **Figure S1**. In service of estimation accuracy, we included only journals that are listed in Clarivate. By construction that excludes all COVID publications in journals that had no publication on record in PubMed for 2019. These journals likely only came into being in 2020. We restricted our search query to articles published between February 1st and September 10th of 2019, since these months were the most productive in terms of COVID publishing and we sought to mitigate seasonal influences, like gender differences in teaching load at certain times of year.

We used the forenames recorded in PubMed to designate the gender of authors (PubMed started to systematically record forenames in 2002). We determined the probable gender of the authors through the Genderize database, an established approach that allows gender assignment for a large number of authors. At the time of initial submission, Genderize included 86,710 distinct forenames drawn from 74 countries and 81 languages. Recent tests of the accuracy and comprehensiveness of four gender assignment algorithms, using a control sample of gender-matched forenames from a US government office, found that Genderize provided the most accurate estimates of gender (1). Our underlying code for calling the Genderize database with a large set of forenames has been posted to Figshare (2). Genderize uses a variety of information, such as social media records, to assign a probability that an individual with a particular forename is a man or a woman. For example, Genderize designates the forename "Chris" as male with 93% probability based on 8,631 verified records in the database. We considered gender determined if Genderize assigned a probability greater than chance (>50%) to preserve observations, given that the early stage of the COVID pandemic limits the set of associated publications. We designated the gender for more than 80% of the authors in our set. Of the authors designated, eight out of ten authors had an assigned gender probability of 90% or more (Figure S2). The gender designation for female first authors is equally accurate for both control and treatment group (Figure S3). As such, our main findings do not change when setting different gender designation thresholds.

Next, we compared the distribution of disciplines producing COVID research relative to the articles in the control sample (**Table S1**). Ranking the disciplines in terms of publication output, and testing a Spearman Rank correlation, we obtain a coefficient of greater 0.85. While this correlation would generally be considered strong (*3*) lending credence to our basic design, it does not consider the possibility that men and women may sort differently into these fields. However, our **Figure 1a** in the main text documents that it is primarily fields where women tend to be well represented that produce COVID research.

To execute country-level analyses, we use regular expressions to extract the full country name or country codes from affiliation data for the first author. We also ranked countries by productivity for COVID-articles and control articles, obtaining a Spearman rank correlation of 0.94, again supporting our approach of using non-COVID articles in the prior year as a control group (**Table S2**). This also mitigates concerns that countries with larger gender gaps in general produce more COVID research.

Additional information on methods

Measurement

To assess the effect of the COVID pandemic on the gender gap in publishing, we reported unadjusted differences in the percent of female first authorships versus male first authorships for COVID and non-COVID publications. This straightforward metric provides a direct and easy to understand measure of how the COVID pandemic impacts women's versus men's publication productivity.

 $\Delta GenderGap = \{FirstAuthor_{Female} - FirstAuthor_{Male} | COVID \} \\ - \{FirstAuthor_{Female} - FirstAuthor_{Male} | Non - COVID \}$

To conduct subgroup analysis for discipline and country, we calculated the change in the gender gap based on the percent of female and male first authorships for the specific discipline and country.

Estimation

In addition to the unadjusted differences, we also provided adjusted differences in female versus male first authorship obtained from linear probability models (**Table S3**), adjusting for field of research and country. Logistic regression as an alternative estimation model has two disadvantages in our analysis. First, the large number of fixed effects when including countries and discipline dummies, for example, raises the possibility of incidental parameters bias and could prevent the convergence of some of our models. Second, logistic regressions can overestimate effect sizes as a result of the high leverage of marginal cases (i.e., identifying larger gender differences than reported

in the main text), whereas linear probability models average across observations and produce more conservative results (see also **Table S4**).

We provided adjusted estimates in the supplement as one might be concerned, for example, that men are more numerous in fields that produce COVID research. This would also lower women's observed COVID productivity but not due to pandemic related constraints as hypothesized, but rather due to underlying structural differences in subspecialties. Of note, the descriptive data paint a different picture, such that women tend to be at least equal if not overrepresented in the most productive COVID disciplines.

References

- 1. C. N. G. detection, (<u>http://codingnews.info/post/genderdetection</u> (accessed 11/15/17) (2015)).
- 2. Lerchenmueller. Marc, *Genderize_unlimited_API_request*. (2017).
- 3. M. G. Pagano, Kimberlee, *Principle of Biostatistics*. (Brooks/Cole, ed. Secon Edition, 2000).

BMJ Open

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

60

Cumulatives:

Accuracy of Sex Designation

Female First Authors

Table S1: Major disciplines for COVID articles and non-COVID (control) articles and concordance statistic

9 Total % Rank Total % Runk Stal	7	7 Discpline		Non-COVID			COVID			Total		
99 MEDICINE GENERAL & INCLURAL 2023 55% 14 2009 10.9% 2146 5.9% 17 10 PUBILIC ENVIRONMETAL & OCCUPATIONAL HEAL 13059 3.5% 8 1726 6.3% 3 2230 5.8% 7 11 SURGERY 20541 5.6% 3 1726 6.3% 3 2230 5.8% 7 12 IMMINOLOGY 9435 2.5% 11 1303 4.7% 4 1073 2.7% 5 118 5.7% 118 133 4.7% 7 1934 4.0% 5 115 15 757 1.1% 5 877 3.15% 7 1930 4.0% 5 15 0.5% 36 0.27% 13 15 PSCHATRICS 828 2.5% 13 652 2.5% 14 646 2.37% 12 2539 2.5% 36 36 32.30% 5 149 114.6454 3.24% 8	8		Total	%	Rank	Total	%	Rank	Total	06	Rank	
10 PUBLIC ENVRONMENTAL & OCCUPATIONAL HEAL 1309 5:8% 8 2147 7.8% 2 1206 3.8% 7 11 SURGERY 9455 2.5% 11 1033 4.9% 4 10738 2.4% 10 12 IMMUNOLOCY 9455 2.5% 11 1033 3.9% 5 1254 3.31% 9 13 PHARMACOLOCY & PHARMACY 1483 40% 6 887 3.2% 6 157.0 4.01% 5 14 OKOLOGY PENCHATRY 773 2.1% 15 781 2.2% 8 4.6% 2.7% 8 8554 2.1% 16 PENCHATRY 773 2.1% 14 6.46 2.7% 13 800 2.7% 13 810 2.7% 13 13 2.3% 14 14 6.46 2.7 2.3% 13 2.18 2.14% 10 2.16% 14 2.14% 14 2.14%	9	MEDICINE GENERAL & INTERNAL	20237	5.55%	4	2909	10.69%	1	23146	5.91%	3	
11 SURGERY 2054 5.65% 3 1726 6.35% 3 2220 5.65% 4 12 IMUNOLOGY 9435 2.25% 19 1038 4.70% 5 3.25% 9 1033 5.05% 5 12944 3.31% 9 13 PHARMACCLOACY 18433 4.17% 6 8877 3.26% 6 1520 4.01% 6 14 ONCOLOCY 18644 5.11% 5 887 3.15% 7 19501 4.99% 5 15 PSYCHATRY 7773 2.13% 15 781 2.25% 9 2.05% 36 16 PLENCIAL NERDOLOGY 8083 2.25% 14 662 2.35% 12 879 2.25% 14 17 ENNERONMENTAL SCIENCES 14000 3.44% 7 646 2.37% 14 247 1.05% 14 251 0.65% 1.4 251 0.65% 1.4 15 0.65% 1.4 1.5% 1.5% 6455 1.26% 1.5% <td< td=""><td>10</td><td>PUBLIC ENVIRONMENTAL & OCCUPATIONAL HEAL'</td><td>13059</td><td>3.58%</td><td>8</td><td>2147</td><td>7.89%</td><td>2</td><td>15206</td><td>3.88%</td><td>7</td></td<>	10	PUBLIC ENVIRONMENTAL & OCCUPATIONAL HEAL'	13059	3.58%	8	2147	7.89%	2	15206	3.88%	7	
12 IMMUNOLOGY 9435 2.5% 1 1303 3.6% 4 1038 2.7% 9 13 PHARMACQLOGY & PHARMACY 14433 4.0% 6 887 3.13% 7 1901 4.9% 5 15 PSYCHATRY 773 2.13% 15 781 2.2% 8 855 3.15% 7 1901 4.9% 5 16 PSYCHATRY 773 2.13% 15 781 2.2% 8 855 2.18% 36 16 PEDIATRICS 8208 2.2% 13 662 2.4% 10 8900 2.2% 13 18 CLINICAL NEURCLOGY 8093 2.2% 2 67 2.3% 13 237 6.95% 2.0% 19 VIROLOGY MULTOLAR BIOLOGY 2072 6.2% 2 91 2.3% 13 231 2.3% 14 205 16.6% 17 20 DERMATOLOGY <th< td=""><td>11</td><td>SURGERY</td><td>20514</td><td>5.63%</td><td>3</td><td>1726</td><td>6.34%</td><td>3</td><td>22240</td><td>5.68%</td><td>4</td></th<>	11	SURGERY	20514	5.63%	3	1726	6.34%	3	22240	5.68%	4	
CARDIAC CARDIOVASCULAR SYSTEMS 11931 3.28% 9 103 87 3.26% 5 1294 3.31% 9 14 ONCOLOCY 1843 4.07% 6 887 3.26% 6 15.0% 4.01% 6 15 PSYCHATRY 174 2.11% 5 87 3.15% 7 19501 4.98% 5 16 PEDATRICS 2.189 0.60% 40 76 2.25% 9 2.94% 1.3 17 ENTRONMENTAL SCIENCIS 1400 3.84% 7 664 2.37% 1.4 4.654 3.74% 8 18 EDICHEMISTRY & MOLECULAR BIOLOGY 2.26% 1.4 66 2.37% 1.4 1.44 1.47% 2.0 67 2.34% 1.4 1.47% 2.0 1.4 2.339 5.95% 2.1 1.6 4.85 1.2.4% 1.4 1.47% 2.0 6.37 2.6.0% 1.4 1.47% 2.0 5.31 2.0.15%	12	IMMUNOLOGY	9435	2.59%	11	1303	4.79%	4	10738	2.74%	10	
1.5 PHARMACCUOY & PHARMACY H854 5.11% 5 87 3.26% 6 1570 4.01% 6 14 ONCOLOGY 18644 5.11% 5 887 3.15% 7 3.15% 7 3.15% 7 3.15% 7 3.15% 7 3.26% 8 8554 2.15% 15 15 PSYCHLATRY 773 2.13% 15 78.6 2.75% 13 69.7 2.54% 10 89.0 2.27% 13 16 PEDIATRICS 800E 2.27% 13 69.7 2.54% 14 64.6 2.37% 12 87.9 2.25% 14 10 ORDICHENTRY KW 174 0.48% 46 6.27 2.30% 14 2319 5.9% 2 19 VIROLOCY 174 0.48% 14 247 2.30% 14 2319 5.9% 1 3.4 14 17 20 2.25% 15 14 15 12 17.5% 12 15.5% 18 17.9% 22 16.5%	12	CARDIAC & CARDIOVASCULAR SYSTEMS	11951	3.28%	9	1003	3.69%	5	12954	3.31%	9	
14 ONCOLOGY 1864 5.11% 5 87 3.15% 7 1950 4.98% 5 15 INFECTIOUS DISEASES 219 0.60% 40 75 2.78% 9 2.94 0.75% 3.6 16 PEDIATRICS 8208 2.25% 1.3 602 2.44% 10 8000 2.27% 18 17 ENVIROMENTAL SCIENCES 4000 3.84% 7 664 2.47% 12 87.39 2.23% 14 666 2.37% 13 2339 5.95% 2 18 BIOCHENISTRY & MOLECULAR BIOLORY 2027 6.23% 1 666 2.47% 16 4.888 1.24% 23 19 VIROLORY MEDICINE RESEARCH & EXPERIMENTAL 534 1.47% 15 2.02% 18 4.970 1.06% 27 21 MEDICINE RESEARCH & EXPERIMENTAL 534 1.47% 15 2.02% 18 4.970 1.05% 18 22 HEANTORUS SCHENES & SERVICES 719 1.61% 4.3 1.57% 2.1	13	PHARMACOLOGY & PHARMACY	14833	4.07%	6	887	3.26%	6	15720	4.01%	6	
PSYCHLATRY 777 2.13% 15 781 2.87% 8 8554 2.18% 15 PEDATRICS SDRASSS 2180 0.60% 40 756 2.78% 9 2945 0.75% 36 PEDATRICS SDRAMS 2.25% 13 0.692 2.54% 10 8900 2.27% 13 DEWIRONMENTAL SCIENCES 1400 3.84% 7 6.64 2.40% 11 1464 3.74% 8 19 VIROLOGY MODECULAR BIOLOGY 2077 2.40% 14 2.30% 14 2.30% 15 6495 1.66% 17 10 DERMATOLOGY MUECIDER & MEDICINE & MEDICAL IMAC 577 1.61% 13 512 2.16% 15 6495 1.66% 1.75 2.27 21 MEDICINE RESEARCH & ESPERIMENTAL 534 1.47% 20 833 2.16% 1.8 22 HEALTH CARE SCIENCES STRM 1.147% 20 1.8% 1.8 <td>14</td> <td>ONCOLOGY</td> <td>18644</td> <td>5.11%</td> <td>5</td> <td>857</td> <td>3.15%</td> <td>7</td> <td>19501</td> <td>4.98%</td> <td>5</td>	14	ONCOLOGY	18644	5.11%	5	857	3.15%	7	19501	4.98%	5	
INTECTIOUS DISEASES 2189 0.60% 40 7.56 2.78% 9 2.945 0.75% 36 16 PEDATRICS 8208 2.25% 13 692 2.24% 11 14.654 3.74% 8 17 ENVIRONMENTAL SCIENCES 14000 3.84% 7 6.64 2.40% 11 14.654 3.74% 8 18 BIOCHEMISTRY & MOLECULAR BIOLOGY 2072 6.22% 2 6.67 2.34% 13 2339 5.95% 2 19 WIGLOGY MEDICINE & MEDICAL IMAC 875 1.61% 17 6.27 2.34% 14 231 0.61% 41 20 RADICLOGY MEDICINE RESEARCI & EXPERIMENTAL 534 1.47% 20 2.88% 1.64% 17 5.997 1.51% 20 1.54% 1.54% 1.84 1.75% 1.997 1.51% 20 1.64% 2.3 41.34 1.65% 2.3 41.34 1.65% 2.3 41.34 1.65%	15	PSYCHIATRY	7773	2.13%	15	781	2.87%	8	8554	2.18%	15	
10 PEDATRICS 8208 2.25% 13 662 2.54% 10 8900 2.27% 13 11 ENVIRONMENTAL SCIENCES 14000 3.84% 7 6.64 2.37% 12 8739 2.23% 14 13 BIOCHEMISTRY W MOLECULAR BIOLOGY 2267 6.25% 2 637 2.34% 13 23309 5.95% 2 19 VIROLOGY WICLEAR MEDICINE & MEDICAL IMAC 5875 1.64% 17 6.020 2.22% 15 6495 1.66% 17 20 REALTA CARE SCIENCES & SERVICES 3719 1.17% 25 583 2.14% 17 5927 1.51% 20 21 HEALTH CARE SCIENCES & SERVICES 3719 1.24% 31 551 2.02% 18 4270 1.09% 23 22 HEALTH CARE SCIENCES & SERVICES 976 7.24% 1 475 1.78% 21 3636 0.93% 34 25 MULTIDISCIPLINARY SCIENCES	16	INFECTIOUS DISEASES	2189	0.60%	40	756	2.78%	9	2945	0.75%	36	
17 ENVIRONMENTAL SCIENCES 14000 3.84% 7 645 2.40% 11 14654 3.74% 8 18 ELINCAL NEUROLOGY 2072 6.22% 2 646 2.37% 13 2339 5.95% 2 19 VIROLOGY NUCLEAR MEDICINE & MEDICAL IMAL 5875 1.61% 17 2.30% 14 2371 0.61% 41 20 RADIOLOGY NUCLEAR MEDICINE & MEDICAL IMAL 5875 1.61% 17 2.30% 14 233 6495 1.66% 17 21 MEDICINE RESEARCH & EXPERIMENTAL 5344 1.47% 20 2.883 2.14% 17 5927 1.51% 2.02% 18 4270 1.09% 27 23 GASTROCENTEROLOGY & HEPATOLOGY 5628 1.51% 18 599 191% 21 3658 0.99% 34 24 REUROCENCES 907 542 1.44% 1 445 1.65% 2 2826 7.25% 1 25 MULTODISCHUNARY SCIENCES 277 249 1.05% 30	10	PEDIATRICS	8208	2.25%	13	692	2.54%	10	8900	2.27%	13	
18 CLINICAL NEUROLOGY 8093 2.22% 14 646 2.3% 12 8739 2.23% 14 19 VIROLOGY 1744 0.48% 46 627 2.34% 13 2330 5.95% 2 10 RADIOLOGY NUCLEAR MEDICINE & MEDICAL IMA 5875 1.64% 17 620 2.28% 15 6495 1.64% 23 10 DERMATOLOGY MEDICINE RESEARCH & EXPERIMENTAL 5344 1.47% 20 533 2.14% 17 5207 1.51% 20 12 HEALTH CARE SCIENCES & SERVICES 3719 1.02% 31 551 2.02% 18 4270 1.09% 23 24 RESCREATORY SYSTEM 3149 0.86% 34 599 1.21% 11 368 0.93% 34 25 MULTIDISCIPLINARY SCIENCES 2716 7.25% 1 475 1.65% 23 4134 1.05% 30 26 FFAT MADULOGY S929	17	ENVIRONMENTAL SCIENCES	14000	3.84%	7	654	2.40%	11	14654	3.74%	8	
BIOCHEMISTRY & MOLECULAR BIOLOGY 22672 6.22% 2 6.37 2.34% 13 23309 5.55% 2 19 VIROLOGY 174 0.48% 46 6.27 2.30% 15 6495 1.66% 17 20 RADIOLOGY WCLEAR MEDICALIMAC 5875 1.61% 17 620 2.28% 15 6495 1.66% 17 21 MEDICINE RESEARCH & EXPERIMENTAL 5344 1.47% 20 583 2.14% 17 5927 1.51% 20 23 GASTROENTEROLOGY & HEPATOLOGY 5628 1.54% 18 549 2.02% 19 6177 1.58% 18 24 NEUROSCIENCES 37786 7.62% 1 475 1.79% 22 28261 7.21% 1 25 MULTDISCIPLINARY SCIENCES 27786 7.62% 1 475 1.79% 22 28261 7.21% 1 26 HEMATOLOGY 368 1.01% 32	18	CLINICAL NEUROLOGY	8093	2.22%	14	646	2.37%	12	8739	2.23%	14	
174 174 0.4% 46 627 2.3% 14 2371 0.61% 41 20 RADIOLOGY NUCLEAR MEDICLI MAX 5875 1.61% 17 620 2.28% 15 6495 1.66% 17 21 DERMATOLOGY 4267 1.17% 25 591 2.17% 16 4858 1.24% 23 22 HEALTH CARE SCIENCES & SERVICES 3719 1.02% 31 551 2.02% 18 4270 1.09% 27 23 GASTROENTERICLOGY & HEPATOLOGY 562 2.44% 18 549 2.02% 18 4270 1.09% 27 24 RESPIRATORY SYSTEM 340 0.86% 34 509 1.31% 1 475 1.75% 22 2836 7.21% 1 26 HEMATOLOGY S421 1.51% 19 445 1.60% 23 4144 1.65% 23 4144 1.65% 23 414% 1.44% 1.44% 1.65% 23 616% 4.0 357 1.20% 1.25% 1.25%<	10	BIOCHEMISTRY & MOLECULAR BIOLOGY	22672	6.22%	2	637	2.34%	13	23309	5.95%	2	
20 RADIOLOGY NUCLEAR MEDICAL IMA \$875 1.61% 17 620 2.28% 15 6495 1.66% 17 21 DERMATOLOGY 427 1.17% 25 591 2.17% 16 4858 1.34% 23 22 HEALTH CARE SCENCES SERVICES 3719 1.02% 31 551 2.02% 19 617 1.54% 18 23 GASTROENTEROLOGY & HEPATOLOGY 5628 1.54% 18 549 2.02% 19 617 1.58% 18 24 RESPIRATORY SYSTEM 3149 0.86% 34 509 1.87% 21 3688 0.93% 34 26 HEANATOLOGY 3682 1.01% 32 449 1.65% 22 2216 7.21% 1 27 ANSTHESIOLOGY 5492 1.51% 19 445 1.66% 24 597 1.52% 19 28 ENDOCRINOLOGY 5492 0.51% 44 445 1.66% 25 386 0.61% 37 1.20% 25 386 <t< td=""><td>19</td><td>VIROLOGY</td><td>1744</td><td>0.48%</td><td>46</td><td>627</td><td>2.30%</td><td>14</td><td>2371</td><td>0.61%</td><td>41</td></t<>	19	VIROLOGY	1744	0.48%	46	627	2.30%	14	2371	0.61%	41	
DERMA LODGY 4267 1.17% 25 591 2.17% 16 4888 1.24% 23 21 MEDICINE RESPERACH & EXPERIMENTAL 534 1.02% 31 551 2.02% 18 4270 1.09% 27 23 GASTROENTERDLOGY 562 1.54% 18 549 2.02% 18 4270 1.09% 27 24 RESPRATOR STEM 3149 0.86% 34 509 1.87% 21 368 0.93% 34 26 HEMATOLOGY SEES 27786 7.62% 1 475 1.75% 22 28261 7.21% 1 26 HEMATOLOGY SEES 27786 7.62% 1 475 1.75% 22 28261 7.21% 1 27 ANSTHESTOLOGY SEES 27786 7.62% 1 475 1.75% 22 28261 0.61% 37 28 LOGYCINOLOGY METADLISM 524 1.17%	20	RADIOLOGY NUCLEAR MEDICINE & MEDICAL IMA(5875	1.61%	17	620	2.28%	15	6495	1.66%	17	
MEDICINE RESEARCH & EXPERSIMENTAL 3-344 1-47% 20 385 2-14% 17 5927 1.51% 20 23 GASTROENTEROLOGY & HEPATOLOGY 5528 1.54% 18 549 2.02% 19 6177 1.58% 18 24 RESPIRATORY SYSTEM 3149 0.86% 34 509 1.87% 21 3658 0.93% 34 26 HEMATOLOGY 3651 0.10% 32 449 1.65% 23 4134 1.05% 34 414 1.05% 32 4134 1.05% 30 27 UROLOGY NEPHENDLOGY 5492 1.51% 19 445 1.63% 24 937 1.52% 19 28 ENDOCRINOLOGY & METABOLISM 5240 1.44% 21 434 1.59% 23 6436 0.61% 40 29 RHEUMATOLOGY 2592 0.71% 47 289 1.06% 28 1990 0.51% 46	21	DERMATOLOGY	4267	1.17%	25	591	2.17%	16	4858	1.24%	23	
22 HEALINCARE SLENCES 3/19 1/2% 31 351 2.02% 18 4.70 1.05% 2/1 23 GASTROENTEROLOGY 9627 2.64% 10 520 1.91% 20 10147 2.59% 11 24 RESPRATORY SYSTEM 3149 0.86% 34 500 1.57% 21 3658 0.93% 34 25 MULTIDISCIPLINARY SCIENCES 27786 7.62% 1 475 1.75% 22 28261 7.21% 1 26 HEMATOLOGY S492 1.51% 19 445 1.63% 24 5937 1.52% 19 27 ANESTHESIOLOGY 5492 1.51% 19 445 1.63% 24 5937 1.52% 19 28 ENDOCRNOLOGY & METADOLISM 520 0.71% 36 327 1.20% 23 286 0.66% 28 1990 0.51% 46 29 RHEUMATOLOGY 4503 1.23% 24 286 1.05% 23 4830 0.98% 33 33 <td>22</td> <td>MEDICINE RESEARCH & EXPERIMENTAL</td> <td>5344 2710</td> <td>1.4/%</td> <td>20</td> <td>583</td> <td>2.14%</td> <td>1/</td> <td>5927</td> <td>1.51%</td> <td>20</td>	22	MEDICINE RESEARCH & EXPERIMENTAL	5344 2710	1.4/%	20	583	2.14%	1/	5927	1.51%	20	
23 OPEN INCENTEROLOGY 302.8 1.24% 18 349 2.02% 19 01/7 1.25% 18 24 RESPIRATORY SYSTEM 3149 0.86% 34 509 1.87% 21 365.8 0.93% 34 25 MULTIDISCIPLINARY SCIENCES 27786 7.62% 1 475 1.75% 22 28.61 7.21% 30 26 HEMATOLOGY SISS 1.01% 32 449 1.63% 23 413 1.05% 30 27 UROLOGY & NEPHROLOGY 5492 1.51% 19 445 1.63% 24 593.7 1.52% 19 28 ENDOCRINCOGY & METABOLISM 5240 1.44% 21 434 1.59% 26 5674 1.45% 21 29 RHEUMATOLOGY MEDMATOLOGY 4503 1.23% 24 286 1.05% 23 4383 0.98% 33 31 OBSTETICS & GYNEOLOGY 4569 0.43% 5	22	HEALTH CARE SCIENCES & SERVICES	5/19	1.02%	31 19	531	2.02%	18	4270	1.09%	27	
24 NUCROACLENCES 302 2.04% 10 2.00 1.01% 2.01% 101% 2.01% 101% 2.01% 111 25 MULTIDISCIPLINARY SCIENCES 2.778% 7.62% 1 4.75 1.75% 2.2 2.8261 7.21% 1 26 HEMATOLOGY 3685 1.01% 3.2 449 1.65% 2.3 4134 1.05% 30 27 ANESTHESIOLOGY 1950 0.53% 44 436 1.60% 2.5 2.386 0.61% 40 28 ENDOCRINOLOGY & METABOLISM 5.240 1.44% 2.1 434 1.59% 2.6 5674 1.45% 2.1 29 RHEUMATOLOGY METABOLISM 5.240 1.44% 2.1 434 1.59% 2.6 5674 1.45% 2.1 29 RHEUMATOLOGY 4503 1.23% 2.4 2.86 1.05% 2.9 4.78% 1.22% 2.5 31 OBSTETRICS & GYNEOLOGY 3564 0.98% 33 2.66 0.98% 30 3.830 0.98%	23	GASTROENTEROLOGY & HEPATOLOGY	0627	1.54%	18	549	2.02%	19	01//	1.58%	18	
25 NULTIDISCIPTINARY SCIENCES 21786 7.62% 1 475 1.03% 21 2020 7.21% 1 26 HEMATOLOGY 365 1.01% 32 449 1.65% 23 4134 1.05% 30 27 ANESTHESIOLOGY 1950 0.53% 44 436 1.65% 22 2365 0.61% 40 28 ENDOCRINOLOGY & METABOLISM 5402 1.51% 19 443 1.59% 26 5674 1.45% 21 29 RHEUMATOLOGY 2592 0.11% 36 327 1.20% 27 2919 0.1% 46 29 RHEUMATOLOGY 4503 1.23% 24 286 1.05% 29 1.06% 23 483 1.22% 25 31 OBSTETRICS & GYNECOLOGY 3564 0.98% 33 266 0.98% 30 3830 0.98% 33 32 NURSING 3747 1.03% 30	24	DESDIDATORY SYSTEM	31/0	2.04%	34	509	1.91%	20	3658	2.39%	34	
26 HEMATOLOGY 500 10000 1000	25	MULTIDISCIPLINARY SCIENCES	27786	7.62%	1	475	1.87%	21	28261	7 21%	1	
20 Instant Construction 100<	20	HEMATOLOGY	3685	1.01%	32	475	1.75%	22	4134	1.05%	30	
27 ANESTHESIOLOGY 1950 0.53% 44 436 1.06% 25 2386 0.61% 40 28 ENDOCRINOLOGY & METABOLISM 5240 1.44% 21 434 1.59% 26 5674 1.45% 21 29 RHEUMATOLOGY 2592 0.74% 36 327 1.20% 27 2919 0.74% 37 30 OPHTHALMOLOGY 4503 1.23% 24 286 1.05% 29 4789 1.22% 25 31 OBSTETRICS & GYNECOLOGY 3564 0.98% 33 266 0.99% 30 3830 0.98% 33 32 NURSING 3747 1.03% 30 255 0.94% 31 4002 1.02% 32 33 GERIATRICS & GERONTOLOGY 1569 0.43% 51 240 0.88% 33 1809 0.46% 49 34 CELL BIOLOGY 6582 1.80% 16 227 0.83% 34 6809 1.74% 16 35 CRITICAL CARE MEDICINE	20	UROLOGY & NEPHROLOGY	5492	1.51%	19	445	1.63%	23	5937	1.52%	19	
28 ENDOCRINOLOGY & METABOLISM 5240 1.44% 21 434 1.59% 26 5674 1.45% 21 29 RHEUMATOLOGY 2592 0.71% 36 327 1.20% 27 2919 0.74% 37 30 OPHTHALMOLOGY 4503 1.23% 24 286 1.06% 29 4789 1.22% 25 31 OBSTETRICS & GYNECOLOGY 3564 0.98% 33 266 0.98% 30 3830 0.98% 32 32 MURSING 3747 1.03% 30 255 0.94% 31 4002 1.02% 32 33 GERIATRICS & GERONTOLOGY 1569 0.43% 51 240 0.88% 33 1809 0.46% 49 34 CELL BIOLOGY 6582 1.80% 16 227 0.83% 34 6809 1.74% 16 35 CRITICAL CARE MEDICINE 1126 0.86% 35 198 0.73% 35 324 0.85% 35 36 OTORHINOLARYNGOLOGY	27	ANESTHESIOLOGY	1950	0.53%	44	436	1.60%	25	2386	0.61%	40	
29RHEUMATOLOGY25920.71%363271.20%2729190.74%3730EMERCENCY MEDICINE17010.47%472861.05%2819900.51%4631OBSTETRICS & GYNECOLOGY35640.98%332660.98%3038300.98%3332NURSING37471.03%302550.94%3140021.02%3233GERIATRICS & GERONTOLOGY15690.43%512400.88%3318090.46%4934CELL BIOLOGY15690.43%512400.88%3318090.46%4935DENTISTRY ORAL SURGERY & MEDICINE31260.86%351980.73%3533240.85%3536OTORHINOLARYNGOLOGY16500.45%501850.68%3718350.47%4837ORTHOPEDICS20810.57%421460.54%3822270.57%4338SPORT SCIENCES21800.60%411220.45%3912580.32%5739ETHICS4780.13%731180.43%415960.15%6941ECONOMICS4780.13%731180.43%415960.15%6942PATHOLOGY4660.46%481150.42%4241851.07%29	28	ENDOCRINOLOGY & METABOLISM	5240	1.44%	21	434	1.59%	26	5674	1.45%	21	
25 EMERGENCY MEDICINE 1701 0.47% 47 289 1.06% 28 1990 0.51% 46 30 OPHTHALMOLOGY 4503 1.23% 24 286 1.05% 29 4789 1.22% 25 31 OBSTETRICS & GYNECOLOGY 3564 0.98% 33 266 0.98% 31 4002 1.02% 32 32 NURSING 3747 1.03% 30 255 0.94% 31 4002 1.02% 32 33 GERIATRICS & GERONTOLOGY 4589 1.26% 23 245 0.90% 32 4834 1.23% 24 34 CELL BIOLOGY 6582 1.80% 16 227 0.83% 33 1809 0.46% 35 35 DENTISTRY ORAL SURGERY & MEDICINE 3126 0.86% 35 198 0.73% 35 3324 0.85% 35 36 OTORHNOLARYNGOLOGY 166 0.45% 50 185 0.66% 37 1835 0.47% 48 37 ORTHOPEDICS	20	RHEUMATOLOGY	2592	0.71%	36	327	1.20%	27	2919	0.74%	37	
30 OPHTHALMOLOGY 4503 1.23% 24 286 1.05% 29 4789 1.22% 25 31 OBSTETRICS & GYNECOLOGY 3564 0.98% 33 266 0.98% 30 3830 0.98% 33 32 NURSING 374 1.03% 30 255 0.94% 31 4002 1.02% 22 33 GERIATRICS & GERONTOLOGY 4589 1.26% 23 245 0.90% 32 4834 1.23% 24 34 CELL BIOLOGY 4589 1.26% 23 245 0.90% 32 4834 1.23% 24 35 DENTISTRY ORAL SURGERY & MEDICINE 1569 0.43% 51 240 0.88% 33 1809 0.46% 49 36 DENTISTRY ORAL SURGERY & MEDICINE 126 0.86% 35 198 0.73% 35 332 0.47% 48 37 ORTHOPEDICS 2081 0.45% 50 185 0.68% 37 1835 0.47% 48 38 SPORT SCIENC	29	EMERGENCY MEDICINE	1701	0.47%	47	289	1.06%	28	1990	0.51%	46	
31 OBSTETRICS & GYNECOLOGY 3564 0.98% 33 266 0.98% 30 3830 0.98% 33 32 NURSING 3747 1.03% 30 255 0.94% 31 4002 1.02% 32 33 GERLATRICS & GERONTOLOGY 1569 0.43% 51 240 0.88% 33 1809 0.46% 49 34 CELL BIOLOGY 6582 1.80% 16 227 0.83% 34 6809 1.74% 16 35 DENTISTRY ORAL SURGERY & MEDICINE 3126 0.86% 35 198 0.73% 35 3324 0.85% 35 36 OTORHINOLARY NGOLOGY 1650 0.45% 50 185 0.68% 37 1835 0.47% 48 37 ORTHOPEDICS 2081 0.57% 42 146 0.54% 38 227 0.57% 43 38 MEDICAL LABORATORY TECHNOLOGY 1116 0.31% 59 142 0.52% 39 1258 0.32% 57 39 ETHICS<	30	OPHTHALMOLOGY	4503	1.23%	24	286	1.05%	29	4789	1.22%	25	
32 NURSING 3747 1.03% 30 255 0.94% 31 4002 1.02% 32 33 MICROBIOLOGY 4589 1.26% 23 245 0.90% 32 4834 1.23% 24 34 CELL BIOLOGY 1569 0.43% 51 240 0.88% 33 1809 0.46% 49 35 DENTISTRY ORAL SURGERY & MEDICINE 3126 0.86% 35 198 0.73% 35 3324 0.85% 35 36 OTORHINOLARYNGOLOGY 166 0.45% 50 185 0.66% 37 1835 0.47% 43 37 ORTHOPEDICS 2081 0.57% 42 146 0.54% 38 2227 0.57% 43 38 MEDICAL LABORATORY TECHNOLOGY 1116 0.31% 59 142 0.52% 39 1258 0.32% 57 39 ETHICS 2180 0.60% 41 122 0.45% 40 2302 0.5% 42 40 BIOTECHNOLOGY & APPLIED MICROBIOLOGY </td <td>31</td> <td>OBSTETRICS & GYNECOLOGY</td> <td>3564</td> <td>0.98%</td> <td>33</td> <td>266</td> <td>0.98%</td> <td>30</td> <td>3830</td> <td>0.98%</td> <td>33</td>	31	OBSTETRICS & GYNECOLOGY	3564	0.98%	33	266	0.98%	30	3830	0.98%	33	
MICROBIOLOGY 4589 1.26% 23 245 0.90% 32 4834 1.23% 24 33 GERIATRICS & GERONTOLOGY 1569 0.43% 51 240 0.88% 33 1809 0.46% 49 34 CELL BIOLOGY 6582 1.80% 16 227 0.83% 34 6809 1.74% 16 35 DENTISTRY ORAL SURGERY & MEDICINE 3126 0.86% 35 198 0.73% 35 3324 0.85% 35 36 OTORHINOLARYNGOLOGY 1650 0.45% 50 185 0.68% 37 1835 0.47% 48 37 ORTHOPEDICS 2081 0.57% 42 146 0.54% 38 2227 0.57% 43 38 SPORT SCIENCES 2180 0.60% 41 122 0.43% 41 596 0.15% 69 40 BIOTECHNOLOGY & APPLIED MICROBIOLOGY 407 1.12% 28 115 0.42% 42 4185 1.07% 29 41 PATHOLOGY <th< td=""><td>32</td><td>NURSING</td><td>3747</td><td>1.03%</td><td>30</td><td>255</td><td>0.94%</td><td>31</td><td>4002</td><td>1.02%</td><td>32</td></th<>	32	NURSING	3747	1.03%	30	255	0.94%	31	4002	1.02%	32	
53 GERIATRICS & GERONTOLOGY 1569 0.43% 51 240 0.88% 33 1809 0.46% 49 34 CELL BIOLOGY 6582 1.80% 16 227 0.83% 34 6809 1.74% 16 35 DENTISTRY ORAL SURGERY & MEDICINE 3126 0.86% 35 198 0.73% 35 3324 0.85% 35 36 OTORHINOLARYNGOLOGY 1650 0.45% 50 185 0.68% 37 1835 0.47% 48 37 ORTHOPEDICS 2081 0.57% 42 146 0.54% 38 2227 0.57% 43 38 MEDICAL LABORATORY TECHNOLOGY 1116 0.31% 59 142 0.52% 39 1258 0.32% 57 39 ETHICS 478 0.13% 73 118 0.43% 41 596 0.15% 69 40 BIOTECHNOLOGY & APPLIED MICROBIOLOGY 4070 1.12% 28 115 0.42% 42 4185 1.07% 29 41 <t< td=""><td>22</td><td>MICROBIOLOGY</td><td>4589</td><td>1.26%</td><td>23</td><td>245</td><td>0.90%</td><td>32</td><td>4834</td><td>1.23%</td><td>24</td></t<>	22	MICROBIOLOGY	4589	1.26%	23	245	0.90%	32	4834	1.23%	24	
34 CELL BIOLOGY 6582 1.80% 16 227 0.83% 34 6809 1.74% 16 35 DENTISTRY ORAL SURGERY & MEDICINE 3126 0.86% 35 198 0.73% 35 3324 0.83% 35 36 CRITICAL CARE MEDICINE 1486 0.41% 54 188 0.69% 36 1674 0.43% 52 36 OTORHINOLARYNGOLOGY 1650 0.45% 50 185 0.68% 37 1835 0.47% 48 37 ORTHOPEDICS 2081 0.57% 42 146 0.54% 38 2227 0.57% 43 38 SPORT SCIENCES 2180 0.60% 41 122 0.45% 40 2302 0.59% 42 40 BIOTECHNOLOGY & APPLIED MICROBIOLOGY 4070 1.12% 28 115 0.42% 43 177% 29 41 ECONOMICS 178 0.05% 88 112 0.41% 44 290 0.07% 79 42 PSYCHOLOGY MULTIDISCIPLINARY <td>33</td> <td>GERIATRICS & GERONTOLOGY</td> <td>1569</td> <td>0.43%</td> <td>51</td> <td>240</td> <td>0.88%</td> <td>33</td> <td>1809</td> <td>0.46%</td> <td>49</td>	33	GERIATRICS & GERONTOLOGY	1569	0.43%	51	240	0.88%	33	1809	0.46%	49	
35 DENTISTRY ORAL SURGERY & MEDICINE 3126 0.86% 35 198 0.73% 35 3324 0.85% 35 36 CRITICAL CARE MEDICINE 1486 0.41% 54 188 0.69% 36 1674 0.43% 52 36 OTORHINOLARYNGOLOGY 1650 0.45% 50 185 0.68% 37 1835 0.47% 48 37 ORTHOPEDICS 2081 0.57% 42 146 0.54% 38 2227 0.57% 43 38 MEDICAL LABORATORY TECHNOLOGY 1116 0.31% 59 142 0.52% 39 1258 0.32% 57 39 ETHICS 478 0.13% 73 118 0.43% 41 596 0.15% 69 40 BIOTECHNOLOGY & APPLIED MICROBIOLOGY 4070 1.12% 28 115 0.42% 43 1778 0.45% 50 41 ECONOMICS 178 0.05% 88 112 0.41% 44 290 0.07% 79 42 PSYC	34	CELL BIOLOGY	6582	1.80%	16	227	0.83%	34	6809	1.74%	16	
6 CRTITICAL CARE MEDICINE 1486 0.41% 54 188 0.69% 36 1674 0.43% 52 36 OTORHINOLARYNGOLOGY 1650 0.45% 50 185 0.68% 37 1835 0.47% 48 37 ORTHOPEDICS 2081 0.57% 42 146 0.54% 38 2227 0.57% 43 38 MEDICAL LABORATORY TECHNOLOGY 1116 0.31% 59 142 0.52% 39 1258 0.32% 57 39 ETHICS 478 0.13% 73 118 0.43% 41 596 0.15% 69 40 BIOTECHNOLOGY & APPLIED MICROBIOLOGY 4070 1.12% 28 115 0.42% 42 4185 1.07% 29 41 ECONOMICS 178 0.05% 88 112 0.41% 44 290 0.07% 79 42 PSYCHOLOGY MULTIDISCIPLINARY 2423 0.66% 37 101 0.37% 45 2524 0.64% 38 43 NUTRITION	35	DENTISTRY ORAL SURGERY & MEDICINE	3126	0.86%	35	198	0.73%	35	3324	0.85%	35	
30 OTORHINOLARYNGOLOGY 1650 0.45% 50 185 0.68% 57 1855 0.47% 48 37 ORTHOPEDICS 2081 0.57% 42 146 0.54% 38 2227 0.57% 43 38 MEDICAL LABORATORY TECHNOLOGY 1116 0.31% 59 142 0.52% 39 1258 0.32% 57 39 ETHICS 2180 0.60% 41 122 0.45% 40 2302 0.59% 42 40 BIOTECHNOLOGY & APPLIED MICROBIOLOGY 4070 1.12% 28 115 0.42% 42 4185 1.07% 29 41 ECONOMICS 178 0.05% 88 112 0.41% 44 290 0.07% 79 42 PSYCHOLOGY MULTIDISCIPLINARY 2423 0.66% 37 101 0.37% 45 2524 0.64% 38 43 NUTRITION & DIETETICS 4124 1.13% 27 100 0.37% 46 4224 1.08% 28 44 PSYCHOLO	36	CRITICAL CARE MEDICINE	1486	0.41%	54	188	0.69%	36	1674	0.43%	52	
37 OR HOPEDICS 2081 0.57% 42 146 0.54% 38 2227 0.57% 43 38 MEDICAL LABORATORY TECHNOLOGY 1116 0.31% 59 142 0.52% 39 1258 0.32% 57 39 ETHICS 2180 0.60% 41 122 0.45% 40 2302 0.59% 42 40 BIOTECHNOLOGY & APPLIED MICROBIOLOGY 478 0.13% 73 118 0.43% 41 596 0.15% 69 40 BIOTECHNOLOGY & APPLIED MICROBIOLOGY 4070 1.12% 28 115 0.42% 42 4185 1.07% 29 41 ECONOMICS 178 0.05% 88 112 0.41% 44 290 0.07% 79 42 PSYCHOLOGY MULTIDISCIPLINARY 2423 0.66% 37 101 0.37% 45 2524 0.64% 38 43 NUTRITION & DIETETICS 4124 1.13% 27 100 0.37% 46 4224 1.08% 28 44	20	OTORHINOLARYNGOLOGY	1650	0.45%	50	185	0.68%	37	1835	0.47%	48	
38 MEDICAL LABORATORY FECHNOLOGY 1116 0.31% 59 142 0.52% 59 1238 0.32% 57 39 SPORT SCIENCES 2180 0.60% 41 122 0.45% 40 2302 0.59% 42 39 ETHICS 478 0.13% 73 118 0.43% 41 596 0.15% 69 40 BIOTECHNOLOGY & APPLIED MICROBIOLOGY 4070 1.12% 28 115 0.42% 42 4185 1.07% 29 41 ECONOMICS 178 0.05% 88 112 0.41% 44 290 0.07% 79 42 PSYCHOLOGY MULTIDISCIPLINARY 2423 0.66% 37 101 0.37% 45 2524 0.64% 38 43 NUTRITION & DIETETICS 4124 1.13% 27 100 0.37% 46 4224 1.08% 28 44 PSYCHOLOGY CLINICAL 1770 0.49% 45 94 0.35% 47 4342 1.11% 26 45 BIOLOGY<	37	OKTHOPEDICS	2081	0.57%	42	146	0.54%	38	1259	0.57%	43	
39 ETHICS 478 0.13% 73 118 0.43% 40 2502 0.39% 42 40 BIOTECHNOLOGY 478 0.13% 73 118 0.43% 41 596 0.15% 69 40 BIOTECHNOLOGY & APPLIED MICROBIOLOGY 4070 1.12% 28 115 0.42% 42 185 1.07% 29 41 ECONOMICS 1663 0.46% 48 115 0.42% 43 1778 0.45% 50 41 ECONOMICS 178 0.05% 88 112 0.41% 44 290 0.07% 79 42 PSYCHOLOGY MULTIDISCIPLINARY 2423 0.66% 37 101 0.37% 45 2524 0.64% 38 43 NUTRITION & DIETETICS 4124 1.13% 27 100 0.37% 46 4224 1.08% 28 44 PSYCHOLOGY CLINICAL 1770 0.49% 45 94 0.35% 47 4342 1.11% 26 45 BIOLOGY LINICAL<	38	STORT SCIENCES	2180	0.51%	59 41	142	0.52%	39 40	1258	0.52%	57	
40 BIOTECHNOLOGY & APPLIED MICROBIOLOGY 4070 1.12% 28 115 0.43% 41 396 0.13% 09 40 BIOTECHNOLOGY & APPLIED MICROBIOLOGY 4070 1.12% 28 115 0.42% 42 4185 1.07% 29 41 ECONOMICS 1663 0.46% 48 115 0.42% 43 1778 0.45% 50 42 PSYCHOLOGY MULTIDISCIPLINARY 1663 0.46% 48 112 0.41% 44 290 0.07% 79 42 PSYCHOLOGY MULTIDISCIPLINARY 2423 0.66% 37 101 0.37% 45 2524 0.64% 38 43 NUTRITION & DIETETICS 4124 1.13% 27 100 0.37% 46 4224 1.08% 28 44 PSYCHOLOGY CLINICAL 1770 0.49% 45 94 0.35% 47 4342 1.11% 26 45 BIOLOGY 1654 0.45% 49 89 0.33% 49 1743 0.44% 51 46<	39	ETHICS	479	0.00%	72	122	0.43%	40	2302	0.39%	42	
40 DIFFERINCE AT LED MICROBIOLOGY 4070 1120 23 115 0.42% 42 4160 107% 29 41 PATHOLOGY 1663 0.46% 48 115 0.42% 43 1778 0.45% 50 42 PATHOLOGY 178 0.05% 88 112 0.41% 44 290 0.07% 79 42 PSYCHOLOGY MULTIDISCIPLINARY 2423 0.66% 37 101 0.37% 45 2524 0.64% 38 43 NUTRITION & DIETETICS 4124 1.13% 27 100 0.37% 46 4224 1.08% 28 44 PSYCHOLOGY CLINICAL 1770 0.49% 45 94 0.35% 47 4342 1.11% 26 45 BIOLOGY 1654 0.45% 49 89 0.33% 49 1743 0.44% 51 46 VETERINARY SCIENCES 2357 0.65% 38 85 0.31% 50 2442 0.62% 39	40	BIOTECHNOLOGY & ADDI JED MICROBIOLOGY	4070	1 12%	75	115	0.43%	41	4185	1.07%	20	
41 Infinition 100 0.10% 10 0.12% 10 0.10% 10 0.	40	PATHOLOGY	1663	0.46%	28 48	115	0.42%	42	1778	0.45%	50	
42 PSYCHOLOGY MULTIDISCIPLINARY 2423 0.66% 37 101 0.37% 45 2524 0.64% 38 43 NUTRITION & DIETETICS 4124 1.13% 27 100 0.37% 46 4224 1.08% 28 44 GENETICS & HEREDITY 4248 1.16% 26 94 0.35% 47 4342 1.11% 26 44 PSYCHOLOGY CLINICAL 1770 0.49% 45 94 0.35% 48 1864 0.48% 47 45 BIOLOGY 1654 0.45% 49 89 0.33% 49 1743 0.44% 51 46 VETERINARY SCIENCES 2357 0.65% 38 85 0.31% 50 2442 0.62% 39	41	ECONOMICS	178	0.05%	88	112	0.41%	44	290	0.07%	79	
43 NUTRITION & DIETETICS 4124 1.13% 27 100 0.37% 46 4224 1.08% 28 44 GENETICS & HEREDITY 4248 1.16% 26 94 0.35% 47 4342 1.11% 26 45 BIOLOGY LINICAL 1770 0.49% 45 94 0.35% 48 1864 0.48% 47 45 BIOLOGY 1654 0.45% 49 89 0.33% 49 1743 0.44% 51 46 VETERINARY SCIENCES 2357 0.65% 38 85 0.31% 50 2442 0.62% 39	42	PSYCHOLOGY MULTIDISCIPLINARY	2423	0.66%	37	101	0.37%	45	2524	0.64%	38	
4.3 GENETICS & HEREDITY 4248 1.16% 26 94 0.35% 47 4342 1.11% 26 44 PSYCHOLOGY CLINICAL 1770 0.49% 45 94 0.35% 48 1864 0.48% 47 45 BIOLOGY 1654 0.45% 49 89 0.33% 49 1743 0.44% 51 46 VETERINARY SCIENCES 2357 0.65% 38 85 0.31% 50 2442 0.62% 39	13	NUTRITION & DIETETICS	4124	1.13%	27	100	0.37%	46	4224	1.08%	28	
44 PSYCHOLOGY CLINICAL 1770 0.49% 45 94 0.35% 48 1864 0.48% 47 45 BIOLOGY 1654 0.45% 49 89 0.33% 49 1743 0.44% 51 46 VETERINARY SCIENCES 2357 0.65% 38 85 0.31% 50 2442 0.62% 39	с г	GENETICS & HEREDITY	4248	1.16%	26	94	0.35%	47	4342	1.11%	26	
45 BIOLOGY 1654 0.45% 49 89 0.33% 49 1743 0.44% 51 46 VETERINARY SCIENCES 2357 0.65% 38 85 0.31% 50 2442 0.62% 39	44	PSYCHOLOGY CLINICAL	1770	0.49%	45	94	0.35%	48	1864	0.48%	47	
46 VETERINARY SCIENCES 2357 0.65% 38 85 0.31% 50 2442 0.62% 39	45	BIOLOGY	1654	0.45%	49	89	0.33%	49	1743	0.44%	51	
	46	VETERINARY SCIENCES	2357	0.65%	38	85	0.31%	50	2442	0.62%	39	

Spearman Rank Correlation	- all disciplines	Spearman Rank Correlation - top 50 discipline		
coefficient (rs)	0.851	coefficient (rs)	0.690	
N	136	N	50	
T statistic	18.765	T statistic	6.605	
DF	134	DF	48	
p-value	0.000	p-value	0.000	

BMJ Open

1	
2	
2	
2	
4	
5	
6	
7	
8	
0	
9	
10	
11	
12	
13	
11	
14	
15	
16	
17	
18	
19	
20	
20	
21	
22	
23	
24	
25	
25	
20	
27	
28	
29	
30	
31	
21	
32	
33	
34	
35	
36	
27	
57	
38	
39	
40	
41	
42	
⊿2	
رب ^ر	
44	
45	
46	
47	
48	
⊿0	
47 50	
50	
51	
52	
53	
54	
55	
55	
56	
57	
58	
59	
60	
50	

Table S2: Major countries for COVID articles and non-COVID (control) articles and concordance statistics

	Country (First Author)		Non-COVID		COVID		Total			
		Total	%	Rank	Total	%	Rank	Total	%	Rank
	United States	101455	24.50%	1	8461	25.63%	1	109916	24.58%	1
)	Italy	17731	4.28%	5	3414	10.34%	2	21145	4.73%	4
1	China	50503	12.20%	2	2919	8.84%	3	53422	11.95%	2
	United Kingdom	23817	5.75%	3	2687	8.14%	4	26504	5.93%	3
2	India	11992	2.90%	9	1575	4.77%	5	13567	3.03%	9
3	Spain	11762	2.84%	10	1070	3.24%	6	12832	2.87%	10
1	Canada	13661	3.30%	8	979	2.97%	7	14640	3.27%	8
-	France	10382	2.51%	13	969	2.94%	8	11351	2.54%	13
) -	Brasil	10616	2.56%	12	877	2.66%	9	11493	2.57%	12
5	Germany	18279	4.41%	4	741	2.24%	10	19020	4.25%	5
7	Australia	13921	3.36%	7	732	2.22%	11	14653	3.28%	7
3	Iran	6232	1.50%	15	714	2.16%	12	6946	1.55%	15
, ,	Turkey	5751	1.39%	16	548	1.66%	13	6299	1.41%	16
1	Singapore	2005	0.48%	31	466	1.41%	14	2471	0.55%	27
)	Japan	16637	4.02%	6	378	1.15%	15	17015	3.81%	6
1	Switzerland	5004	1.21%	18	359	1.09%	16	5363	1.20%	18
	South Korea	11499	2.78%	11	333	1.01%	17	11832	2.65%	11
<u><</u>	Hong Kong	1600	0.39%	36	291	0.88%	18	1891	0.42%	34
3	Netherlands	7692	1.86%	14	285	0.86%	19	7977	1.78%	14
1	Taiwan	5473	1.32%	17	282	0.85%	20	5755	1.29%	17
5	Israel	3320	0.80%	22	275	0.83%	21	3595	0.80%	22
-	Pakistan	1638	0.40%	35	263	0.80%	22	1901	0.43%	33
2	Greece	2213	0.53%	27	254	0.77%	23	2467	0.55%	28
7	Belgium	3298	0.80%	23	250	0.76%	24	3548	0.79%	23
3	Saudi Arabia	2040	0.49%	30	245	0.74%	25	2285	0.51%	30
2	Mexico	2507	0.61%	24	213	0.65%	26	2720	0.61%	24
2	Poland	4543	1.10%	20	169	0.51%	27	4712	1.05%	20
)	Ireland	1700	0.41%	34	167	0.51%	28	1867	0.42%	35
I	Egypt	2147	0.52%	29	143	0.43%	29	2290	0.51%	29
,	Sweden	4579	1.11%	19	140	0.42%	30	4719	1.06%	19
-	Portugal	2485	0.60%	25	140	0.42%	31	2625	0.59%	25
5	Malaysia	1334	0.32%	40	126	0.38%	32	1460	0.33%	39
1	Austria	2404	0.58%	26	113	0.34%	33	2517	0.56%	26
5	South Africa	1441	0.35%	37	107	0.32%	34	1548	0.35%	37
5	Bangladesh	307	0.07%	65	97	0.29%	35	404	0.09%	63
,	Peru	383	0.09%	62	96	0.29%	36	479	0.11%	55
/	Denmark	3558	0.86%	21	90	0.27%	37	3648	0.82%	21
3	Colombia	740	0.18%	45	88	0.27%	38	828	0.19%	45
9	New Zealand	1783	0.43%	33	80	0.24%	39	1863	0.42%	36
, ,	Georgia	1080	0.26%	43	76	0.23%	40	1156	0.26%	43
)	Argentina	1250	0.30%	41	74	0.22%	41	1324	0.30%	41
1	Chile	1083	0.26%	42	74	0.22%	42	1157	0.26%	42
2	Indonesia	635	0.15%	48	74	0.22%	43	709	0.16%	48
ξ	United Arab Emirates	505	0.12%	53	72	0.22%	44	577	0.13%	52
,	Lebanon	619	0.15%	49	71	0.22%	45	690	0.15%	49
Ŧ	Nigeria	577	0.14%	50	70	0.21%	46	647	0.14%	50
5	Norway	2195	0.53%	28	67	0.20%	47	2262	0.51%	31
5	Morocco	267	0.06%	67	64	0.19%	48	331	0.07%	66
- 7	Jordan	386	0.09%	61	59	0.18%	49	445	0.10%	59
,	Thailand	709	0.17%	47	58	0.18%	50	767	0.17%	46
3										

Spearman Rank Correlation - all countries		Spearman Rank Correlation	- top 50 countries
coefficient (rs)	0.94	coefficient (rs)	0.86
N	165	Ν	50
T statistic	34.61	T statistic	11.50
DF	163	DF	48
p-value	0.000	p-value	0.000

Table S3: Hierarchical linear probability model for the likelihood of female first authorship for COVID articles versus non-COVID (control) articles

Dependent variable: First Author Female	(1)	(2)	(3)	(4)	(5)
COVID	-0.089***	-0.089***	-0.090***	-0.091***	-0.096***
	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)
number of authors		0.002***	0.002***	0.003***	0.003***
		(0.00)	(0.00)	(0.00)	(0.00)
publication month fixed effects (8)			Included	Included	Included
discipline fixed effects (136)				Included	Included
country fixed effects (165)					Included
constant	0.462*** (0.00)	0.449*** (0.00)	0.444*** (0.00)	0.305*** (0.02)	0.146 (0.13)
R-squared	0.002	0.003	0.003	0.036	0.052
Adjusted R-squared	0.002	0.003	0.003	0.036	0.051
Observations	393,248	393,248	393,207	393,207	368,599

Note: standard errors in brackets, * p < 0.05, ** p< 0.01, *** p < 0.001

Table S4: Hierarchical logit regression for the likelihood of female first authorship for COVID articles versus non-COVID (control) articles

Dependent variable: First Author Female	(1)	(2)	(3)	(4)	(5)
COVID	0.693***	0.693***	0.689***	0.677***	0.662***
	(0.01)	(0.01)	(0.01)	(0.01)	(0.01)
number of authors		1.009***	1.009***	1.011***	1.011***
		(0.00)	(0.00)	(0.00)	(0.00)
publication month fixed effects (8)			Included	Included	Included
discipline fixed effects (136)				Included	Included
country fixed effects (165)					Included
constant	0.860***	0.813***	0.798***	0.441***	0.220**
	(0.00)	(0.00)	(0.01)	(0.04)	(0.12)
observations	393,248	393,248	393,207	393,202	368,543

Note: Coefficients reported as odds ratios, standard errors in brackets, * p < 0.05, ** p < 0.01, *** p < 0.001

BMJ Open

BMJ Open

Longitudinal Analyses of Gender Differences in First Authorship Publications Related to COVID-19

Journal:	BMJ Open
Manuscript ID	bmjopen-2020-045176.R1
Article Type:	Original research
Date Submitted by the Author:	01-Mar-2021
Complete List of Authors:	Lerchenmüller, Carolin; University Hospital Heidelberg, Schmallenbach, Leo; University of Mannheim Jena, Anupam; Harvard University, Health Care Policy Lerchenmueller, Marc ; University of Mannheim,
Primary Subject Heading :	Health policy
Secondary Subject Heading:	Health services research, Medical publishing and peer review
Keywords:	GENERAL MEDICINE (see Internal Medicine), COVID-19, Health policy < HEALTH SERVICES ADMINISTRATION & MANAGEMENT

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reziez onz

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Longitudinal Analyses of Gender Differences in First Authorship Publications Related to COVID-19

Carolin Lerchenmüller, MD,^{1,2} Leo Schmallenbach, MSc,³ Anupam B. Jena, MD, PhD^{4,5,6*}, Marc J. Lerchenmueller, MPH, PhD^{3*}

¹Department of Cardiology, Angiology, Pulmonology, University Hospital Heidelberg, Germany
²German Center for Heart and Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, Germany
³Area Management, University of Mannheim, Mannheim, Germany
⁴Department of Health Care Policy, Harvard Medical School Boston, MA
⁵Department of Medicine, Massachusetts General Hospital, Boston, MA
⁶National Bureau of Economic Research, Cambridge, MA

*These authors contributed equally

Word count: 3837 Keywords: COVID-19, Health policy, Gender equity

Corresponding author:

Carolin Lerchenmueller, MD Department of Cardiology, Angiology, Pulmonology University Hospital Heidelberg INF 410 69120 Heidelberg, Germany Email: carolin.lerchenmueller@med.uni-heidelberg.de

Abstract

Objective: Concerns have been raised that the COVID pandemic has shifted research productivity to the disadvantage of women in academia, particularly in early career stages. In this study, we aimed to assess the pandemic's effect on women's' COVID-related publishing over the first year of the pandemic.

Methods and Results: We compared the gender distribution of first authorships for 42,898 publications on COVID-19 from February 1st, 2020 to January 31st, 2021 to 483,232 publications appearing in the same journals during the same period the year prior. We found that the gender gap – the percentage of articles on which men versus women were first authors – widened by 14 percentage points during the COVID pandemic, despite many pertinent research fields showing near equal proportions of men and women first authors publishing in the same fields before the pandemic. Longitudinal analyses revealed that the significant initial expansions of the gender gap began to trend backwards to expected values over time in many fields. As women may have been differentially affected depending on their geography, we also assessed the gender distribution of first authorships grouped by countries and continents. While we observed a significant reduction of the shares of women first authors in almost all countries, longitudinal analyses confirmed a resolving trend over time.

Conclusion: The reduction in women's COVID-related research output appears particularly concerning as many disciplines informing the response to the pandemic had near equal gender shares of first authorship in the year prior to the pandemic. The acute productivity drain with the onset of the pandemic magnifies deep rooted obstacles on the way to gender equity in scientific contribution.

Strengths and limitations of this study

- The COVID pandemic is an exogenous source of variation that allows the examination of differential effects of the pandemic on women's and men's publishing activity
- We used a retrospective cohort design, comparing author gender for COVID articles to articles in similar fields published during the year prior to the pandemic
- Data on affiliations, publishing journals and dates enable analyses of gender differences in publication rates by geography, scientific discipline, and over time
- This large-scale archival study did not allow disentangling the mechanisms that underpin gender differences in publishing rates associated with the pandemic
- The methodology relied on a probabilistic algorithm to assign gender to thousands of authors, bearing a residual risk of gender misclassification

Introduction

Women are integral to productive and innovative science communities.^{1 2} Nonetheless, women remain underrepresented in prestigious author positions on publications in the life sciences and medicine,³ are less likely to be promoted to higher academic ranks, and are paid less, despite the continuously growing number of women academics.⁴ Projections indicate that this gap will persist if targeted interventions are not implemented.⁵

It is in this setting that concerns have been raised that research and expert reporting on the COVID (Coronavirus Disease 2019, COVID-19) pandemic has disproportionately involved men as scientific authors. For example, women submitted fewer manuscripts overall, were less available for peer review,⁶⁻⁸ and attended fewer funding panel meetings.⁷ Also, women first authorship was significantly reduced on preprints and publications about COVID in the US^{9 10} and globally.¹¹

It has been suggested that this might, at least in part, be due to an exacerbation of pre-existing work-family conflicts, especially for early-career mothers in academia.¹² With lockdown measures to prevent uncontrolled spread of the coronavirus came not only remote working, but also closures of childcare services like daycares and schools transferring teaching responsibilities often to mothers, without the possibility to involve family members in childcare that belong to the aging population who are particular vulnerable to severe illness from the coronavirus.¹²⁻¹⁶ Evidence from Germany showed, for example, that women not only took over the physical load of increased childcare and household responsibilities, but also the mental load associated with taking care of the family during a pandemic.¹⁷ Even prior to the pandemic, research has shown that childrearing and household work were tasks largely taken care of by women, thereby impacting women's academic careers more than men's. For example,

parental leaves taken by men often result in increased productivity, while no such phenomenon can be observed for women.¹⁸

The proliferation of COVID related publications provide a unique window into these gendered dynamics for two reasons. First, COVID publications have been produced rapidly under unusual conditions that likely disfavor women scientists relative to usual conditions that can serve as a control. Second, COVID publications are mainly, though not exclusively, produced in the life sciences and medicine where long-standing authorship norms reserve the first author position to early career investigators leading the project, which allows estimating the repercussions for this group in particular. Therefore, we assessed the pandemic's effect on women's COVIDrelated scientific publishing over the first year of the pandemic by analyses of first authorships in a longitudinal approach. We further performed analyses to quantify the effect per scientific specialty and country affiliation, as women may have been differentially affected across specialties and geographic areas.

Methods

Study Design and Data

We use a retrospective cohort design, comparing the gender composition on the author byline of 42,898 PubMed indexed life science articles that included the term "COVID" in the title and/ or abstract and that were published between February 2020 and January 2021 to a set of 483,232 control articles published in the same journals a year earlier (see Supplement Materials for details on data and methods). The onset of the COVID-19 pandemic in early 2020 (and ensuing countermeasures like lockdowns, remote work etc.) serve as source of exogenous variation that affects authors of COVID articles but not authors who published research in the same journals prior to the COVID outbreak, i.e., our control group. To assess possible effect stratification across research areas, we allocated 3,426 represented journals to scientific disciplines based on the disciplines provided in the Clarivate Journal Citation Report using unique International Standard Serial Numbers (ISSNs) as a crosswalk. We restricted our analysis to disciplines with at least 50 publications per reported time period to provide more precise estimates. We obtained detailed affiliation records to determine the geographic locale of first authors for country-specific analyses. We restricted this analysis to countries with at least 50 publications, and continents with at least 10 publications per reported time point, to increase precision of estimates (see Figure S1 for details on the sample construction).

We further made use of a long-standing authorship norm in the life sciences, according to which the first author is usually the junior author who executed the research, while the last author is generally the senior author who funded and may have conceived of the research. To designate the probable gender of thousands of these authors in our dataset, we use the genderize io database that draws on a number of official sources, like Social Security Administration records and social media profiles, to assign a probability that a given forename is more likely held by men or women. For our analysis, we only included cases where the algorithm assigned a 90% or greater probability to the individual being of a specific gender (see also Figures S2–S4). Overall, our applied inclusion criteria did not introduce tangible selection bias in terms of fields or countries represented (see Tables S1–S2).

Outcome measures

We calculated the gender gap in academic authorships as the absolute percentage point difference between men and women authors. For example, if men and women accounted for 55% and 45% of first author positions, respectively, the absolute gender difference would be 10 percentage points. We also offered parametric analyses in the supplement, analyzing the effect of authoring during the pandemic versus not (a binary independent variable) on the likelihood that the first author was a woman versus a man (our outcome) (Table S3–S5).

Sensitivity analyses

We conducted additional sensitivity analyses (Table S6-S7), including varying the confidence with which gender could be inferred, excluding articles with group authorships, rerunning our analyses for the full set of articles (i.e., without applying sampling restrictions), and comparing sampled to non-sampled observations.

Patient and Public Involvement

No patients were involved in setting the research question or the outcome measures, nor were they involved in developing plans for design or implementation of

the study. No patients were asked to advise on the interpretation or write up of the results. There are no plans to disseminate the results of the research to study participants or the relevant patient community.

Results

One-year gender differences in first and last authorships related to COVID publications

On average, men accounted for 54.9% and women for 45.1% of first authorships in 483,232 articles, published before the pandemic (between February 2019 and January 2020), for an absolute gender gap of 9.8 percentage points. In contrast, men and women accounted for 62.3% and 37.7% of first authorships on COVID-related publications, for an absolute gender gap of 24.6 percentage points. The gender gap therefore widened by approximately 14.8 percentage points in disciplines related to the COVID pandemic (Figure 1). Smaller changes were observed in last authorships. For example, while the gender gap in last authorships before the pandemic was expectedly much larger (approximately 36 percentage points), the effect of the pandemic on last author publishing by women was less pronounced (albeit statistically significant given the large sample size). On average, women accounted for 31.9% of last authorships in articles published before the pandemic, compared with 30.5% of last authorships for COVID-related publications, representing a widening of the last author gender gap by approximately 2.8 percentage points (Figure 1). In line with previous data, our results therefore indicate that junior women investigators were disproportionally affected by the pandemic.^{9-11 13 15} As women may have been differently affected depending on their field of study or depending on geography, we further sought to investigate gender differences particularly in first authorships according to field of study and country.

Longitudinal analysis of gender differences in first authorships on COVID publications, by scientific discipline

BMJ Open

As the first author gender gap in publications generally varies across fields,¹⁹ we calculated the first author gender gap by discipline. We allocated the journals that published on COVID to scientific fields based on the disciplines represented in the Clarivate journal citation report.²⁰ As depicted in the first column of the heatmap in Figure 2, disciplines producing most COVID-relevant publications had shares of first authorship pre-COVID by women of 45% (i.e., an average gender gap of approximately 10 percentage points across all disciplines). During the pandemic, however, publications related to COVID had an average one-year gender gap of approximately 24 percentage points (i.e. the share of first authorships from women for publications related to COVID was 38%), a deviation of 14 percentage points (Figure 2). This effect was most prominent in the first months of COVID publishing, from February to May of 2020, when the gender gap rose to 36 percentage points (corresponding to a share of women first authorships of 32%). In the following months from June to September 2020, the share of female first authors slowly increased again to an average of 37%, and to 41% from October 2020 to January 2021, reducing the gender gap to 26 and 18 percentage points, respectively. However, this still represented a significant deviation from the pre-pandemic gender gap of 8 percentage points.

Interestingly, many of the disciplines that produced most COVID publications had equal or near-equal gender shares in the year before the pandemic. For example, in the fields of Virology, Immunology, Infectious Diseases, and General/Internal Medicine, the shares of women first authors prior to COVID were 50%, 52%, 48%, and 44%, respectively. The share of women first authors in other relevant fields like Public, Environmental and Occupational Health was even higher (59%). In many relevant fields, the gender rift in first authorships for COVID-related publications widened significantly above the pre-COVID average. For example, while women were more

BMJ Open

likely to be first authors on publications within Public, Environmental and Occupational Health (difference of 18 percentage points) before the pandemic, the gap changed by 30 percentage points so that women were now less likely to publish research within this field as first authors of COVID-related publications (gender gap of 12 percentage points). In Biochemistry and Molecular Biology, the gender gap in first authorships increased by 34 percentage points, from 2 percentage points pre-COVID to 36 percentage points for COVID publications. In Virology, the gender gap increased by 26 percentage points, from equal shares (no gap) to 26 percentage points for COVID-relevant fields were much less prone to changes in the first author gender gap, for example Surgery, and Cardiac & Cardiovascular Systems, in which the gender gap prior to COVID was 44 percentage points compared with 46 percentage points for COVID-related studies, respectively (meaning women's first authorship shares were as low as 28 and 27%, respectively) (Figure 2).

Longitudinal analyses of gender differences in first authorships on COVID publications, by affiliated geographic area

Since the pandemic has affected countries differently, we further performed analyses based on the country affiliation of the first author. Women's research productivity went down in almost all countries (Figure 3a). For example, in the United States, which accounted for ~26% of all COVID publications between February 2020 and January 2021, women's first authorship share decreased from a share of 44% to a share of 41% (corresponding to a widening of the gender gap by 6 percentage points). In European countries that were hit earlier by the pandemic than the US, women's representation in authorships was also more affected. In Italy, for example, women's share of first authorships decreased from 49% before the pandemic to 35% for COVID-

Page 13 of 42

BMJ Open

related publications, an increase in the gender gap of 28 percentage points because of the pandemic, with the overall number of publications from Italy accounting for 10% of total publications on COVID. The increase in the first authorship gender gap was also substantive in Brazil (30 percentage points), and Mexico (35 percentage points), Australia (14 percentage points), and India (22 percentage points). Only very few countries showed no change in the first authorship gender gap, including China (no change), South Korea (decreased by 3 percentage points), or Taiwan (decreased by 2 percentage points).

We further performed a granular time-resolved (per two-months) analysis of women's first authorship shares grouped by continents. Our data showed that the largest reduction in women's first authorship shares happened early in last spring (April and May 2020). In Europe, for example, the gender gap increased by 18 percentage points, in North America by 8 percentage points, in Latin America by 28 percentage points, in Australia and Oceania by 15 percentage points, in Africa by 18 percentage points, and in Asia by 7 percentage points (Figure 3b). Similar to our analysis of the difference in first authorship shares over time by field, we found that the gap began to close again over time and seemed to have reached baseline levels in North America and Oceania. In all the other continents, the gender gap has yet to reach the levels expected from the year prior to the pandemic, with Africa and Latin America being farthest from the baseline (12 percentage points, respectively) (Figure 3b), while COVID related research output has been relatively stable from April 2020 to January 2021 within each continent.

Discussion

Our results provide evidence for the COVID pandemic's effect on women's publishing productivity across disciplines, worldwide, and over time. In line with our hypothesis, we found that the relative increase in the gender gap was more pronounced for women in the first author position. In light of previous research and observations ¹³ ¹⁵¹⁸²¹, we suspected that the overcontribution of women to household and child rearing responsibilities - that leaves less opportunity to participate in writing, submitting and publishing research related to COVID - led to reduced productivity of early career women investigators. However, aside from time constraints that disproportionally changed for women in an earlier stage of their career, other reasons are possible for the significant difference of women's productivity with regards to COVID. For example, since COVID emerged as a high-profile, and very publishable subject, it is possible that it was easier for men, that are still more likely to be in leadership and well-funded positions in academia to pick up the topic quickly. Also, women were less likely to function as expert reviewers on articles related to COVID,⁶⁻⁸ known to potentially exacerbate a pre-existing gender bias in the peer-review and publishing process.²²⁻²⁴ These might contribute to a vicious cycle that hindered access to COVID publishing especially for women in the early stages of their career.¹¹ The exact determination of underlying mechanisms, however, warrant future research that might also benefit from longer time series data.

Interestingly, we found that decreased publishing activity was specifically significant in fields that had a relatively equal share between women and men as first authors prior to the pandemic. Those were also fields that had a high overall productivity among COVID articles. This is a reason for concern insofar as the current

Page 15 of 42

BMJ Open

scientific/medical response to one of the most incisive global crises could be overly dominated by men and missing expert voices by women that would usually be a vital part of this research.

Applying longitudinal analyses, we found that the much-increased gender gap in relevant fields was particularly noticeable early on and continuously trended back towards the baseline since then. However, recovery remains slow, with potential reasons being the extent of the impact, the fact that many fields with an above average share of women first authors were affected, but also because some of the most affected fields require in-person work, for example in wet labs (e.g. Biochemistry, Molecular Biology, Microbiology).

Analyzing the change in the gender gap globally, we similarly found that the shares of women first authors declined across almost all continents early in the course of the pandemic in spring of 2020. Since then, the gender gap slowly began to close again towards the expected baseline and even reached baseline in North America and Oceania. Asia is the only continent where no significant reduction in women's first authorships were noted. In China, there was no change in gender composition among COVID publication when compared to control publications. In Taiwan and South Korea, a small increase in women first author shares was noted. Given that these countries together accounted for 4.2% of COVID publications in our dataset, and that gender designation algorithms tend to offer lower probability gender designations for Asian forenames, we are reluctant to conclusively interpret these findings. Of note, we applied a uniform probability threshold of 90% for designating an author's gender as a conservative measure.

Even though our longitudinal analysis leads us to be cautiously optimistic that the impact of the pandemic on women's COVID research activity might have been

BMJ Open

 temporary, we speculate that the absence of many expert women voices during the initial response to the pandemic impacted the individual researchers, but also society as a whole. While our study focused on COVID publications, the dynamics reported here may be amplified in research beyond COVID. Effects of the pandemic on early-stage or ongoing projects are likely to show with a time-delay and potentially have long-lasting consequences jeopardizing efforts toward equity in academia. For example, women at earlier career stages have not been able to allocate enough time to their research, manuscript and grant writing, were bound to remote working instead of in-person work, were potentially less likely to be allocated to leading roles on projects given the circumstances, etc.

To avoid long-term impacts on the academic advancement and scientific contributions, the disproportionate impact of the pandemic on early career women investigators needs serious consideration and immediate actions. In a first step we would suggest for an open discourse about how the pandemic has highlighted systemic and structural barriers preventing gender equity in academia.²⁵ Naturally, pre-existing inequities must be evaluated, and a long-term strategy has to be established to support equity in science. ²⁶ But more acutely, COVID-related gender inequities need to be addressed with direct measures, monetary and non-monetary, on both the political (e.g. federal funding agencies) and institutional level. For example, financial support for postdoctoral/graduate students could help to facilitate a research set-back in a recently established laboratory. Modifications for grant deadlines, timelines, extensions for granted expenses, as well as additional (bridge) funding programs, are likely warranted for early career mentored/independent investigators.²⁷ Extension of tenure evaluation and promotion should be considered on the individual level accounting for constraints posed by COVID for junior faculty (for both men and women). Resources for childcare

Page 17 of 42

BMJ Open

should be provided for parents, additional funds for expanded childcare arrangements could help to reallocate time to regular professional duties. However, it is as necessary to normalize the increased stress of living through a pandemic that not only affects professional obligations and goals, but also other family members and no penalty should be awarded for caregivers but measures mentioned above should rather allow for extra quality-time.²⁸

Our study had several limitations. One limitation is that part of our large-scale study design was based on field-association by Clarivate Journal categories, which bears a potential risk of misclassification or inclusion of articles from journals that might not follow the norm of author ordering with regards to contribution that we assume for the life sciences and medicine. For example, one of the most affected fields in our data analysis is Public, Environmental and Occupational Health, where such norms might not be generalizable. However, previous research about the topic in Public Health, for example, also applied said authorship order norms and given the high relevance of the field and results, we decided to present the data.²⁹ Next, we relied on authors first names to designate their likely gender, which bears the risk of gender misclassification, particularly across different geographies. We attempted to minimize this risk by applying a 90% probability requirement, however, a certain level of uncertainty remains.³⁰ Also, by design of the gender designation algorithms grouping into two categories, namely 'man' and 'women' we cannot separate out an effect for scholars who are non-binary, transgender men and women. Along those lines, by virtue of the large-scale nature of our study, we acknowledge that we cannot draw conclusions for researchers on the individual level as well as confirm the assumed career stage. While our study focused on gender disparities for COVID-related research, it is important to note that, beyond gender diversity,³¹ ethnic and cultural diversity benefit

BMJ Open

science on multiple levels.³² With our analyses, however, we cannot comment on how the pandemic might have affected ethnic and cultural diversity with regards to COVIDrelated research or if populations under-represented in academic life sciences were similarly affected. Lastly, in this observational study, we cannot causally decipher the underlying mechanisms leading to women being underrepresented on COVID-related research, also precluding a definitive explanation for the trend back to baseline over time and what the potentially successful measures were or could be.

In conclusion, we found that women first authors have been underrepresented in COVID-related research, particularly at the beginning of the pandemic, despite having nearly equal first authorship shares as men in pertinent fields prior to the pandemic.

Figure Captions

Figure 1. Overall gender differences in first and last authorships related to COVID publications.

Gender gap in first authorships for COVID publications (red) compared to the gender gap for control publications appearing in the same journals a year earlier (blue).

Figure 2. Time-resolved gender differences in first authorship shares on COVID publications, by scientific discipline

Heatmap depicting the gender gap in first authorships for COVID publications and control publications from the same disciplines appearing in the same journals during the same period in the year prior to the pandemic. Fields sorted in descending order by number of publications. Red indicates an overrepresentation of women first authors, white indicates gender parity, blue indicates an overrepresentation of men first authors (in percentage points).

Figure 3. Difference in first authorship gender gap, by country/geographical area

a. World map depicting the deviation in the gender gap in first authorships for COVID publications when compared to the expected gender gap derived from control publications from the same countries appearing in the same journals a year earlier. Red indicates an overrepresentation of women first authors, white indicates gender parity, blue indicates an overrepresentation of men first authors (in percentage points).

b. Time-resolved deviation in the gender gap in first authorships for COVID publications when compared to the expected gender gap derived from control publications from the same geographical area appearing in the same journals a year earlier (in percentage points).

References

- 1. World Economic Forum. The Global Gender Gap Report 2017. <u>http://www3weforumorg/docs/WEF_GGGR_2017pdf</u> (accessed 08 June 2018)
- O'Brien KR, Scheffer M, van Nes EH, et al. How to Break the Cycle of Low Workforce Diversity: A Model for Change. *PloS one* 2015;10(7) doi: ARTN e0133208
- 10.1371/journal.pone.0133208
- Lerchenmuller C, Lerchenmueller MJ, Sorenson O. Long-Term Analysis of Sex Differences in Prestigious Authorships in Cardiovascular Research Supported by the National Institutes of Health. *Circulation* 2018;137(8):880-82. doi: 10.1161/CIRCULATIONAHA.117.032325
- 4. Blumenthal DM, Olenski AR, Yeh RW, et al. Sex Differences in Faculty Rank Among Academic Cardiologists in the United States. *Circulation* 2017;135(6):506-17. doi: 10.1161/CIRCULATIONAHA.116.023520
- 5. Holman L, Stuart-Fox D, Hauser CE. The gender gap in science: How long until women are equally represented? *PLoS Biol* 2018;16(4):e2004956. doi: 10.1371/journal.pbio.2004956 [published Online First: 2018/04/20]
- 6. Squazzoni F, Bravo, G., Grimaldo, F., Garcia-Costa, D., Farjam, M., Mehmani, B. Only Second-Class Tickets for Women in the COVID-19 Race. A Study on Manuscript Submissions and Reviews in 2329 Elsevier Journals. SSRN Journal 2020 [published Online First: October 16, 2020]

З	
1	
4	
5	
6	
7	
8	
9	
10	
11	
12	
12	
13	
14	
15	
16	
17	
18	
19	
20	
20	
ו∠ רב	
22	
23	
24	
25	
26	
27	
28	
20	
29	
30	
31	
32	
33	
34	
35	
36	
37	
27	
38	
39	
40	
41	
42	
43	
44	
45	
16	
-+0 //7	
4/	
48	
49	
50	
51	
52	
53	
54	
54	
22	
56	
57	
58	
59	

7. Krukowski RA, Jagsi R, Cardel MI. Academic Productivity Differences by Gend	der
and Child Age in Science, Technology, Engineering, Mathematics, and	
Medicine Faculty During the COVID-19 Pandemic. J Womens Health	
(Larchmt) 2020 doi: 10.1089/jwh.2020.8710 [published Online First:	
2020/11/21]	

- Mogensen MA, Lee, C.I., Carlos, R.C. The Impact of the COVID-19 Pandemic on Journal Scholarly Activity Among Female Contributors. *Journal of the American College of Radiology* 2021 doi: <u>https://doi.org/10.1016/j.jacr.2021.01.011</u>
- Andersen JP, Nielsen MW, Simone NL, et al. COVID-19 medical papers have fewer women first authors than expected. *Elife* 2020;9 doi: 10.7554/eLife.58807 [published Online First: 2020/06/17]
- Kibbe MR. Consequences of the COVID-19 Pandemic on Manuscript Submissions by Women. JAMA Surg 2020;155(9):803-04. doi: 10.1001/jamasurg.2020.3917 [published Online First: 2020/08/05]
- Pinho-Gomes AC, Peters S, Thompson K, et al. Where are the women? Gender inequalities in COVID-19 research authorship. *BMJ Glob Health* 2020;5(7) doi: 10.1136/bmjgh-2020-002922 [published Online First: 2020/06/13]
- 12. Yildirim TM, Eslen-Ziya H. The Differential Impact of COVID-19 on the Work Conditions of Women and Men Academics during the Lockdown. *Gend Work Organ* 2020 doi: 10.1111/gwao.12529 [published Online First: 2020/09/10]
- Staniscuaski F, Reichert F, Werneck FP, et al. Impact of COVID-19 on academic mothers. *Science* 2020;368(6492):724. doi: 10.1126/science.abc2740 [published Online First: 2020/05/16]
- 14. Oleschuk M. Gender Equity Considerations for Tenure and Promotion during COVID-19. *Can Rev Sociol* 2020;57(3):502-15. doi: 10.1111/cars.12295 [published Online First: 2020/08/12]
- 15. Kitchener C. Women academics seem to be submitting fewer papers during coronavirus . 'Never seen anything like it,' says one editor. *The Lily / The Washington Post* 2020 April 24, 2020.
- 16. Myers KR, Tham WY, Yin Y, et al. Unequal effects of the COVID-19 pandemic on scientists. *Nat Hum Behav* 2020;4(9):880-83. doi: 10.1038/s41562-020-0921-y [published Online First: 2020/07/17]
- 17. Czymara CS, Langenkamp A, Cano T. Cause for concerns: gender inequality in experiencing the COVID-19 lockdown in Germany. *European Societies* 2020:1-14. doi: 10.1080/14616696.2020.1808692
- Antecol H, Bedard K, Stearns J. Equal but Inequitable: Who Benefits from Gender-Neutral Tenure Clock Stopping Policies? *American Economic Review* 2018;108(9):2420-41. doi: 10.1257/aer.20160613
- 19. Jagsi R, Guancial EA, Worobey CC, et al. The "gender gap" in authorship of academic medical literature--a 35-year perspective. *The New England journal of medicine* 2006;355(3):281-7. doi: 10.1056/NEJMsa053910 [published Online First: 2006/07/21]
- 20. Clarivate. 2018 Journal Citation Reports 2018 [Available from: <u>https://clarivate.com/webofsciencegroup/wp-</u> <u>content/uploads/sites/2/2019/10/Crv_JCR_Full-Marketing-</u> List A4 2018 v4.pdf accessed 20 February 2020.
- 21. BCG. Easing the covid-19 burden on working parents 2020 [Available from: https://www.bcg.com/en-us/publications/2020/helping-working-parents-easethe-burden-of-covid-19.aspx accessed 14 September 2020.

2	
3	
4	
5	
6	
7	
, א	
a	
9 10	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
20	
2/	
20	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
44 45	
رب ۸۸	
40 17	
4/	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	

58 59 60

- 22. Clark J, Horton R. What is The Lancet doing about gender and diversity? *Lancet* 2019;393(10171):508-10. doi: 10.1016/S0140-6736(19)30289-2 [published Online First: 2019/02/12]
 - 23. Holmes A, Hardy S. Gender bias in peer review-opening up the black box. London, UK: London School of Economics 2019
 - 24. Pinho-Gomes AC. The Time Is Ripe for Addressing Gender Inequalities in the Authorship of Scientific Papers. *Am J Public Health* 2021;111(1):15-16. doi: 10.2105/AJPH.2020.306028 [published Online First: 2020/12/17]
- 25. Coe IR, Wiley R, Bekker LG. Organisational best practices towards gender equality in science and medicine. *Lancet* 2019;393(10171):587-93. doi: 10.1016/S0140-6736(18)33188-X [published Online First: 2019/02/12]
- 26. Malisch JL, Harris BN, Sherrer SM, et al. Opinion: In the wake of COVID-19, academia needs new solutions to ensure gender equity. *Proceedings of the National Academy of Sciences of the United States of America* 2020;117(27):15378-81. doi: 10.1073/pnas.2010636117 [published Online First: 2020/06/20]
- 27. Gibson EM, Bennett FC, Gillespie SM, et al. How Support of Early Career Researchers Can Reset Science in the Post-COVID19 World. *Cell* 2020;181(7):1445-49. doi: 10.1016/j.cell.2020.05.045 [published Online First: 2020/06/14]
- 28. Spinelli M, Lionetti F, Pastore M, et al. Parents' Stress and Children's Psychological Problems in Families Facing the COVID-19 Outbreak in Italy. *Front Psychol* 2020;11:1713. doi: 10.3389/fpsyg.2020.01713 [published Online First: 2020/07/29]
- 29. Bittante C, Beatrice G, Carletti L, et al. Gender disparity in authorships of manuscripts on the COVID-19 outbreak. *Z Gesundh Wiss* 2020:1-2. doi: 10.1007/s10389-020-01323-x [published Online First: 2020/08/25]
- 30. Lerchenmueller MJ, Sorenson O, Jena AB. Gender differences in how scientists present the importance of their research: observational study. *Bmj* 2019;367:16573. doi: 10.1136/bmj.16573 [published Online First: 2019/12/18]
- 31. Nielsen MW, Alegria S, Borjeson L, et al. Opinion: Gender diversity leads to better science. *Proceedings of the National Academy of Sciences of the United States of America* 2017;114(8):1740-42. doi: 10.1073/pnas.1700616114 [published Online First: 2017/02/24]
- 32. Science benefits from diversity. *Nature* 2018;558(7708):5. doi: 10.1038/d41586-018-05326-3 [published Online First: 2019/05/12]

Availability of data and materials

All data and source code generated and analyzed during the current study will be made

publicly available with publication of this article.

Conflicts of interest

Dr. Jena reports receiving consulting fees unrelated to this work from Pfizer, Hill Rom Services, Bristol Myers Squibb, Novartis, Amgen, Eli Lilly, Vertex Pharmaceuticals, AstraZeneca, Celgene, Tesaro, Sanofi Aventis, Biogen, Precision Health Economics, and Analysis Group. Also unrelated to this work, Dr. Lerchenmueller reports serving on the board of AaviGen.

Funding

Support was provided by the Office of the Director, National Institutes of Health (1DP5OD017897, Dr. Jena). The funding sources had no role in the design and conduct of the study; collection, management, analysis, and interpretation of the data; and preparation, review, or approval of the manuscript.

Author's contributions

LS and MJL collected data, LS, MJL and CL performed data analysis. CL, MJL, ABJ wrote the manuscript, LS edited the manuscript. All authors read and approved the final manuscript. Patients and public did not contribute to the study.

Acknowledgements

The authors acknowledge support by the German state of Baden-Württemberg through bwHPC—high performance cluster computing resources. The authors also thank Tobias Engel and Felix Fieberg for supporting data collection and literature review.

Supplementary Materials

Detailed methods and supporting data are available in the supplementary materials.

Figure 1. Overall gender differences in first and last authorships related to **COVID** publications.

Gender gap in first authorships for COVID publications (red) compared to the gender gap for control publications appearing in the same journals a year earlier (blue).

Figure 2. Time-resolved gender differences in first authorship shares on COVID publications, by scientific discipline

Heatmap depicting the gender gap in first authorships for COVID publications and control publications from the same disciplines appearing in the same journals during the same period in the year prior to the pandemic. Fields sorted descending order by number of publications. Red indicates in an overrepresentation of women first authors, white indicates gender parity, blue indicates an overrepresentation of men first authors (in percentage points).

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

46 Figure 3. Difference in first authorship gender gap, by country/geographical area

47 a. World map depicting the deviation in the gender gap in first authorships for COVID publications 48 when compared to the expected gender gap derived from control publications from the same 49 countries appearing in the same journals a year earlier. Red indicates an overrepresentation of 50 women first authors, white indicates gender parity, blue indicates an overrepresentation of men first 51 authors (in percentage points). b. Time-resolved deviation in the gender gap in first authorships for 52 COVID publications when compared to the expected gender gap derived from control publications 53 from the same continent appearing in the same journals a year earlier (in percentage points). 54 55

Supplementary materials for

Longitudinal Analyses of Gender Differences in First Authorship Publications Related to COVID-19

Carolin Lerchenmüller, MD, Leo Schmallenbach, MSc, Anupam B. Jena, MD, PhD, Marc J. Lerchenmüller, MPH, PhD

Table of Contents

Additional information on data (page 2) Additional information on methods (page 3) References (page 4)

Figure S1: Sample construction for COVID articles and non-COVID (control) articles

Figure S2: Gender designation accuracy for first authors from North America, Latin America, Europe, Asia, Oceania, and Africa separately

Figure S3: Gender designation accuracy for COVID articles and non-COVID (control) articles for women and men first authors

Figure S4: Gender designation accuracy for women first authors for COVID articles and non-COVID (control) articles separately

Table S1: Major disciplines for COVID articles and non-COVID (control) articles and concordance statistics

Table S2: Major countries for COVID articles and non-COVID (control) articles and concordance statistics

Table S3: Hierarchical linear probability model for the likelihood of women first authorship for COVID articles versus non-COVID (control) articles

Table S4: Hierarchical linear probability model for the likelihood of women last authorship for COVID articles versus non-COVID (control) articles

Table S5: Hierarchical logistic regression for the likelihood of women first authorship for COVID articles versus non-COVID (control) articles

Table S6: Robustness checks

Table S7: Descriptive statistics of articles included in the analysis versus articles not included in the analysis

Additional Information on Data

We merged several databases to analyze potential gender differences in first authorships of COVID publications relative to a set of control publications in the same journals and within the same time period one year earlier. First, we extracted all articles from the PubMed database for which the term "COVID" appeared in the title or abstract and obtained all available article characteristics including, among others, the names of all authors, country affiliation per author, the journal ISSN (International Standard Serial Number), and time of publication (months and year). The U.S. National Library of Medicine maintains the PubMed XML database and a detailed data inventory can be found online (https://www.nlm.nih.gov/databases/download/pubmed_medline.html). We obtained the journals' major scientific discipline from the Clarivate Journal Citation Report of 2018 via the unique journal ISSNs. We used journal names as a crosswalk to identify publications that appeared a year earlier in the exact same journals as the COVID articles.

An overview of the sample creation is provided in **Figure S1**. In service of estimation accuracy, we included only journals that are listed in Clarivate. By construction that excludes all COVID publications in journals that had no publication on record in PubMed for 2019. These journals likely only came into being in 2020. We restricted our search query to articles published between February 1st of 2020 and January 31st of 2021, since these months were the most productive in terms of COVID publishing and we sought to mitigate seasonal influences, like gender differences in teaching load at certain times of year.

We used the forenames recorded in PubMed to designate the gender of authors (PubMed started to systematically record forenames in 2002). We determined the probable gender of the authors through the Genderize database, an established approach that allows gender assignment for a large number of authors. At the time of initial submission, Genderize included 86,710 distinct forenames drawn from 74 countries and 81 languages. Recent tests of the accuracy and comprehensiveness of four gender assignment algorithms, using a control sample of gender-matched forenames from a US government office, found that Genderize provided the most accurate estimates of gender (1). Our underlying code for calling the Genderize database with a large set of forenames has been posted to Figshare (2). Genderize uses a variety of information, such as social media records, to assign a probability that an individual with a particular forename is a man or a woman. For example, Genderize designates the forename "Chris" as male with 93% probability based on 8,631 verified records in the database. We considered gender determined if Genderize assigned a probability of greater than 90%. Applying this threshold, we designated the gender for more than 72% of the authors in our dataset. However, there is variation across author origins (Figure S2). For example, we designated the gender for 84% of authors with an affiliation from North America and for 52% of authors with an affiliation from Asia. The lower accuracy for authors from Asia is a common challenge in name-based gender designation and a limitation to our analysis of authors from these countries. Yet, there is no difference in the accuracy of gender designation across men and women authors (Figure S3) or COVID and non-COVID

articles (**Figure S4**). Hence, there is no reason to be concerned that the gender designation would systematically bias our results. Additionally, our main findings do not change when setting different gender designation thresholds.

Next, we compared the distribution of disciplines producing COVID research relative to the articles in the control sample (**Table S1**). Ranking the disciplines in terms of publication output, and testing a Spearman Rank correlation, we obtain a coefficient of greater 0.80. While this correlation would generally be considered strong (*3*) lending credence to our basic design, it does not consider the possibility that men and women may sort differently into these fields. However, our **Figure 2** in the main text documents that it is primarily fields where women tend to be well represented that produce COVID research.

To execute country-level analyses, we use regular expressions to extract the full country name or country codes from affiliation data for the first author. We also ranked countries by productivity for COVID-articles and control articles, obtaining a Spearman rank correlation of 0.94, again supporting our approach of using non-COVID articles in the prior year as a control group (**Table S2**). This also mitigates concerns that countries with larger gender gaps in general produce more COVID research.

Additional information on methods

Measurement

To assess the effect of the COVID pandemic on the gender gap in publishing, we reported unadjusted differences in the percent of women first authorships versus male first authorships for COVID and non-COVID publications. This straightforward metric provides a direct and easy to understand measure of how the COVID pandemic impacts women's versus men's publication productivity.

 $\Delta GenderGap = \{FirstAuthor_{Female} - FirstAuthor_{Male} | COVID \} \\ - \{FirstAuthor_{Female} - FirstAuthor_{Male} | Non - COVID \}$

To conduct subgroup analysis for discipline and country, we calculated the change in the gender gap based on the percent of first authorships by men and women for the specific discipline and country.

Estimation

In addition to the unadjusted differences, we also provided adjusted differences in first authorships from women and men obtained from linear probability models (**Table S3**), adjusting for the number of authors on a publication, the month of publication, the field of research and country. We run the same analysis for last authorships from women and

BMJ Open

men (**Table S4**). Both regression analyses support the descriptive evidence presented in Figure 1 of the main text. Logistic regression as an alternative estimation model has two disadvantages in our analysis. First, the large number of fixed effects when including countries and discipline dummies, for example, raises the possibility of incidental parameters bias and could prevent the convergence of some of our models. Second, logistic regressions can overestimate effect sizes as a result of the high leverage of marginal cases (i.e., identifying larger gender differences than reported in the main text), whereas linear probability models average across observations and produce more conservative results (see also **Table S5**).

We provided adjusted estimates in the supplement as one might be concerned, for example, that men are more numerous in fields that produce COVID research. This would also lower women's observed COVID productivity but not due to pandemic related constraints as hypothesized, but rather due to underlying structural differences in subspecialties. Of note, the descriptive data paint a different picture, such that women tend to be at least equal if not overrepresented in the most productive COVID disciplines.

We conducted four robustness checks to establish the reliability of our findings (Table S6). In the first two robustness checks, we vary the threshold applied to the accuracy of the gender designation. In Model 1, we consider all authors, for which gender was assigned with a probability higher than chance (>50%). In Model 2, we only consider authors, for which the gender designation accuracy was reported with 100%. Both models show very similar estimates for the decrease in women authorship on COVID publications (8.2%-points vs. 9.0%-points). Next, we excluded articles from the analysis, for which collective authorship was indicated in PubMed. This concerns roughly 8% of articles but excluding them does not alter the effect estimate. Last, we reran the analysis on the full sample, that is including COVID articles published in journals, which are not listed in Clarivate's journal citation report and for which the first author's gender could be designated. As we do not know the disciplines these journals fall into, we include journal instead of discipline fixed effects in this last model specification. Again, the results are consistent with our previous analysis. Accordingly, a descriptive comparison of the articles in- and excluded from the analysis shows that they are near identical with respect to the representation of women first and last authors (Table S7).

References

- 1. C. N. G. detection, (<u>http://codingnews.info/post/genderdetection</u> (accessed 11/15/17) (2015)).
- 2. Lerchenmueller. Marc, *Genderize_unlimited_API_request.* (2017).
- 3. M. G. Pagano, Kimberlee, *Principle of Biostatistics*. (Brooks/Cole, ed. Secon Edition, 2000).

Figure S1: Sample construction for COVID articles and non-COVID (control) articles

*Note: based on 339,293 male and 286,392 female first authors

60

*Note: based on 296,937 female first authors

Table S1: Major disciplines for COVID articles and non-COVID (control) articles and concordance statistic

Discpline	Non-COVID			COVID			Total		
	Total	%	Rank	Total	%	Rank	Total	%	
MEDICINE GENERAL & INTERNAL	23,163	4.79%	5	4,229	9.88%	1	27,392	5.21%	
PUBLIC ENVIRONMENTAL & OCCUPATIONAL HEALTH	17,860	3.70%	8	3,530	8.24%	2	21,390	4.07%	
SURGERY	26,457	5.48%	3	2,254	5.26%	3	28,711	5.46%	
IMMUNOLOGY	11,151	2.31%	12	1,925	4.50%	4	13,076	2.49%	
CARDIAC & CARDIOVASCULAR SYSTEMS	16,196	3.35%	9	1,479	3.45%	5	17,675	3.36%	
PHARMACOLOGY & PHARMACY	18,408	3.81%	7	1,439	3.36%	6	19,847	3.77%	
MULTIDISCIPLINARY SCIENCES	38,524	7.97%	1	1.435	3.35%	7	39,959	7.60%	
PSYCHIATRY	9,890	2.05%	14	1.333	3.11%	8	11,223	2.13%	
ENVIRONMENTAL SCIENCES	19.607	4.06%	6	1.278	2.98%	9	20.885	3.97%	
ONCOLOGY	23,207	4.80%	4	1,159	2.71%	10	24,366	4.63%	
BIOCHEMISTRY & MOLECULAR BIOLOGY	30.224	6.25%	2	1,118	2.61%	11	31.342	5.96%	
PEDIATRICS	10,280	2.13%	13	1 105	2.58%	12	11 385	2.16%	
INFECTIOUS DISEASES	3 143	0.65%	41	1,001	2 34%	13	4 144	0.79%	
CUNICAL NEUROLOGY	9614	1 99%	15	922	2.51%	14	10.536	2.00%	
HEALTH CARE SCIENCES & SERVICES	5 209	1.08%	29	921	2.15%	15	6 130	1.17%	
MEDICINE RESEARCH & EXPERIMENTAL	5,205	1.17%	25	887	2.15%	16	6 532	1.1770	
NELDOSCIENCES	14 611	3.02%	10	835	1.05%	17	15 446	2 0/1%	
DEPMATOLOGY	5 452	1 130%	10	835 777	1.9570	19	6 220	1 18%	
VIROLOGY	2 109	0.45%	20	771	1.8170	10	2,060	0.56%	
DESDIDATORY SYSTEM	2,196	0.4370	47	732	1.80%	20	2,909	0.00%	
CASTRONIEROLOCY & HERATOLOCY	6 267	1 2 2 9 /	33	732	1./1/0	20	4,000	1 250/	
DADIOLOCY NUCLEAR MEDICINE & MEDICAL IMACING	7,002	1.3270	25	719	1.0870	21	7,080	1.3370	
ENDOCDINOLOCY & METADOLISM	6 469	1.4/70	20	/13	1.0/70	22	7,807	1.4870	
LENATOLOGY & METABOLISM	0,408	1.54%	22	628	1.4/70	23	7,096	1.55%	
HEMATOLOGY	4,449	0.92%	51	591	1.44%	24	5,067	0.96%	
	7,509	1.32%	18	510	1.30%	23	7,930	1.31%	
ANESTHESIOLOGY	2,100	0.43%	48	519	1.21%	26	2,619	0.50%	
MICKOBIOLOGY	0,080	1.26%	24	499	1.17%	27	6,585	1.25%	
NURSING	4,602	0.95%	30	484	1.13%	28	5,086	0.97%	
EMERGENCY MEDICINE	1,958	0.41%	52	459	1.07%	29	2,417	0.46%	
RHEUMATOLOGY	3,146	0.65%	40	455	1.06%	30	3,601	0.68%	
PSYCHOLOGY MULTIDISCIPLINARY	3,271	0.68%	38	413	0.96%	31	3,684	0.70%	
OPHTHALMOLOGY	5,303	1.10%	27	412	0.96%	32	5,715	1.09%	
GERIATRICS & GERONTOLOGY	1,818	0.38%	55	392	0.92%	33	2,210	0.42%	
OBSTETRICS & GYNECOLOGY	4,388	0.91%	32	353	0.82%	34	4,741	0.90%	
CELL BIOLOGY	8,490	1.76%	16	352	0.82%	35	8,842	1.68%	
OTORHINOLARYNGOLOGY	2,098	0.43%	49	303	0.71%	36	2,401	0.46%	
CRITICAL CARE MEDICINE	2,018	0.42%	50	282	0.66%	37	2,300	0.44%	
DENTISTRY ORAL SURGERY & MEDICINE	3,212	0.66%	39	275	0.64%	38	3,487	0.66%	
ECONOMICS	495	0.10%	81	274	0.64%	39	769	0.15%	
BIOTECHNOLOGY & APPLIED MICROBIOLOGY	4,021	0.83%	36	246	0.57%	40	4,267	0.81%	
NUTRITION & DIETETICS	5,241	1.08%	28	229	0.53%	41	5,470	1.04%	
PSYCHOLOGY CLINICAL	2,392	0.50%	43	210	0.49%	42	2,602	0.49%	
ETHICS	674	0.14%	75	195	0.46%	43	869	0.17%	
MEDICAL LABORATORY TECHNOLOGY	1,217	0.25%	63	185	0.43%	44	1,402	0.27%	
SPORT SCIENCES	3,065	0.63%	42	182	0.43%	45	3,247	0.62%	
PATHOLOGY	2,011	0.42%	51	181	0.42%	46	2,192	0.42%	
GENETICS & HEREDITY	7,184	1.49%	19	178	0.42%	47	7,362	1.40%	
ORTHOPEDICS	2,345	0.49%	44	168	0.39%	48	2,513	0.48%	
PERIPHERAL VASCULAR DISEASE	1,700	0.35%	57	133	0.31%	49	1,833	0.35%	
MATHEMATICS INTERDISCIPI INARY APPLICATIONS	70	0.01%	120	126	0.29%	50	196	0.04%	

Spearman Rank Correlation - all disciplines		Spearman Rank Correlation - top 50 discipli		
coefficient (rs)	0.807	coefficient (rs)	0.738	
N	148	Ν	50	
T statistic	16.537	T statistic	7.588	
DF	146	DF	48	
p-value	0.000	p-value	0.000	

BMJ Open

Table S2: Major countries for COVID articles and non-COVID (control) articles and concordance statistics

Country (First Author)		Non-COVID			COVID			Total	
	Total	%	Rank	Total	%	Rank	Total	%	R
United States	120,478	26.65%	1	11,066	26.12%	1	131,544	26.75%	-
Italy	22,670	5.01%	5	4,309	10.15%	2	26,979	5.49%	
United Kingdom	27,994	6.19%	3	3,157	8.13%	3	31,151	6.33%	
India	11,388	2.52%	12	1,778	7.43%	4	13,166	2.68%	
Spain	15,273	3.38%	9	1,672	4.19%	5	16,945	3.45%	
China	29,078	6.43%	2	1.377	3.77%	6	30,455	6.19%	
Canada	16.654	3.68%	7	1.324	3.11%	7	17,978	3.66%	
France	13 837	3.06%	10	1 313	3.02%	8	15 150	3.08%	
Germany	24 413	5 40%	4	1 161	2.64%	9	25 574	5 20%	
Brasil	13 219	2.92%	11	1 160	2.64%	10	14 379	2.92%	
Australia	16 132	3 57%	8	1,100	2.50%	11	17 184	3 49%	
Iron	6 757	1 40%	15	878	2.07%	12	7 635	1.55%	
Turkov	6 1 2 4	1.4970	19	851	2.0770	12	6.085	1.3370	
Iurkey	18.052	1.5070	10	400	1.9770	13	10 451	2.060/	
Japan Natharlanda	0,702	4.1970	12	499	1.30%	14	19,431	2.06%	
Servite and and	9,702	2.1370	15	423	1.2470	15	6 977	2.00%	
Switzerland	0,455	1.43%	16	422	1.00%	10	0,8//	1.40%	
Singapore	1,823	0.40%	36	405	0.99%	17	2,228	0.45%	
Israel	3,813	0.84%	22	3/8	0.96%	18	4,191	0.85%	
Saudi Arabia	2,020	0.45%	33	341	0.96%	19	2,361	0.48%	
Greece	2,605	0.58%	27	323	0.86%	20	2,928	0.60%	
Belgium	4,132	0.91%	21	314	0.82%	21	4,446	0.90%	
Pakistan	1,769	0.39%	38	286	0.80%	22	2,055	0.42%	
Mexico	3,186	0.70%	24	281	0.74%	23	3,467	0.71%	
Egypt	2,541	0.56%	28	254	0.71%	24	2,795	0.57%	
Poland	6,318	1.40%	17	253	0.66%	25	6,571	1.34%	
Hong Kong	1,285	0.28%	41	248	0.63%	26	1,533	0.31%	
Ireland	2,100	0.46%	31	230	0.59%	27	2,330	0.47%	
Austria	3,313	0.73%	23	203	0.58%	28	3,516	0.71%	
South Korea	7,400	1.64%	14	199	0.52%	29	7,599	1.55%	
Sweden	5,841	1.29%	19	192	0.45%	30	6,033	1.23%	
Bangladesh	318	0.07%	60	154	0.45%	31	472	0.10%	
Portugal	3,007	0.67%	25	151	0.36%	32	3,158	0.64%	
Denmark	4,599	1.02%	20	143	0.35%	33	4,742	0.96%	
South Africa	1,771	0.39%	37	142	0.35%	34	1,913	0.39%	
United Arab Emirates	532	0.12%	51	129	0.34%	35	661	0.13%	
Colombia	869	0.19%	45	120	0.33%	36	989	0.20%	
Chile	1,520	0.34%	40	114	0.29%	37	1,634	0.33%	
Taiwan	2,101	0.46%	30	112	0.27%	38	2.213	0.45%	
Norway	2.812	0.62%	26	106	0.26%	39	2,918	0.59%	
Malaysia	1.224	0.27%	42	94	0.25%	40	1.318	0.27%	
Peru	346	0.08%	58	93	0.22%	41	439	0.09%	
Argentina	1 739	0.38%	39	89	0.20%	42	1 828	0.37%	
Romania	1,759	0.25%	43	84	0.20%	43	1,020	0.25%	
Russia	2 083	0.46%	32	83	0.20%	44	2 166	0.44%	
Lebanon	679	0.15%	49	82	0.20%	45	761	0.15%	
New Zealand	2 011	0.1370	34	80	0.2070	45	2 001	0.13%	
Nigoria	2,011	0.4470	54	80 75	0.1970	40	2,091	0.120/	
	200	0.11%	52	/5	0.19%	4/	370	0.12%	
Indonesia	289	0.06%	64	/3	0.17%	48	362	0.07%	
Jordan	345	0.08%	59	68	0.17%	49	413	0.08%	
Morocco	304	0.07%	63	66	0.17%	50	370	0.08%	

Spearman Rank Correlation	- all countries
coefficient (rs)	0.93
N	167
T statistic	32.32
DF	165
p-value	0.000

Spearman Rank Correlation - top 50 countries				
coefficient (rs)	0.85			
Ν	50			
T statistic	10.97			
DF	48			
p-value	0.000			

Table S3: Hierarchical linear probability model for the likelihood of women first authorship for COVID articles versus non-COVID (control) articles

Dependent variable: First Author Female	(1)	(2)	(3)	(4)	(5)
COVID	-0.074***	-0.074***	-0.075***	-0.086***	-0.089***
	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)
number of authors		0.002***	0.002***	0.002***	0.002***
		(0.00)	(0.00)	(0.00)	(0.00)
publication month fixed effects (12)			Included	Included	Included
discipline fixed effects (148)				Included	Included
country fixed effects (167)					Included
constant	0.451***	0.442***	0.454***	0.269***	0.036
	(0.00)	(0.00)	(0.00)	(0.02)	(0.10)
R-squared	0.002	0.002	0.002	0.043	0.060
Adjusted R-squared	0.002	0.002	0.002	0.043	0.059
Observations	526,130	526,130	526,130	526,130	491,912

Table S4: Hierarchical linear probability model for the likelihood of women last authorship for COVID articles versus non-COVID (control) articles

Dependent variable: Last Author Female	(1)	(2)	(3)	(4)	(5)
COVID	-0.014***	-0.014***	-0.015***	-0.033***	-0.037***
	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)
number of authors		-0.002***	-0.002***	-0.001***	-0.001***
		(0.00)	(0.00)	(0.00)	(0.00)
publication month fixed effects (12)			Included	Included	Included
discipline fixed effects (148)				Included	Included
country fixed effects (167)					Included
constant	0.319***	0.332***	0.342***	0.232***	0.081
	(0.00)	(0.00)	(0.00)	(0.02)	(0.09)
R-squared	0.000	0.001	0.001	0.043	0.060
Adjusted R-squared	0.000	0.001	0.001	0.043	0.059
Observations	539,103	539,103	539,103	539,103	504,148

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Table S5: Hierarchical logit regression for the likelihood of women first authorship for COVID articles versus non-COVID (control) articles

Dependent variable: First Author Female	(1)	(2)	(3)	(4)	(5)
COVID	0.738***	0.737***	0.733***	0.690***	0.678***
	(0.01)	(0.01)	(0.01)	(0.01)	(0.01)
number of authors		1.006***	1.006***	1.009***	1.009***
		(0.00)	(0.00)	(0.00)	(0.00)
publication month fixed effects (12)			Included	Included	Included
discipline fixed effects (148)				Included	Included
country fixed effects (167)					Included
constant	0.821***	0.790***	0.829***	0.365***	0.117***
	(0.00)	(0.00)	(0.01)	(0.03)	(0.06)
observations	526,130	526,130	526,130	526,112	491,837

Note: Coefficients reported as odds ratios, standard errors in brackets, * p < 0.05, ** p < 0.01, *** p < 0.001

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Table S6: Robustness checks

	Accuracy of gender designation > 50%	Accuracy of gender designation = 100%	Exluding collective authorships	Full sample
Dependent variable: First Author Female	(1)	(2)	(3)	(4)
COVID	-0.082***	-0.090***	-0.089***	-0.079***
	(0.00)	(0.00)	(0.00)	(0.00)
number of authors	0.002***	0.002***	0.003***	0.002***
	(0.00)	(0.00)	(0.00)	(0.00)
publication month fixed effects (12)	Included	Included	Included	Included
discipline fixed effects (148)	Included	Included	Included	Included
country fixed effects (167)	Included	Included	Included	
journal fixed effects (5,101)				Included
constant	0.095	0.040	0.031	0.215*
	(0.10)	(0.10)	(0.10)	(0.10)
R-squared	0.049	0.067	0.060	0.091
Adjusted R-squared	0.048	0.066	0.059	0.082
Observations	607,598	443,711	483,308	507,653

Note: standard errors in brackets, * p < 0.05, ** p< 0.01, *** p < 0.001

Table S7: Descriptive statistics of articles included in the analysis versus a	articles not
included in the analysis	

	Included in analysis Excluded from analysis		t-test			
Variable	Mean	Std. Dev.	Mean	Std. Dev.	Difference	t-statistic
First Author Female	0.38	0.48	0.38	0.49	0.00	0.45
Last Author Female	0.32	0.47	0.33	0.47	0.01	2.27
Publication Month	7.35	3.15	7.51	3.25	0.15	5.35
Number of Authors	6.42	8.56	5.75	6.25	-0.68	-10.76
North America	0.29	0.45	0.24	0.43	-0.05	-12.70
Europe	0.35	0.48	0.28	0.45	0.07	-16.15
Asia	0.19	0.39	0.23	0.42	0.04	9.69
Latin America	0.05	0.21	0.04	0.20	0.00	-1.44
Oceania	0.03	0.16	0.02	0.14	-0.01	-4.22
Africa	0.02	0.14	0.03	0.17	0.01	6.20
Observations	42	,898	17,	,445	60,	343

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 41 of 42

 BMJ Open

STROBE Statement-	-checklist of item	is that should b	e included in	reports of observation	ational studies
-------------------	--------------------	------------------	---------------	------------------------	-----------------

	Item No.	Recommendation	Page No.	Relevant text from manuscript
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the abstract	1	Longitudinal analyses
		(b) Provide in the abstract an informative and balanced summary of what was done and what was	1	Widening gender gap in
		found		productivity with COVID
Introduction				
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	2	COVID impact on productivity
Objectives	3	State specific objectives, including any prespecified hypotheses	2	Gendered productivity drain
Methods		· •		
Study design	4	Present key elements of study design early in the paper	3	COVID as exogenous shock
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure,	2	Longitudinal case-control
		follow-up, and data collection		design
Participants	6	(a) Cohort study—Give the eligibility criteria, and the sources and methods of selection of	3	COVID publications (Feb 20 to
		participants. Describe methods of follow-up		Jan 21) as cases versus
		Case-control study—Give the eligibility criteria, and the sources and methods of case		publications in same journals a
		ascertainment and control selection. Give the rationale for the choice of cases and controls		year earlier (controls)
		Cross-sectional study-Give the eligibility criteria, and the sources and methods of selection of		
		participants		
		(b) Cohort study—For matched studies, give matching criteria and number of exposed and		
		unexposed		
		Case-control study—For matched studies, give matching criteria and the number of controls per		
		case		
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers.	7	Absolute percentage point
		Give diagnostic criteria, if applicable		gender difference in authorship
Data sources/	8*	For each variable of interest, give sources of data and details of methods of assessment	6	PubMed, Clarivate JCR,
measurement		(measurement). Describe comparability of assessment methods if there is more than one group		Genderize.io
Bias	9	Describe any efforts to address potential sources of bias	6/7	Case-control design,
				sensitivity analyses
Study size	10	Explain how the study size was arrived at	7	Population of PubMed articles

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 42 of 42

variables	11	Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why		Statistical Software Stata
Statistical methods	12	(a) Describe all statistical methods, including those used to control for confounding	6/7	Descriptive and parametric analyses
		(b) Describe any methods used to examine subgroups and interactions	6	Discipline and Country
		(c) Explain how missing data were addressed	Supplement	Exclusion plus sensitivities
		(d) Cohort study—If applicable, explain how loss to follow-up was addressed		N/A
		Case-control study—If applicable, explain how matching of cases and controls was addressed		
		Cross-sectional study—If applicable, describe analytical methods taking account of sampling		
		strategy		
		(e) Describe any sensitivity analyses	7	Full sample and subgroup testin
Results		CO		
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined	7	42,898 COVID articles (cases
		for eligibility, confirmed eligible, included in the study, completing follow-up, and analysed		483,232 control articles
		(b) Give reasons for non-participation at each stage		N/A
		(c) Consider use of a flow diagram	Supplement	
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and information on	6	COVID pandemic as exposure
		exposures and potential confounders		gender of first and last author
		(b) Indicate number of participants with missing data for each variable of interest		N/A
		(c) Cohort study—Summarise follow-up time (eg, average and total amount)		N/A
Outcome data	15*	Cohort study—Report numbers of outcome events or summary measures over time		
		Case-control study-Report numbers in each exposure category, or summary measures of exposure	9	Gender gap 9.8 percentage poir
				(54.9% men vs 45.1% women
		Cross-sectional study-Report numbers of outcome events or summary measures		
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision	9	See 15.
		(eg, 95% confidence interval). Make clear which confounders were adjusted for and why they were		
		included		
		(b) Report category boundaries when continuous variables were categorized		N/A

 BMJ Open

Discussion 18 Summarise key results with reference to study objectives 13 Acute increase in gender gap 2020 with longitudinal revers both direction and magnitude of any potential bias 13 Acute increase in gender gap 2020 with longitudinal revers Limitations 19 Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both direction and magnitude of any potential bias Probabilistic gender design probabilistic gender design analyses, results from similar studies, and other relevant evidence 13/14 Confirming acute increase in gap, new longitudinal find Generalisability 21 Discuss the generalisability (external validity) of the study results 16 Applies to COVID research, with external validity Other information	Other analyses	17	Report other analyses done-eg analyses of subgroups and interactions, and sensitivity analyses	9-12	Discipline and country analyses
Key results 18 Summarise key results with reference to study objectives 13 Acute increase in gender gap 2020 with longitudinal revers 2020 with longitudinal revers both direction and magnitude of any potential bias 16 Focus on COVID research probabilistic gender design probabilistic gender design probabilistic gender design analyses, results from similar studies, and other relevant evidence 13/14 Confirming acute increase in gap, new longitudinal find Generalisability (external validity) of the study results 16 Applies to COVID research with external validity of the study results Uher information 21 Discuss the generalisability (external validity) of the study results 16 Applies to COVID research, with external validity Pher information 22 Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on which the present article is based 20 Office of the Director, Nation Institutes of Health (1DP5OD017897, Dr. Jena). funding sources had no role i Tive information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies. ote: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE tecklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at thtp://www.glosmedicine.org/, Annals of Internal Medicine at tp://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiati	Discussion				
Limitations 19 Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss 16 Focus on COVID resear probabilistic gender design probabilistic gender design probabilistic gender design analyses, results from similar studies, and other relevant evidence 13/14 Confirming acute increase in gap, new longitudinal find Generalisability 21 Discuss the generalisability (external validity) of the study results 16 Applies to COVID research, with external validity Other information 22 Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on which the present article is based 20 Office of the Director, Natior Institutes of Health (1DP5OD017897, Dr. Jena). funding sources had no role i Give information article discusses cach checklist item and gives methodological background and published examples of transparent reporting. The STROBE lecklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at ttp://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.	Key results	18	Summarise key results with reference to study objectives	13	Acute increase in gender gap early
Limitations 19 Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss 16 Focus on COVID resean probabilistic gender design probabilistic gender design probabilistic gender design analyses, results from similar studies, and other relevant evidence 13/14 Confirming acute increase in gap, new longitudinal find Generalisability (external validity) of the study results 13/14 Confirming acute increase in gap, new longitudinal find Generalisability (external validity) of the study results 16 Applies to COVID research, with external validity Other information 22 Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on which the present article is based 20 Office of the Director, Natior Institutes of Health (1DP5OD017897, Dr. Jena). funding sources had no role i Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies. of Internal Medicine at tp://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.					2020 with longitudinal reversion
both direction and magnitude of any potential bias probabilistic gender design Interpretation 20 Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence 13/14 Confirming acute increase in gap, new longitudinal find Generalisability 21 Discuss the generalisability (external validity) of the study results 16 Applies to COVID research, with external validity Other information	Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss	16	Focus on COVID research,
Interpretation 20 Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence 13/14 Confirming acute increase in gap, new longitudinal find Generalisability 21 Discuss the generalisability (external validity) of the study results 16 Applies to COVID research, with external validity Other information Funding 22 Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on which the present article is based Office of the Director, Natior Institutes of Health (1DPSODD17897, Dr. Jena). funding sources had no role i Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies. ote: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE incitative is available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at tp://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.			both direction and magnitude of any potential bias		probabilistic gender designation
analyses, results from similar studies, and other relevant evidence gap, new longitudinal find Generalisability 21 Discuss the generalisability (external validity) of the study results 16 Applies to COVID research, with external validity Other information Punding 22 Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on which the present article is based 0 Office of the Director, Natior Institutes of Health (1DP5OD017897, Dr. Jena). funding sources had no role i Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies. ote: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE tecklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at tp://www.strobe-statement.org.	Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of	13/14	Confirming acute increase in gende
Generalisability 21 Discuss the generalisability (external validity) of the study results 16 Applies to COVID research, with external validity Other information Funding 22 Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on which the present article is based 20 Office of the Director, Nation Institutes of Health (1DP5OD017897, Dr. Jena). funding sources had no role i Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies. ote: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE necklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at tp://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.			analyses, results from similar studies, and other relevant evidence		gap, new longitudinal findings
Other information 22 Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on which the present article is based 20 Office of the Director, Natior Institutes of Health (1DP5OD017897, Dr. Jena). funding sources had no role i Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies. ote: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE necklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at tp://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.	Generalisability	21	Discuss the generalisability (external validity) of the study results	16	Applies to COVID research, likely
Dther information Funding 22 Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on which the present article is based 20 Office of the Director, Nation Institutes of Health (1DP5OD017897, Dr. Jena). funding sources had no role i Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies. ote: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE necklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at tp://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.					with external validity
Funding 22 Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on which the present article is based 20 Office of the Director, Nation Institutes of Health (1DP5OD017897, Dr. Jena). funding sources had no role i Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies. 0 Office of the Director, Nation Institutes of Health (1DP5OD017897, Dr. Jena). funding sources had no role i Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies. 0 ote: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE lecklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at tp://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.	Other informati	on	· 6		
original study on which the present article is based Institutes of Health (1DP50D017897, Dr. Jena). funding sources had no role i Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies. ote: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE hecklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at tp://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.	Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable, for the	20	Office of the Director, National
(1DP50D017897, Dr. Jena). funding sources had no role i Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies. ote: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE necklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at tp://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.			original study on which the present article is based		Institutes of Health
funding sources had no role i Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies. ote: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE necklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at tp://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.					(1DP5OD017897, Dr. Jena). The
Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies. ote: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE incklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at tp://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.					funding sources had no role in stud
	ote: An Explanat hecklist is best us ttp://www.annals.	tion a ed in .org/,	nd Elaboration article discusses each checklist item and gives methodological background and published ex conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedici and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www	amples of trans ne.org/, Annals .strobe-stateme	sparent reporting. The STROBE s of Internal Medicine at ent.org.
	ttp://www.annals	.org/,	and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www	strobe-stateme	ent.org.
2			З		