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A. Missing data and DATE-AE

DATE-AE extends DATE by jointly learning the mapping
x — z — t, where z is modeled as an adversarial au-
toencoder. For imputation, the covariates (entries of ) in
the encoder are set to zero if the entry is missing. When
evaluating the reconstruction loss 3 in (1), we only do so
for observed covariates; in this way the autoencoder can
learn the correlation structure of the observed data despite
missingness and without the need for imputation, while let-
ting the decoder, = decoder(z), handle the imputation
if needed. Note that for time-to-event prediction, at test
time, we do not have to impute missing values as we can
directly evaluate * — z — t. DATE-AE, extends DATE
formulation with additional autoencoder discriminator and
generator losses shown below:

Y1(0z, 02, 9; D) = Eg z)[ Dy (x, 2)]
+ Ez,2)[1 — Dy(2,2)],
V2 (0w7 0:; D) = IE(z~p(z),2) [d(z7 2)}7
73(0z,02; D) = E(grp(a),z) [d(x, T)],
min maxy(6z, 0z, %; D) = 71(04,0=,9; D)

0.,0. ¢
+ G272 (011:7 0.; D)
+C373(0w,02;p) ) (1)

where x ~ p(x), 2 = Go_(x,€z) , 2 ~ p(z), & =
Go.(z,€,), €is the noise source, d is the distortion measure
and {(z2, (3} are reconstruction tuning parameters.

Tables 1 and 2 compares the effects of randomly introducing
missing values on the Flchain relative absolute error and
concordance-index respectively.

B. Concordance index and relative absolute
error

Tables 3 and 4 show comparisons on concordance-index and
relative absolute error across all datasets.
C. Normalized Relative Error (NRE)

Figures 2, 3, 4 and 5, show comparison on NRE distributions
for both censored and non-censored events.
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D. T@ set time-to-event distributions

We @omly draw best and worst observation samples
based on the NRE metric. Figures 6 , 7, 8 and 9, show
the cOtxksponding distributions comparisons relative to the
grounaaruth or censored time ¢*.
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E. chvf)iects of noise source and stochastic layers

Figufe ) shows the contribution effects of stochastic layers
for n@é Uniform(0,1) on both censored and non-censored
time{foJevent distributions. Tables 5 and 6 compares noise
sourda&on relative absolute error and CL.

Table Entroduced proportion of missing values comparison on

Flchaxelative absolute error. Ranges in parentheses are 50%

empir% ranges over (median) test-set predictions.

0.10 0.20 0.30 0.50
Non-Censored
DATE 19.9(9.6,32.7) 198091337y 1970108,33.2) 19.7(10.3,33.5)
DATE-AE 19.2(9.6,34.9) 21.9(9.5,33.4)  20.6(0.7,32.8)  18.3(9.5,32.9)
DRAFT 32.9(10.0,02.3) 3415108 197003335  19.7(10.3,33.5)
Censored
DATE 0(0,20.4) 1.9(0,19.4) 2.7(0,20.1) 7.3(0,21.8)
DATE-AE 00,129 3(0,19) 2.10,16.5) 6(0,21.3)
DRAFT 00,0 00,0 7.3(0,21.8) 7.3(0,21.8)

Table 2. Introduced proportion of missing values comparison on
FLCHAIN Concordance-Index.
0.10 020 030 0.50

DATE 0.815 0.803 0.803 0.784
DATE-AE 0.814 0.804 0.799 0.785
DRAFT 0.822 0.807 0.801 0.783

Table 3. Concordance-Index results on test data.

DATE DATE-AE DRAFT Cox-Efron RSF
EHR 0.78 0.78 0.76 0.75 -
FLCHAIN 0.83 0.83 0.83 0.83 0.82
SUPPORT 0.84 0.83 0.86 0.84 0.80
SEER 0.83 0.83 0.83 0.82 0.82
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Figure 1. Effects of stochastic layers on uncertainty estimation on 10 randomly selected test-set subjects from the FLCHAIN ( (a) and
(b) ) and SUPPORT ( (c) and (d)) datasets. Ground truth times are denoted as ¢* and box plots represent time-to-event distributions
from a 2-layer model, where o = [, @1, 2] indicates whether the corresponding noise source, {€o, €1, €2}, is active. For example
a = [1,0, 0] indicates noise on the input layer only.

Table 4. Median relative absolute errors (as percentages of tmax), : ::
on non-censored and censored data. Ranges in parentheses are ) o
50% empirical ranges over (median) test-set predictions. g1 "
DATE DATE-AE DRAFT 0 @ , )
Non-censored 4 i
EHR 23.6(11.1,43.0) 24.5(12.4,44.0) 36.7(16.1,81.3) 2 o v " = v
FLCHAIN 19.5(9.5,31.1) 19.3(8_9,32_4) 26.2(9.0,53.5)
SUPPORT 2.7(0.4,16.1) 1.5(0.4,19.2) 2.0(0.2,35.3) (a) Non-Censored (b) Censored
SEER 18.6(5.334.1) 202(10.335.8)  23.7(9.951.2) Figure 2. Normalized relative error on FLCHAIN test data.
Censored . 00
EHR 12.4 (0,38.7) 1.6(0134_) 0 (0,0) R
FLCHAIN 0(0,18.8) 00,15.6) 0 (0,0 ) hs
SUPPORT 0(0,13.0) 0(0,8.8) 0 (0,0 Y S
SEER 0 (0,0) 0 (0,0) 0 (0,0) : . j& =06
-0.8
- -1.0
-2 DATE DRAFT DATE DRAFT
Table 5. Effects of noise source and stochastic layers on SUPPORT (a) Non-Censored (b) Censored

Median relative absolute error. Ranges in parentheses are 50%

. . . Figure 3. Normalized relative error on SUPPORT test data.
empirical ranges over (median) test-set predictions.

Uniform(-1,1)  Uniform(0,1)  Gaussian(0,1 )  * o0
Non-censored : 02
All 2.4(0.4,19.9) 2.2(0.5,19.2) 190417y | ’ T
Input 2.2(0.4,18.) 1.8(0.4,16.1) 1.90.4,149) %" ii %06
Output 2.6(0,4’21‘” ’ -08
Censored ! 0
All 0(0,14.6) 0 (0,13.7) 00164
glgtuptut 00.15.3) 1'2(()%22-‘21; 0.8 (0.21.2) (a) Non-Censored (b) Censored

Figure 4. Normalized relative error on SEER test data.
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Table 6. Effects of noise source and stochastic layers on SUPPORT £.06
concordance-index. 08
Uniform(-1,1)  Uniform(0,1)  Gaussian(0,1 ) ! 10

All 0.825 0.835 0.826 - -
Input 0.841 0.829 0.825 (a) Non-Censored (b) Censored
Output 0.836 Figure 5. Normalized relative error on EHR test data.
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Figure 6. Comparison on FLCHAIN Censored best (top-left), worst
(top-right) and Non-Censored best (bottom-left), worst (bottom-
right).
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Figure 7. Comparison on SUPPORT Censored best (top-left), worst
(top-right) and Non-Censored best (bottom-left), worst (bottom-
right).

F. Parametric examples of f, h and S
relationships

Figure 10 shows examples of exponential, Weibull and log-
normal time-to-event pdf fr(t|@) with corresponding sur-
vival function Sp(¢|@) and h(t|@), where 6 are the pdf
parameters and 7' is the time-to-event random variable.

G. Architecture of the neural network

In all experiments, DATE and DRAFT are specified in terms
of two-layer MLPs of 50 hidden units with Rectified Linear
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Figure 8. Comparison on SEER Censored best (top-left), worst (top-
right) and Non-Censored best (bottom-left), worst (bottom-right).
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Figure 9. Comparison on EHR Censored best (top-left), worst (top-
right) and Non-Censored best (bottom-left), worst (bottom-right).

Unit (ReLLU) activation functions and batch normalization
(Ioffe & Szegedy, 2015). The discriminator for DATE is
a similarly defined MLP. As an optimizer, we use Adam
(Kinga & Adam, 2015) with the following hyperparameters:
learning rate 3 x 10~%, first moment 0.9, second moment
0.99, and epsilon 1 x 10~%. Further, we set the minibatch
size to M = 350 and use dropout with p = 0.8 on all layers.
All the network weights are initialized using Xavier (Glorot
& Bengio, 2010). Datasets are split into training, validation
and test sets as 80%, 10% and 10% partitions, respectively,
stratified by non-censored event proportion. We use the
validation set for early stopping and learning model hyper-
parameters. DATE is executed using one NVIDIA P100
GPU with 16GB memory.
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Figure 10. Popular parametric characterizations: exponential (left), Weibull (middle) and log-normal (right).
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