
Supplemental Material for
“Adversarial Time-to-Event Modeling”

A. Missing data and DATE-AE
DATE-AE extends DATE by jointly learning the mapping
x → z → t , where z is modeled as an adversarial au-
toencoder. For imputation, the covariates (entries of x) in
the encoder are set to zero if the entry is missing. When
evaluating the reconstruction loss γ3 in (1), we only do so
for observed covariates; in this way the autoencoder can
learn the correlation structure of the observed data despite
missingness and without the need for imputation, while let-
ting the decoder, x = decoder(z), handle the imputation
if needed. Note that for time-to-event prediction, at test
time, we do not have to impute missing values as we can
directly evaluate x → z → t. DATE-AE, extends DATE
formulation with additional autoencoder discriminator and
generator losses shown below:

γ1(θx,θz,ψ;D) = E(x,z̃)[Dψ(x, z̃)]

+ E(x̃,z)[1−Dψ(x̃, z)],
γ2(θx,θz;D) = E(z∼p(z),ẑ)[d(z, ẑ)],

γ3(θx,θz;D) = E(x∼p(x),x̂)[d(x, x̂)],

min
θx,θz

max
ψ

γ(θx,θz,ψ;D) = γ1(θx,θz,ψ;D)

+ ζ2γ2(θx,θz;D)
+ ζ3γ3(θx,θz;D) , (1)

where x ∼ p(x), z̃ = Gθx(x, εx) , z ∼ p(z), x̃ =
Gθz (z, εz), ε is the noise source, d is the distortion measure
and {ζ2, ζ3} are reconstruction tuning parameters.

Tables 1 and 2 compares the effects of randomly introducing
missing values on the Flchain relative absolute error and
concordance-index respectively.

B. Concordance index and relative absolute
error

Tables 3 and 4 show comparisons on concordance-index and
relative absolute error across all datasets.

C. Normalized Relative Error (NRE)
Figures 2, 3, 4 and 5, show comparison on NRE distributions
for both censored and non-censored events.

D. Test set time-to-event distributions
We randomly draw best and worst observation samples
based on the NRE metric. Figures 6 , 7, 8 and 9, show
the corresponding distributions comparisons relative to the
ground truth or censored time t?.

E. Effects of noise source and stochastic layers
Figure 1 shows the contribution effects of stochastic layers
for noise Uniform(0,1) on both censored and non-censored
time-to-event distributions. Tables 5 and 6 compares noise
sources on relative absolute error and CI.

Table 1. Introduced proportion of missing values comparison on
Flchain relative absolute error. Ranges in parentheses are 50%
empirical ranges over (median) test-set predictions.

0.10 0.20 0.30 0.50
Non-Censored
DATE 19.9(9.6,32.7) 19.8(9.1,33.7) 19.7(10.8,33.2) 19.7(10.3,33.5)

DATE-AE 19.2(9.6,34.9) 21.9((9.5,33.4) 20.6(9.7,32.8) 18.3(9.5,32.9)

DRAFT 32.9(10.0,92.3) 34.1(11.5,119.8) 19.7(10.3,33.5) 19.7(10.3,33.5)

Censored
DATE 0(0,20.4) 1.9(0,19.4) 2.7(0,20.1) 7.3(0,21.8)

DATE-AE 0(0,12.9) 3(0,19) 2.1(0,16.5) 6(0,21.3)

DRAFT 0(0,0) 0(0,0) 7.3(0,21.8) 7.3(0,21.8)

Table 2. Introduced proportion of missing values comparison on
FLCHAIN Concordance-Index.

0.10 0.20 0.30 0.50

DATE 0.815 0.803 0.803 0.784
DATE-AE 0.814 0.804 0.799 0.785
DRAFT 0.822 0.807 0.801 0.783

Table 3. Concordance-Index results on test data.
DATE DATE-AE DRAFT Cox-Efron RSF

EHR 0.78 0.78 0.76 0.75 –
FLCHAIN 0.83 0.83 0.83 0.83 0.82
SUPPORT 0.84 0.83 0.86 0.84 0.80
SEER 0.83 0.83 0.83 0.82 0.82
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(a) Non-Censored (b) Censored (c) Non-Censored (d) Censored
Figure 1. Effects of stochastic layers on uncertainty estimation on 10 randomly selected test-set subjects from the FLCHAIN ( (a) and
(b) ) and SUPPORT ( (c) and (d)) datasets. Ground truth times are denoted as t∗ and box plots represent time-to-event distributions
from a 2-layer model, where α = [α0, α1, α2] indicates whether the corresponding noise source, {ε0, ε1, ε2}, is active. For example
α = [1, 0, 0] indicates noise on the input layer only.

Table 4. Median relative absolute errors (as percentages of tmax),
on non-censored and censored data. Ranges in parentheses are
50% empirical ranges over (median) test-set predictions.

DATE DATE-AE DRAFT
Non-censored
EHR 23.6(11.1,43.0) 24.5(12.4,44.0) 36.7(16.1,81.3)
FLCHAIN 19.5(9.5,31.1) 19.3(8.9,32.4) 26.2(9.0,53.5)
SUPPORT 2.7(0.4,16.1) 1.5(0.4,19.2) 2.0(0.2,35.3)
SEER 18.6(8.3,34.1) 20.2(10.3,35.8) 23.7(9.9,51.2)
Censored
EHR 12.4 (0,38.7) 1.6(0,34.) 0 (0,0)

FLCHAIN 0(0,18.8) 0(0,15.6) 0 (0,0)

SUPPORT 0(0,13.0) 0(0,8.8) 0 (0,0)

SEER 0 (0,0) 0 (0,0) 0 (0,0)

Table 5. Effects of noise source and stochastic layers on SUPPORT

Median relative absolute error. Ranges in parentheses are 50%
empirical ranges over (median) test-set predictions.

Uniform(-1,1) Uniform(0,1) Gaussian(0,1 )
Non-censored
All 2.4(0.4,19.9) 2.2(0.5,19.2) 1.9(0.4,17.)

Input 2.2(0.4,18.) 1.8(0.4,16.1) 1.9(0.4,14.9)

Output 2.6(0.4,21.1)

Censored
All 0(0,14.6) 0 (0,13.7) 0 (0,16.4)

Input 0(0,15.3) 1.2(0,22.4) 0.8 (0,21.2)

Output 0(0,8.2)

Table 6. Effects of noise source and stochastic layers on SUPPORT

concordance-index.
Uniform(-1,1) Uniform(0,1) Gaussian(0,1 )

All 0.825 0.835 0.826
Input 0.841 0.829 0.825

Output 0.836

(a) Non-Censored (b) Censored
Figure 2. Normalized relative error on FLCHAIN test data.

(a) Non-Censored (b) Censored
Figure 3. Normalized relative error on SUPPORT test data.

(a) Non-Censored (b) Censored
Figure 4. Normalized relative error on SEER test data.

(a) Non-Censored (b) Censored
Figure 5. Normalized relative error on EHR test data.
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Figure 6. Comparison on FLCHAIN Censored best (top-left), worst
(top-right) and Non-Censored best (bottom-left), worst (bottom-
right).

Figure 7. Comparison on SUPPORT Censored best (top-left), worst
(top-right) and Non-Censored best (bottom-left), worst (bottom-
right).

F. Parametric examples of f , h and S
relationships

Figure 10 shows examples of exponential, Weibull and log-
normal time-to-event pdf fT (t|θ) with corresponding sur-
vival function ST (t|θ) and h(t|θ), where θ are the pdf
parameters and T is the time-to-event random variable.

G. Architecture of the neural network
In all experiments, DATE and DRAFT are specified in terms
of two-layer MLPs of 50 hidden units with Rectified Linear

Figure 8. Comparison on SEER Censored best (top-left), worst (top-
right) and Non-Censored best (bottom-left), worst (bottom-right).

Figure 9. Comparison on EHR Censored best (top-left), worst (top-
right) and Non-Censored best (bottom-left), worst (bottom-right).

Unit (ReLU) activation functions and batch normalization
(Ioffe & Szegedy, 2015). The discriminator for DATE is
a similarly defined MLP. As an optimizer, we use Adam
(Kinga & Adam, 2015) with the following hyperparameters:
learning rate 3 × 10−4, first moment 0.9, second moment
0.99, and epsilon 1× 10−8. Further, we set the minibatch
size to M = 350 and use dropout with p = 0.8 on all layers.
All the network weights are initialized using Xavier (Glorot
& Bengio, 2010). Datasets are split into training, validation
and test sets as 80%, 10% and 10% partitions, respectively,
stratified by non-censored event proportion. We use the
validation set for early stopping and learning model hyper-
parameters. DATE is executed using one NVIDIA P100
GPU with 16GB memory.
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Figure 10. Popular parametric characterizations: exponential (left), Weibull (middle) and log-normal (right).
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