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Supplementary Information 

Benchmark 

Data 

The benchmark data is available according to (Data Availability Statement).We provide the 

two FASTA files that were used as query (query_shuffled.faa.gz) and database 

(uniref50_annot_shuffled.faa.gz), as well as the query files for the supplementary 

benchmarks (query_suppl1.fna.gz, query_suppl2.fna.gz). Furthermore, the files 

query_scop_annotation.tsv.gz, query_suppl1_scop_annotation.tsv.gz, 

query_suppl2_scop_annotation.tsv.gz and uniref50_scop_annotation.tsv.gz contain our 

annotation of the query and database sequences with SCOP domains in TSV format. They 

consist of 7 columns: accession of the SCOP domain, accession of the annotated sequence, 

SWIPE bit score of annotation, SCOP class, SCOP fold, SCOP superfamily, SCOP family. 

When downloading the figshare file links using wget, we recommend the option --content-

disposition to retrieve complete file names. 

 

Evaluating a TSV-formatted alignment output file according to our benchmark may be done 

using this command line call: 

 
diamond roc --family-map uniref50_scop_annotation.tsv.gz --family-map-query 

query_scop_annotation.tsv.gz -q <input file> 

 

When running this command, the query accessions, along with their individual AUC1 values, 

will be written to the standard output in tabular-separated format. Note that due to a 

particularity in formatting accessions, the parameter --cut-bar needs to be added to this 

call when processing MMSeqs2-generated alignment files, or when using makeblastdb with 

the option -parse_seqids. The option --check-multi-target needs to be added when 

processing output files by MMSeqs2 in blastx mode. 

The raw data for ROC curves can be generated by adding the option --roc-file <output 

file> to the command line. The lines of the output file will contain tuples of family coverage 

and error count, which are sums that still need to be divided by the number of queries. When 

using this option, the third column in the input file is required to be the e-value. 

Supplementary benchmarks 

For Supplementary Benchmark 1, we selected 10 of the metagenome samples at random 

(sample accessions SAMEA5383815, SAMEA5383897, SAMEA5383886, SAMEA5383828, 

SAMEA5383925, SAMEA5383848, SAMEA5383824, SAMEA5383873, SAMEA5384011, 

SAMEA5383807) and randomly sampled 1.5 million 150bp reads from each sample. We 

annotated these reads by running BLASTX using an e-value cutoff of 10-5 against the 

SCOPe ASTRAL40 v2.07 dataset, resulting in a final query dataset of 1.55 million annotated 

reads. For Supplementary Benchmark 2, we selected 10 of the samples at random 

(sample accessions SAMEA103892455, SAMEA103892562, SAMEA103892552, 

SAMEA103892441, SAMEA103892588, SAMEA103892582, SAMEA103892581, 

SAMEA103892571, SAMEA103892491, SAMEA103892619) and annotated a total of 10.7 

million 250bp reads from these samples in the same manner as described above, yielding a 

query dataset of 1,753,358 annotated reads that we subsampled to 1,000,000 reads. 



ROC curves 

We created ROC curves that plot the coverage of a protein family against the rate of 

errors/query depending on the e-value threshold from the alignment output files. Given the 

result list of a query, we assign each hit to a bin defined by the binary logarithm transformed 

value of the hit’s e-value, rounded to the nearest integer. Alignments with e-value 0.0 are 

assigned to the lowest bin. Traversing the result list sorted by e-value in ascending order, we 

determine the coverage of the protein family and the count of false positives that are reached 

up until a given bin, which we project as a point within the ROC curve for each bin. The 

tuples of coverage and error count are averaged over all queries for corresponding e-value 

bins to produce the final ROC curve for the dataset (Fig. 1b).  

For the purpose of computing an AUC (Area under the curve), we consider the function that 

maps the decadic logarithm value of the error rate to the coverage. Values with a true error 

rate of exactly zero (for which no logarithm can be computed) were discarded since they only 

correspond to a negligible amount of coverage for our data. The integral of this function is 

then approximated using the trapezoid rule (Source Data for Fig. 1). 

We limited the ROC curve and AUC computation at an error rate of 100 errors/query since 

we do not consider searches at higher error rates of much practical importance. 

Detailed assessment of sequence identities in true positive alignments 

We define the sequence identity of a query-subject association by Needleman Wunsch 

alignment between the pair of annotated ranges in the query and subject. This definition is 

motivated by the fact that since local alignments can be arbitrarily short, the identity of a local 

alignment would in general not be a meaningful measure. The Needleman Wunsch 

alignments were computed using the needleall tool from the EMBOSS package (Rice, P., 

Longden, I. & Bleasby, A. EMBOSS: the European Molecular Biology Open Software Suite. 

Trends Genet. 16, 276–277, 2000) using the options -aformat markx10 -gapopen 10.0 -

gapextend 0.5 -nobrief -minscore -10.0. 

Environment 

The benchmark machine was a AMD Ryzen Threadripper 3960X 24-Core workstation with 

256 GB of RAM, a Samsung 860 PRO 4 TB internal SSD, a Seagate FireCuda 520 2 TB M.2 

SSD and two Seagate IronWolf Pro 16 TB HDDs in a RAID0 array. The operating system 

was Ubuntu Linux 20.04.1 LTS. All benchmarked tools were natively compiled from source 

using GCC 9.3.0. 

Programs 

BLAST 

For all benchmarks and analyses, we used BLAST version 2.10.0 (date 2019/12/04) 

downloaded from ftp://ftp.ncbi.nlm.nih.gov/blast/executables/blast+/2.10.0/. The command 

line options were specified as following: 
 

blastp -num_threads 48 -evalue 1000 -outfmt 6 -max_target_seqs 100000000 

 

For the supplementary benchmarks, the parameters were the same except for replacing 

blastp by blastx. 

ftp://ftp.ncbi.nlm.nih.gov/blast/executables/blast+/2.10.0/


QuickBLAST 

We downloaded QuickBLAST version 0.0.0 from 

ftp://ftp.ncbi.nlm.nih.gov/blast/demo/quickblastp.tar.gz. The command line options were 

specified as following: 
 

kblastp -num_threads 48 -evalue 1000 -outfmt 6 -max_target_seqs 100000000 

 

When using our complete query file as input, the program was killed due to running out of 

memory after some time, possibly caused by a memory leak in the code. We worked around 

this issue by partitioning our query file into 194 smaller FASTA files that we submitted as 

sequential runs. 

MMSeqs2 

The benchmark was run with MMSeqs2 commit hash 

e9678f625b16a806e1ae0bf04d7daf733f1142f2 (date 2020/04/22) cloned from the repository 

at https://github.com/soedinglab/MMseqs2/. This commit is more recent than release 11 of 

the tool, which we attempted to use at first, but which showed some dysfunctionalities that 

appeared to have been fixed in the later commits. 

The main parameter for controlling the tool’s sensitivity is -s, which can be set in a range of 

1.0 to 7.5 according to the command line documentation. We chose values of 1.0, 2.5, 6.0 

and 7.5 to roughly mimic three of the four sensitivity modes of DIAMOND which are default 

(fast), --sensitive, and --very-sensitive. 

In MMSeqs2, the --max-seqs parameter determining the maximum number of targets for 

which extensions will be computed for each query also affects the alignment sensitivity and 

needs to be manually set by the user. Setting this parameter to the number of sequences in 

the database (which would be the ideal scenario) does not lead to an efficient operation of 

the program. Hence, we ran the program in its most sensitive mode (-s 7.5) with a range of 

values for this parameter on a subset of 50,000 sequences randomly sampled from our 

query dataset against our benchmark database in order to determine a suitable value for this 

parameter. This choice allowed us to obtain the fairest and optimal mode of MMseqs2 

operation for sensitivity comparisons with DIAMOND. 

 

--max-seqs AUC1 

6250 0.586 

12500 0.595 

25000 0.599 

50000 0.602 

100000 0.603 

200000 0.604 

 

We concluded that a setting of --max-seqs 12500 provided a sufficient saturation of the 

sensitivity but also conducted another run using --max-seqs 100000 -s 7.5 in order to 

max out the sensitivity of MMSeqs2 and provide a comparison to the --ultra-sensitive 

mode of DIAMOND. 

http://ftp.ncbi.nlm.nih.gov/blast/demo/quickblastp.tar.gz
https://github.com/soedinglab/MMseqs2/


We carried out analogous computations for supplementary benchmarks 1 and 2 using a 

subset of 100,000 and 25,000 queries respectively (choice of --max-seqs parameter as 

highlighted): 

 

--max-seqs AUC1 (benchmark 1) AUC1 (benchmark 2) 

2000 0.194 0.195 

4000 0.207 0.216 

8000 0.213 0.230 

16000 0.217 0.239 

32000 0.220 0.246 

64000 - 0.254 

128000 - 0.258 

256000 - 0.258 

 

The benchmark runs can be reproduced using these command line calls: 

 
# database creation 

mmseqs createdb uniref50_annot_shuffled.faa.gz uniref50_annot_shuffled 

mmseqs createdb query_shuffled.faa.gz query_shuffled 

# alignment s=2.5 

mmseqs search query_shuffled uniref50_annot_shuffled out . --db-load-mode 1 -e 1000 

--max-seqs 12500 -s 2.5 

# alignment s=6.0 

mmseqs search query_shuffled uniref50_annot_shuffled out . --db-load-mode 1 -e 1000 

--max-seqs 12500 -s 6.0 

# alignment s=7.5 

mmseqs search query_shuffled uniref50_annot_shuffled out . --db-load-mode 1 -e 1000 

--max-seqs 12500 -s 7.5 

# alignment s=7.5 max-seqs=100000 

mmseqs search query_shuffled uniref50_annot_shuffled out . --db-load-mode 1 -e 1000 

--max-seqs 100000 -s 7.5 

# output conversion 

mmseqs convertalis query_shuffled uniref50_annot_shuffled out out.tsv --format-

output query,target,evalue 

 

Time needed for database file construction and the convertalis call to convert the output 

files into text format was not included in the runtime. The command lines for the 

supplementary benchmarks were analogous except for setting the --max-seqs parameter 

according to the table above. 

DIAMOND (v0.7.12) 

DIAMOND v0.7.12 was downloaded from the repository at 

https://github.com/bbuchfink/diamond/releases/tag/v0.7.12. The command line options were 

specified as following: 

 
# database construction 

diamond makedb --in uniref50_annot_shuffled.faa.gz -d uniref50_annot_shuffled -b20 

https://github.com/bbuchfink/diamond/releases/tag/v0.7.12


# alignment in fast mode 

diamond blastp -q query_shuffled.faa.gz -d uniref50_annot_shuffled -a out -e 1000 -

k 100000000 -c 1 --log --single-domain 

# alignment in sensitive mode 

diamond blastp -q query_shuffled.faa.gz -d uniref50_annot_shuffled -a out -e 1000 -

k 100000000 -c 1 --log --single-domain --sensitive 

# output conversion 

diamond view -a out.daa -o out.tsv 

 

Time for the database construction and converting the DAA output files to text format was not 

included in the runtime. 

DIAMOND (v0.4.7) 

DIAMOND (v0.4.7) was downloaded at https://static-

content.springer.com/esm/art%3A10.1038%2Fnmeth.3176/MediaObjects/41592_2015_BFn

meth3176_MOESM6_ESM.zip. The command line options were specified as following: 

 
# database construction 

diamond makedb --in uniref50_annot_shuffled.faa -d uniref50_annot_shuffled -t 48 

# alignment in fast mode 

diamond blastx -q query_suppl1.fna -d uniref50_annot_shuffled -o out.tsv -k 

100000000 -t 48 --min-score 25 -r 

# alignment in sensitive mode 

diamond blastx -q query_suppl1.fna -d uniref50_annot_shuffled -o out.tsv -k 

100000000 -t 48 --min-score 25 -r --sensitive 

DIAMOND (v2.0.7) 

DIAMOND version 2 is available from our repository at https://github.com/bbuchfink/diamond. 

The CMake option -DCMAKE_BUILD_MARCH=native was used for native compilation. Note 

that the CMake option -DSTRICT_BAND=OFF was also used, which slightly improves 

extension performance but also leads to slight deviations of results depending on whether 

the host system supports SSE4.1, AVX2 or neither. The benchmark runs can be reproduced 

using these command line options: 

 
# database construction 

diamond makedb --in uniref50_annot_shuffled.faa.gz -d uniref50_annot_shuffled 

# alignment in fast mode 

diamond blastp -q query_shuffled.faa.gz -d uniref50_annot_shuffled -o out.tsv -f 6 

qseqid sseqid evalue -e1000 -k0 -b20 -c1 

# alignment in sensitive mode 

diamond blastp -q query_shuffled.faa.gz -d uniref50_annot_shuffled -o out.tsv -f 6 

qseqid sseqid evalue -e1000 -k0 -b20 -c1 --sensitive 

# alignment in very-sensitive mode 

diamond blastp -q query_shuffled.faa.gz -d uniref50_annot_shuffled -o out.tsv -f 6 

qseqid sseqid evalue -e1000 -k0 -b0.8 -c1 --very-sensitive --ext banded-fast 

# alignment in ultra-sensitive mode 

diamond blastp -q query_shuffled.faa.gz -d uniref50_annot_shuffled -o out.tsv -f 6 

qseqid sseqid evalue -e1000 -k0 -b0.8 -c1 --ultra-sensitive 

 

The options for the supplementary benchmarks were chosen analogously except for calling 

diamond blastx instead of diamond blastp and using a larger block size (-b4) for 

supplementary benchmark 1. 

https://static-content.springer.com/esm/art%3A10.1038%2Fnmeth.3176/MediaObjects/41592_2015_BFnmeth3176_MOESM6_ESM.zip
https://static-content.springer.com/esm/art%3A10.1038%2Fnmeth.3176/MediaObjects/41592_2015_BFnmeth3176_MOESM6_ESM.zip
https://static-content.springer.com/esm/art%3A10.1038%2Fnmeth.3176/MediaObjects/41592_2015_BFnmeth3176_MOESM6_ESM.zip
https://github.com/bbuchfink/diamond


Resource use 

We report the maximum resident set size as well as the total disk I/O (data read + written) for 

the benchmarked tools with respect to our main benchmark. 

The tools were adjusted to max out the resources of the benchmark machine, and these 

numbers should not be seen as minimum requirements. The largest part of DIAMOND’s disk 

I/O consists of reading and writing temporary files, which was handled using a fast local SSD 

on the benchmark machine. Alternatively, when running the tool in a cluster environment 

without fast local storage being available, we recommend using a RAM drive for keeping the 

temporary files (option -t /dev/shm on the command line). The block size parameter (option 

-b) can be adjusted to keep the temporary space usage below the necessary limit such that 

it fits into RAM. This solution will effectively eliminate most of DIAMOND’s disk I/O and was 

also used in our 520 node run (Experimental Study). 

 

Program Mode maxRSS (GB) Read size 
(GB) 

Write size 
(GB) 

DIAMOND v2.0.5 default (fast) 48 14 41 

DIAMOND v2.0.5 sensitive 52 98 235 

DIAMOND v2.0.5 very-sensitive 55 690 903 

DIAMOND v2.0.5 ultra-sensitive 81 4,686 4,656 

MMSeqs2 s=1.0 29 11 26 

MMSeqs2 s=2.5 37 22 61 

MMSeqs2 s=6.0 155 300 430 

MMSeqs2 s=7.5 133 303 461 

MMSeqs2* s=7.5 204 2,451 2,727 

*using --max-seqs 100000 




