
Sensitive protein alignments at tree-of-life
scale using DIAMOND

In the format provided by the
authors and unedited

Supplementary information

https://doi.org/10.1038/s41592-021-01101-x

Supplementary Information

Benchmark

Data

The benchmark data is available according to (Data Availability Statement).We provide the

two FASTA files that were used as query (query_shuffled.faa.gz) and database

(uniref50_annot_shuffled.faa.gz), as well as the query files for the supplementary

benchmarks (query_suppl1.fna.gz, query_suppl2.fna.gz). Furthermore, the files

query_scop_annotation.tsv.gz, query_suppl1_scop_annotation.tsv.gz,

query_suppl2_scop_annotation.tsv.gz and uniref50_scop_annotation.tsv.gz contain our

annotation of the query and database sequences with SCOP domains in TSV format. They

consist of 7 columns: accession of the SCOP domain, accession of the annotated sequence,

SWIPE bit score of annotation, SCOP class, SCOP fold, SCOP superfamily, SCOP family.

When downloading the figshare file links using wget, we recommend the option --content-

disposition to retrieve complete file names.

Evaluating a TSV-formatted alignment output file according to our benchmark may be done

using this command line call:

diamond roc --family-map uniref50_scop_annotation.tsv.gz --family-map-query

query_scop_annotation.tsv.gz -q <input file>

When running this command, the query accessions, along with their individual AUC1 values,

will be written to the standard output in tabular-separated format. Note that due to a

particularity in formatting accessions, the parameter --cut-bar needs to be added to this

call when processing MMSeqs2-generated alignment files, or when using makeblastdb with

the option -parse_seqids. The option --check-multi-target needs to be added when

processing output files by MMSeqs2 in blastx mode.

The raw data for ROC curves can be generated by adding the option --roc-file <output

file> to the command line. The lines of the output file will contain tuples of family coverage

and error count, which are sums that still need to be divided by the number of queries. When

using this option, the third column in the input file is required to be the e-value.

Supplementary benchmarks

For Supplementary Benchmark 1, we selected 10 of the metagenome samples at random

(sample accessions SAMEA5383815, SAMEA5383897, SAMEA5383886, SAMEA5383828,

SAMEA5383925, SAMEA5383848, SAMEA5383824, SAMEA5383873, SAMEA5384011,

SAMEA5383807) and randomly sampled 1.5 million 150bp reads from each sample. We

annotated these reads by running BLASTX using an e-value cutoff of 10-5 against the

SCOPe ASTRAL40 v2.07 dataset, resulting in a final query dataset of 1.55 million annotated

reads. For Supplementary Benchmark 2, we selected 10 of the samples at random

(sample accessions SAMEA103892455, SAMEA103892562, SAMEA103892552,

SAMEA103892441, SAMEA103892588, SAMEA103892582, SAMEA103892581,

SAMEA103892571, SAMEA103892491, SAMEA103892619) and annotated a total of 10.7

million 250bp reads from these samples in the same manner as described above, yielding a

query dataset of 1,753,358 annotated reads that we subsampled to 1,000,000 reads.

ROC curves

We created ROC curves that plot the coverage of a protein family against the rate of

errors/query depending on the e-value threshold from the alignment output files. Given the

result list of a query, we assign each hit to a bin defined by the binary logarithm transformed

value of the hit’s e-value, rounded to the nearest integer. Alignments with e-value 0.0 are

assigned to the lowest bin. Traversing the result list sorted by e-value in ascending order, we

determine the coverage of the protein family and the count of false positives that are reached

up until a given bin, which we project as a point within the ROC curve for each bin. The

tuples of coverage and error count are averaged over all queries for corresponding e-value

bins to produce the final ROC curve for the dataset (Fig. 1b).

For the purpose of computing an AUC (Area under the curve), we consider the function that

maps the decadic logarithm value of the error rate to the coverage. Values with a true error

rate of exactly zero (for which no logarithm can be computed) were discarded since they only

correspond to a negligible amount of coverage for our data. The integral of this function is

then approximated using the trapezoid rule (Source Data for Fig. 1).

We limited the ROC curve and AUC computation at an error rate of 100 errors/query since

we do not consider searches at higher error rates of much practical importance.

Detailed assessment of sequence identities in true positive alignments

We define the sequence identity of a query-subject association by Needleman Wunsch

alignment between the pair of annotated ranges in the query and subject. This definition is

motivated by the fact that since local alignments can be arbitrarily short, the identity of a local

alignment would in general not be a meaningful measure. The Needleman Wunsch

alignments were computed using the needleall tool from the EMBOSS package (Rice, P.,

Longden, I. & Bleasby, A. EMBOSS: the European Molecular Biology Open Software Suite.

Trends Genet. 16, 276–277, 2000) using the options -aformat markx10 -gapopen 10.0 -

gapextend 0.5 -nobrief -minscore -10.0.

Environment

The benchmark machine was a AMD Ryzen Threadripper 3960X 24-Core workstation with

256 GB of RAM, a Samsung 860 PRO 4 TB internal SSD, a Seagate FireCuda 520 2 TB M.2

SSD and two Seagate IronWolf Pro 16 TB HDDs in a RAID0 array. The operating system

was Ubuntu Linux 20.04.1 LTS. All benchmarked tools were natively compiled from source

using GCC 9.3.0.

Programs

BLAST

For all benchmarks and analyses, we used BLAST version 2.10.0 (date 2019/12/04)

downloaded from ftp://ftp.ncbi.nlm.nih.gov/blast/executables/blast+/2.10.0/. The command

line options were specified as following:

blastp -num_threads 48 -evalue 1000 -outfmt 6 -max_target_seqs 100000000

For the supplementary benchmarks, the parameters were the same except for replacing

blastp by blastx.

ftp://ftp.ncbi.nlm.nih.gov/blast/executables/blast+/2.10.0/

QuickBLAST

We downloaded QuickBLAST version 0.0.0 from

ftp://ftp.ncbi.nlm.nih.gov/blast/demo/quickblastp.tar.gz. The command line options were

specified as following:

kblastp -num_threads 48 -evalue 1000 -outfmt 6 -max_target_seqs 100000000

When using our complete query file as input, the program was killed due to running out of

memory after some time, possibly caused by a memory leak in the code. We worked around

this issue by partitioning our query file into 194 smaller FASTA files that we submitted as

sequential runs.

MMSeqs2

The benchmark was run with MMSeqs2 commit hash

e9678f625b16a806e1ae0bf04d7daf733f1142f2 (date 2020/04/22) cloned from the repository

at https://github.com/soedinglab/MMseqs2/. This commit is more recent than release 11 of

the tool, which we attempted to use at first, but which showed some dysfunctionalities that

appeared to have been fixed in the later commits.

The main parameter for controlling the tool’s sensitivity is -s, which can be set in a range of

1.0 to 7.5 according to the command line documentation. We chose values of 1.0, 2.5, 6.0

and 7.5 to roughly mimic three of the four sensitivity modes of DIAMOND which are default

(fast), --sensitive, and --very-sensitive.

In MMSeqs2, the --max-seqs parameter determining the maximum number of targets for

which extensions will be computed for each query also affects the alignment sensitivity and

needs to be manually set by the user. Setting this parameter to the number of sequences in

the database (which would be the ideal scenario) does not lead to an efficient operation of

the program. Hence, we ran the program in its most sensitive mode (-s 7.5) with a range of

values for this parameter on a subset of 50,000 sequences randomly sampled from our

query dataset against our benchmark database in order to determine a suitable value for this

parameter. This choice allowed us to obtain the fairest and optimal mode of MMseqs2

operation for sensitivity comparisons with DIAMOND.

--max-seqs AUC1

6250 0.586

12500 0.595

25000 0.599

50000 0.602

100000 0.603

200000 0.604

We concluded that a setting of --max-seqs 12500 provided a sufficient saturation of the

sensitivity but also conducted another run using --max-seqs 100000 -s 7.5 in order to

max out the sensitivity of MMSeqs2 and provide a comparison to the --ultra-sensitive

mode of DIAMOND.

http://ftp.ncbi.nlm.nih.gov/blast/demo/quickblastp.tar.gz
https://github.com/soedinglab/MMseqs2/

We carried out analogous computations for supplementary benchmarks 1 and 2 using a

subset of 100,000 and 25,000 queries respectively (choice of --max-seqs parameter as

highlighted):

--max-seqs AUC1 (benchmark 1) AUC1 (benchmark 2)

2000 0.194 0.195

4000 0.207 0.216

8000 0.213 0.230

16000 0.217 0.239

32000 0.220 0.246

64000 - 0.254

128000 - 0.258

256000 - 0.258

The benchmark runs can be reproduced using these command line calls:

database creation

mmseqs createdb uniref50_annot_shuffled.faa.gz uniref50_annot_shuffled

mmseqs createdb query_shuffled.faa.gz query_shuffled

alignment s=2.5

mmseqs search query_shuffled uniref50_annot_shuffled out . --db-load-mode 1 -e 1000

--max-seqs 12500 -s 2.5

alignment s=6.0

mmseqs search query_shuffled uniref50_annot_shuffled out . --db-load-mode 1 -e 1000

--max-seqs 12500 -s 6.0

alignment s=7.5

mmseqs search query_shuffled uniref50_annot_shuffled out . --db-load-mode 1 -e 1000

--max-seqs 12500 -s 7.5

alignment s=7.5 max-seqs=100000

mmseqs search query_shuffled uniref50_annot_shuffled out . --db-load-mode 1 -e 1000

--max-seqs 100000 -s 7.5

output conversion

mmseqs convertalis query_shuffled uniref50_annot_shuffled out out.tsv --format-

output query,target,evalue

Time needed for database file construction and the convertalis call to convert the output

files into text format was not included in the runtime. The command lines for the

supplementary benchmarks were analogous except for setting the --max-seqs parameter

according to the table above.

DIAMOND (v0.7.12)

DIAMOND v0.7.12 was downloaded from the repository at

https://github.com/bbuchfink/diamond/releases/tag/v0.7.12. The command line options were

specified as following:

database construction

diamond makedb --in uniref50_annot_shuffled.faa.gz -d uniref50_annot_shuffled -b20

https://github.com/bbuchfink/diamond/releases/tag/v0.7.12

alignment in fast mode

diamond blastp -q query_shuffled.faa.gz -d uniref50_annot_shuffled -a out -e 1000 -

k 100000000 -c 1 --log --single-domain

alignment in sensitive mode

diamond blastp -q query_shuffled.faa.gz -d uniref50_annot_shuffled -a out -e 1000 -

k 100000000 -c 1 --log --single-domain --sensitive

output conversion

diamond view -a out.daa -o out.tsv

Time for the database construction and converting the DAA output files to text format was not

included in the runtime.

DIAMOND (v0.4.7)

DIAMOND (v0.4.7) was downloaded at https://static-

content.springer.com/esm/art%3A10.1038%2Fnmeth.3176/MediaObjects/41592_2015_BFn

meth3176_MOESM6_ESM.zip. The command line options were specified as following:

database construction

diamond makedb --in uniref50_annot_shuffled.faa -d uniref50_annot_shuffled -t 48

alignment in fast mode

diamond blastx -q query_suppl1.fna -d uniref50_annot_shuffled -o out.tsv -k

100000000 -t 48 --min-score 25 -r

alignment in sensitive mode

diamond blastx -q query_suppl1.fna -d uniref50_annot_shuffled -o out.tsv -k

100000000 -t 48 --min-score 25 -r --sensitive

DIAMOND (v2.0.7)

DIAMOND version 2 is available from our repository at https://github.com/bbuchfink/diamond.

The CMake option -DCMAKE_BUILD_MARCH=native was used for native compilation. Note

that the CMake option -DSTRICT_BAND=OFF was also used, which slightly improves

extension performance but also leads to slight deviations of results depending on whether

the host system supports SSE4.1, AVX2 or neither. The benchmark runs can be reproduced

using these command line options:

database construction

diamond makedb --in uniref50_annot_shuffled.faa.gz -d uniref50_annot_shuffled

alignment in fast mode

diamond blastp -q query_shuffled.faa.gz -d uniref50_annot_shuffled -o out.tsv -f 6

qseqid sseqid evalue -e1000 -k0 -b20 -c1

alignment in sensitive mode

diamond blastp -q query_shuffled.faa.gz -d uniref50_annot_shuffled -o out.tsv -f 6

qseqid sseqid evalue -e1000 -k0 -b20 -c1 --sensitive

alignment in very-sensitive mode

diamond blastp -q query_shuffled.faa.gz -d uniref50_annot_shuffled -o out.tsv -f 6

qseqid sseqid evalue -e1000 -k0 -b0.8 -c1 --very-sensitive --ext banded-fast

alignment in ultra-sensitive mode

diamond blastp -q query_shuffled.faa.gz -d uniref50_annot_shuffled -o out.tsv -f 6

qseqid sseqid evalue -e1000 -k0 -b0.8 -c1 --ultra-sensitive

The options for the supplementary benchmarks were chosen analogously except for calling

diamond blastx instead of diamond blastp and using a larger block size (-b4) for

supplementary benchmark 1.

https://static-content.springer.com/esm/art%3A10.1038%2Fnmeth.3176/MediaObjects/41592_2015_BFnmeth3176_MOESM6_ESM.zip
https://static-content.springer.com/esm/art%3A10.1038%2Fnmeth.3176/MediaObjects/41592_2015_BFnmeth3176_MOESM6_ESM.zip
https://static-content.springer.com/esm/art%3A10.1038%2Fnmeth.3176/MediaObjects/41592_2015_BFnmeth3176_MOESM6_ESM.zip
https://github.com/bbuchfink/diamond

Resource use

We report the maximum resident set size as well as the total disk I/O (data read + written) for

the benchmarked tools with respect to our main benchmark.

The tools were adjusted to max out the resources of the benchmark machine, and these

numbers should not be seen as minimum requirements. The largest part of DIAMOND’s disk

I/O consists of reading and writing temporary files, which was handled using a fast local SSD

on the benchmark machine. Alternatively, when running the tool in a cluster environment

without fast local storage being available, we recommend using a RAM drive for keeping the

temporary files (option -t /dev/shm on the command line). The block size parameter (option

-b) can be adjusted to keep the temporary space usage below the necessary limit such that

it fits into RAM. This solution will effectively eliminate most of DIAMOND’s disk I/O and was

also used in our 520 node run (Experimental Study).

Program Mode maxRSS (GB) Read size
(GB)

Write size
(GB)

DIAMOND v2.0.5 default (fast) 48 14 41

DIAMOND v2.0.5 sensitive 52 98 235

DIAMOND v2.0.5 very-sensitive 55 690 903

DIAMOND v2.0.5 ultra-sensitive 81 4,686 4,656

MMSeqs2 s=1.0 29 11 26

MMSeqs2 s=2.5 37 22 61

MMSeqs2 s=6.0 155 300 430

MMSeqs2 s=7.5 133 303 461

MMSeqs2* s=7.5 204 2,451 2,727

*using --max-seqs 100000

