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Supplementary Fig. 1: Characterisation of PCHi-C replicates and interacting regions

a Scatter plots show pairwise comparisons between individual PCHi-C replicates (naive, left; primed,
centre) and between the mean of replicate reads in naive and primed PSCs (right). Correlation values
are shown.

b Sankey plots describe the genomic features of interacting regions in naive PSCs (left) and primed
PSCs (right) that were detected by PCHi-C. Listed within the ‘bait’ category are the number and
percentage of protein-coding promoters, non-protein-coding promoters and non-promoter regions.
The ‘PIR’ category describes the promoter-interacting regions. As expected, the most frequent type
of interaction in both cell types was between baited protein-coding promoters and non-promoter
regions.

¢ Hi-C and PCHi-C data (without significance filtering) were binned at a 25kb resolution and normalised
using ICE. Coordinates of all Hindlll fragments (left) with a significant PCHi-C interaction (naive,
n=47,598; primed, n=50,591) and (right) within the largest sub-network (naive, n=1,035; primed,
n=1,611) were used to extract all Hi-C and PCHi-C overlapping bins from which the pileup figures were
constructed using coolpuppy. Each pixel on the pileup plots is 25kb with 100kb padding around the
central pixel. The change of color shows enrichment of interactions on a log-scale. The value of the
central pixel is shown in the top left.

d Heatmap shows the number of interacting Hindlll fragments that were assigned to each of the
ChromHMM-defined chromatin states in both cell types. Note the higher number of bivalently-
marked (H3K27me3 and H3K4me1/3) interacting regions in primed compared to naive PSCs.

e Chart shows the total number of interacting Hindlll fragments for each of the ChromHMM states.
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Supplementary Fig. 2: Changes in promoter-interaction frequency and transcriptional levels in four
gene clusters

a Box plots show the number of significant interactions at Hindlll fragments located within the HISTH1
(n=42), PCDH (n=47), KRT (n=31) and Olfactory receptor (n=17) gene clusters. The box bounds the
interquartile range (IQR) divided by the median (horizontal line), and Tukey-style whiskers extend to
a maximum of 1.5 x IQR beyond the box. Blue and red circles indicate individual data points and the
black circles indicate individual outliers. The grey lines connect the data points for the same Hindlll
fragment in the two cell types.

b Volcano plots show the transcriptional changes between naive and primed PSCs for genes within
the HISTH1, PCDH, KRT and Olfactory receptor gene clusters. Each dot represents a different gene.
Genes coloured in red are differentially expressed between naive and primed PSCs (log10 fold change
>1.5 or >-1.5 and with an adjusted P-value < 0.05). Other categories shown include genes that are not
differentially expressed (log10 fold change <1.5 < -1.5 and/or with an adjusted P-value > 0.05) or genes
that are not expressed (0 read counts in RNA-seq data).

¢ Network graphs visualise data from PCHi-C replicates 1 (upper) or replicates 2 (lower) separately.
The key landmarks of the networks are indicated (based on Fig. 1b) and are consistent in both network
graphs, which provides support for the good reproducibility between replicate samples.

d Related to Fig. 3c, network graphs based on individual PCHi-C replicate samples show the

reproducibility of Polycomb-associated interaction clusters in primed and naive PSCs.
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Supplementary Fig. 3: Identified communities recapitulate TADs and are largely shared between
naive and primed PSCs.

a TADs were defined using matched Hi-C data and their locations are projected onto the PCHi-C
network graph. Each TAD is represented by a unique colour and TADs shared between naive and
primed PSCs have the same colour. Nodes that fall outside of a defined TAD are coloured in grey.

b Insulation score (IS) profiles around TAD boundaries in naive and primed PSCs. The dotted lines show
the IS around boundaries that have been computationally shifted by +1 Mb.

c Plot (left) shows the percentage of nodes within each community that are contained within the same
TAD. For both cell types, the percentage was significantly higher compared to a set of randomly
shuffled TAD coordinates. The inner box bounds the IQR divided by the median (horizontal line), and
Spear-style whiskers extend to the minimum and maximum of the data values.

d Statistical test for (c). Bar chart shows the frequency of median percentages obtained after 500
random permutations of TAD coordinates (grey) and the comparison between this control set (EVperm)
and the observed values (Evobs) Using a permutation test (n=500) within the regioneR package (Gel et

al. 2016).
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Supplementary Fig. 4: Long-range promoter interactions create large sub-networks in primed PSCs
a Scatter plots show the number of interactions (edges) and the number of interacting Hindlll
fragments (nodes) for each cluster, defined as sub-networks or communities within a sub-network.
Sub-networks with a modularity score of 0.7 or above were split into individual communities to ensure
interaction clusters were not biased between the two replicates by outlier interactions. The HOXA,
HIST1, PCDH, and KLHDC clusters are highlighted.

b Scatter plots show the number of interactions (edges) and the number of interacting Hindlll
fragments (nodes) for each sub-network in naive and primed PSCs. The lower-left quadrant contains
larger sub-networks in primed PSCs, and the upper-right quadrant contains larger sub-networks in
naive PSCs. The HOXA, HOXD, NKX and HISTH1 sub-networks are highlighted. Sub-networks are
coloured according to their number of long-range promoter interactions. Note the increased number
of long-range promoter interactions within most sub-networks in primed (right) compared to naive
(left) PSCs.

¢ Genome browser tracks show the PCHi-C interactions and CHiCAGO scores in naive and primed PSCs
for the HOXA, HOXD, NKX and HISTH1 sub-networks.

d Dot plots show that the high number of long-range promoter interactions in primed PSCs is
independent of the applied CHICAGO threshold. Each dot represents a PCHi-C interaction, positioned
according to the linear genomic distance of the interaction (x-axis) and the assigned CHiCAGO score
(y-axis). Black dots show the interactions obtained when applying a CHICAGO score of >5 (the
threshold used for constructing the network graph) and red dots show the interactions when using a
relaxed CHiCAGO score of between 3 and 5. Primed PSCs have more long-range promoter interactions
(shaded area; defined as >1Mb) compared to naive PSCs when either CHICAGO threshold score is

applied.
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Supplementary Fig. 5: Additional examples show the higher number of long-range chromatin
interactions in primed compared to naive PSCs

Five examples from different chromosomes of Hi-C interaction matrices at a resolution of 250 kb with
Knight-Ruiz (KR) normalisation. In each contact matrix, naive PSCs are shown in the upper right and
primed PSCs are shown in the lower left. Areas of contact enrichment were defined separately for
naive and primed PSCs using HiCCUPS analysis of Hi-C data and each cell type-specific set of chromatin
interactions are highlighted as a black square on their respective heatmaps. The numbers in each

corner indicate the maximum intensity values for the matrix.
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Supplementary Fig. 6: Assigning ChromHMM states to chromatin interacting regions

a Sankey plot reveals the chromatin state composition for the 617 Hindlll interacting regions in naive
PSCs that were defined by ChromHMM as being in a ‘mixed’ chromatin state. The left column shows
the 617 mixed chromatin state regions and the right column shows the breakdown of individual
chromatin states for each of the regions, represented by the different colour bars. Approximately half
of the mixed state Hindlll fragments contain signatures of active (H3K4me3, green), bivalent
(H3K27me3 and H3K4me1/3, orange) and Polycomb (H3K27me3-only, red) chromatin.

b Genome browser representation shows an example of a developmental gene marked by active
histone modifications in naive PSCs. The DLX6 upstream region (shaded in red box) is decorated with
high H3K4me1l and low H3K27me3 in naive PSCs, and the H3K27me3 signal is much higher across this
region in primed PSCs. DLX6 is transcriptionally inactive in naive and primed PSCs.

¢ Heatmap shows the difference in Hindlll fragment interaction frequency between cell types as a
function of the chromatin state of the interacting regions (rows) and the linear interaction distance
(columns, binned distances). Interacting regions that are engaged in long-range promoter
interactions, defined as >1Mb, are highlighted by the dashed box. Nearly all (98%) of the long-range
interactions were associated with bivalently-marked promoters and these regions have a higher

interaction frequency in primed compared to naive PSCs.
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Supplementary Fig. 7: Differences in promoter interactions between human pluripotent states

a Circos plots show long-range PCHi-C interactions (blue lines) and interactions with the HOX clusters
(red lines) for the chromosomes indicated in naive (upper) and primed (lower) PSCs. The red outer
track shows H3K27me3-marked regions.

b Genome browser representations of the HOXC locus in naive (upper) and primed (lower) PSCs.
Tracks shown include all chromatin interactions that have at least one end of an interaction in this
region (blue and red lines), baited Hindlll fragments, and ChlIP-Seq data including H3K4me3,
H3K27me3 and ChromHMM states. Note the higher number of interactions within the HOXC locus in
primed compared to naive PSCs.

¢ Charts show the number of ‘outside’ (upper) and ‘within’ (lower) chromatin interactions for the four
HOX loci in both cell types. ‘Outside’ interactions are when one end of the interaction is within the
HOX region and the other end of the interaction is outside of the region, and ‘within’ interactions are
when both ends of the interaction are within the same HOX region. Note the striking difference in the
number of ‘within’ interactions, particularly for the HOXB and HOXC loci, between pluripotent states.
d Validation of a long-range Polycomb-associated interaction by triple-label 3D DNA FISH in primed
(left) and naive (right) PSCs. Representative images show probe signals for DLX1/2 (green),
HOXD10/11 (red) and control (blue) region. Scale bars, 5um. Cumulative distribution plots show the
relative frequency of alleles colocalising at increasing distance cutoffs; n=986 cells counted for primed
and n=123 cells for naive, from one experiment. The results show that in primed PSCs, HOXD10/11
and DLX1/2 loci are closer together (purple line) compared to HOXD10/11 and a control locus that is
equidistant in the opposite direction along the chromosome (red line). In contrast, in naive PSCs, there
was no difference in the proximity between HOXD10/11 — DLX1/2 and HOXD10/11 — control locus.
Genome browser image shows the locations of the three probes used, together with H3K27me3 ChilP-

seq tracks and PCHi-C interactions across this region.
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Supplementary Fig. 8: Comparing promoter — enhancer interactions between naive and primed
PSCs.

a Sankey plot reveals the interactivity patterns for the 887 Hindlll regions (containing 1,165 gene
promoters) that interact with a SE in either naive or primed PSCs. The right column shows the
breakdown of individual regions based on their cell type-specific interactivity and SE classification. The
largest category represents gene promoters that interact with a shared SE only in naive PSCs.

b Stacked bar chart showing the binned number of promoters interactions per SE in naive and primed
PSCs.

¢ Stacked bar chart showing the number of SEs interacting with 1, 2-5, or >6 gene promoters in naive
and primed PSCs.

d Sankey plot reveals the interactivity patterns for the 5842 Hindlll regions (containing 7,529 gene
promoters) that interact with an enhancer in either naive or primed PSCs. The right column shows the
breakdown of individual regions based on their cell type-specific interactivity and enhancer
classification. The largest category represents gene promoters that interact with a shared enhancer in
both cell types.

e Genome browser representation shows an example of a naive-specific enhancer at the TBX3 locus.
TBX3is highly expressed in naive PSCs, and the TBX3 promoter (shaded in red box) interacts with distal
active enhancers (shaded in green boxes) only in naive PSCs. In primed PSCs, the TBX3 locus is
decorated with H3K27me3, and interacts with distal genes that are also marked by H3K27me3,

including LHX5 and TBX5.
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Supplementary Fig. 9: Characterisation of OSN sites in naive and primed PSCs

a ChlIP-seq and ATAC-seq data for NANOG, OCT4 and SOX2 were used to categorise OSN sites that are
specific to either naive PSCs (n=13,462) or primed PSCs (n=2,164) or shared between both pluripotent
states (n=1,994). Shown are metaplots (top) and heatmaps (bottom) of log2-transformed read counts
within a 4 kb window centred on the OSN peak. Please note that this figure panel is spread over two
rows.

b Metaplots show that NANOG, OCT4 and SOX2 ChlP-seq signals are higher at regions that do not
overlap with a transcriptional start site compared to regions that do contain a transcriptional start

site. Data are log2-transformed read counts within a 4 kb window centered on an OSN peak.
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Supplementary Fig. 10: Chromosome layout and examination of edge weights on the layout of the
PCHi-C network

a Using the circle pack layout implemented in Gephi, it is possible to arrange the network nodes by
chromosomes. The subsequent application of the ForceAtlas2 layout results in the network retaining
the pre-established chromosome territories.

b We additionally explored the influence of two edge weights on the network layout. Log2 interaction
distances were used as edge weights with influence of 0.5 (left) or 1 (right). In the rectangle, the
protocadherin gene cluster along with an additional cluster are highlighted. Highlighted with arrows
are trans-interactions visible as distinct colors within a different chromosome territory.

¢ CHICAGO scores were used as edge weights with an influence of 0.5 (left) or 1 (right). An increased
edge weight (1 vs 0.5) results in a greater compaction of individual clusters/communities. The edge

weights have a minimal influence for the overall layout of the network.
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Supplementary Fig. 11: Copy number variation analysis of naive and primed PSCs using Hi-C
sequencing reads.

Each dot represents a 100kb region. Dots above the center line indicate gain of copy number and
below the line indicates loss of copy number. Chromosomes are numbered (above) with alternative

white/grey shading.
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