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Supplementary Fig. 1: Characterisation of PCHi-C replicates and interacting regions 

a Scatter plots show pairwise comparisons between individual PCHi-C replicates (naive, left; primed, 

centre) and between the mean of replicate reads in naive and primed PSCs (right). Correlation values 

are shown. 

b Sankey plots describe the genomic features of interacting regions in naive PSCs (left) and primed 

PSCs (right) that were detected by PCHi-C. Listed within the ‘bait’ category are the number and 

percentage of protein-coding promoters, non-protein-coding promoters and non-promoter regions. 

The ‘PIR’ category describes the promoter-interacting regions. As expected, the most frequent type 

of interaction in both cell types was between baited protein-coding promoters and non-promoter 

regions. 

c Hi-C and PCHi-C data (without significance filtering) were binned at a 25kb resolution and normalised 

using ICE. Coordinates of all HindIII fragments (left) with a significant PCHi-C interaction (naive, 

n=47,598; primed, n=50,591) and (right) within the largest sub-network (naive, n=1,035; primed, 

n=1,611) were used to extract all Hi-C and PCHi-C overlapping bins from which the pileup figures were 

constructed using coolpuppy1. Each pixel on the pileup plots is 25kb with 100kb padding around the 

central pixel. The change of color shows enrichment of interactions on a log-scale. The value of the 

central pixel is shown in the top left.  

d Heatmap shows the number of interacting HindIII fragments that were assigned to each of the 

ChromHMM-defined chromatin states in both cell types. Note the higher number of bivalently-

marked (H3K27me3 and H3K4me1/3) interacting regions in primed compared to naive PSCs. 

e Chart shows the total number of interacting HindIII fragments for each of the ChromHMM states. 
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Supplementary Fig. 2: Changes in promoter-interaction frequency and transcriptional levels in four 

gene clusters 

a Box plots show the number of significant interactions at HindIII fragments located within the HISTH1 

(n=42), PCDH (n=47), KRT (n=31) and Olfactory receptor (n=17) gene clusters. The box bounds the 

interquartile range (IQR) divided by the median (horizontal line), and Tukey-style whiskers extend to 

a maximum of 1.5 × IQR beyond the box. Blue and red circles indicate individual data points and the 

black circles indicate individual outliers. The grey lines connect the data points for the same HindIII 

fragment in the two cell types. 

b Volcano plots show the transcriptional changes between naive and primed PSCs for genes within 

the HISTH1, PCDH, KRT and Olfactory receptor gene clusters. Each dot represents a different gene. 

Genes coloured in red are differentially expressed between naive and primed PSCs (log10 fold change 

>1.5 or > -1.5 and with an adjusted P-value < 0.05). Other categories shown include genes that are not 

differentially expressed (log10 fold change <1.5 < -1.5 and/or with an adjusted P-value > 0.05) or genes 

that are not expressed (0 read counts in RNA-seq data). 

c Network graphs visualise data from PCHi-C replicates 1 (upper) or replicates 2 (lower) separately. 

The key landmarks of the networks are indicated (based on Fig. 1b) and are consistent in both network 

graphs, which provides support for the good reproducibility between replicate samples. 

d Related to Fig. 3c, network graphs based on individual PCHi-C replicate samples show the 

reproducibility of Polycomb-associated interaction clusters in primed and naive PSCs. 
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Supplementary Fig. 3: Identified communities recapitulate TADs and are largely shared between 

naive and primed PSCs. 

a TADs were defined using matched Hi-C data and their locations are projected onto the PCHi-C 

network graph. Each TAD is represented by a unique colour and TADs shared between naive and 

primed PSCs have the same colour. Nodes that fall outside of a defined TAD are coloured in grey.  

b Insulation score (IS) profiles around TAD boundaries in naive and primed PSCs. The dotted lines show 

the IS around boundaries that have been computationally shifted by +1 Mb. 

c Plot (left) shows the percentage of nodes within each community that are contained within the same 

TAD. For both cell types, the percentage was significantly higher compared to a set of randomly 

shuffled TAD coordinates. The inner box bounds the IQR divided by the median (horizontal line), and 

Spear-style whiskers extend to the minimum and maximum of the data values.  

d Statistical test for (c). Bar chart shows the frequency of median percentages obtained after 500 

random permutations of TAD coordinates (grey) and the comparison between this control set (Evperm) 

and the observed values (Evobs) using a permutation test (n=500) within the regioneR package (Gel et 

al. 2016). 
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Supplementary Fig. 4: Long-range promoter interactions create large sub-networks in primed PSCs 

a Scatter plots show the number of interactions (edges) and the number of interacting HindIII 

fragments (nodes) for each cluster, defined as sub-networks or communities within a sub-network. 

Sub-networks with a modularity score of 0.7 or above were split into individual communities to ensure 

interaction clusters were not biased between the two replicates by outlier interactions. The HOXA, 

HIST1, PCDH, and KLHDC clusters are highlighted. 

b Scatter plots show the number of interactions (edges) and the number of interacting HindIII 

fragments (nodes) for each sub-network in naive and primed PSCs. The lower-left quadrant contains 

larger sub-networks in primed PSCs, and the upper-right quadrant contains larger sub-networks in 

naive PSCs. The HOXA, HOXD, NKX and HISTH1 sub-networks are highlighted. Sub-networks are 

coloured according to their number of long-range promoter interactions. Note the increased number 

of long-range promoter interactions within most sub-networks in primed (right) compared to naive 

(left) PSCs. 

c Genome browser tracks show the PCHi-C interactions and CHiCAGO scores in naive and primed PSCs 

for the HOXA, HOXD, NKX and HISTH1 sub-networks. 

d Dot plots show that the high number of long-range promoter interactions in primed PSCs is 

independent of the applied CHiCAGO threshold. Each dot represents a PCHi-C interaction, positioned 

according to the linear genomic distance of the interaction (x-axis) and the assigned CHiCAGO score 

(y-axis). Black dots show the interactions obtained when applying a CHiCAGO score of >5 (the 

threshold used for constructing the network graph) and red dots show the interactions when using a 

relaxed CHiCAGO score of between 3 and 5. Primed PSCs have more long-range promoter interactions 

(shaded area; defined as >1Mb) compared to naive PSCs when either CHiCAGO threshold score is 

applied. 
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Supplementary Fig. 5: Additional examples show the higher number of long-range chromatin 

interactions in primed compared to naive PSCs 

Five examples from different chromosomes of Hi-C interaction matrices at a resolution of 250 kb with 

Knight-Ruiz (KR) normalisation. In each contact matrix, naive PSCs are shown in the upper right and 

primed PSCs are shown in the lower left. Areas of contact enrichment were defined separately for 

naive and primed PSCs using HiCCUPS analysis of Hi-C data and each cell type-specific set of chromatin 

interactions are highlighted as a black square on their respective heatmaps. The numbers in each 

corner indicate the maximum intensity values for the matrix. 
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Supplementary Fig. 6: Assigning ChromHMM states to chromatin interacting regions 

a Sankey plot reveals the chromatin state composition for the 617 HindIII interacting regions in naive 

PSCs that were defined by ChromHMM as being in a ‘mixed’ chromatin state. The left column shows 

the 617 mixed chromatin state regions and the right column shows the breakdown of individual 

chromatin states for each of the regions, represented by the different colour bars. Approximately half 

of the mixed state HindIII fragments contain signatures of active (H3K4me3, green), bivalent 

(H3K27me3 and H3K4me1/3, orange) and Polycomb (H3K27me3-only, red) chromatin. 

b Genome browser representation shows an example of a developmental gene marked by active 

histone modifications in naive PSCs. The DLX6 upstream region (shaded in red box) is decorated with 

high H3K4me1 and low H3K27me3 in naive PSCs, and the H3K27me3 signal is much higher across this 

region in primed PSCs. DLX6 is transcriptionally inactive in naive and primed PSCs. 

c Heatmap shows the difference in HindIII fragment interaction frequency between cell types as a 

function of the chromatin state of the interacting regions (rows) and the linear interaction distance 

(columns, binned distances). Interacting regions that are engaged in long-range promoter 

interactions, defined as >1Mb, are highlighted by the dashed box. Nearly all (98%) of the long-range 

interactions were associated with bivalently-marked promoters and these regions have a higher 

interaction frequency in primed compared to naive PSCs. 
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Supplementary Fig. 7: Differences in promoter interactions between human pluripotent states 

a Circos plots show long-range PCHi-C interactions (blue lines) and interactions with the HOX clusters 

(red lines) for the chromosomes indicated in naive (upper) and primed (lower) PSCs. The red outer 

track shows H3K27me3-marked regions. 

b Genome browser representations of the HOXC locus in naive (upper) and primed (lower) PSCs. 

Tracks shown include all chromatin interactions that have at least one end of an interaction in this 

region (blue and red lines), baited HindIII fragments, and ChIP-Seq data including H3K4me3, 

H3K27me3 and ChromHMM states. Note the higher number of interactions within the HOXC locus in 

primed compared to naive PSCs. 

c Charts show the number of ‘outside’ (upper) and ‘within’ (lower) chromatin interactions for the four 

HOX loci in both cell types. ‘Outside’ interactions are when one end of the interaction is within the 

HOX region and the other end of the interaction is outside of the region, and ‘within’ interactions are 

when both ends of the interaction are within the same HOX region. Note the striking difference in the 

number of ‘within’ interactions, particularly for the HOXB and HOXC loci, between pluripotent states. 

d Validation of a long-range Polycomb-associated interaction by triple-label 3D DNA FISH in primed 

(left) and naive (right) PSCs. Representative images show probe signals for DLX1/2 (green), 

HOXD10/11 (red) and control (blue) region. Scale bars, 5μm. Cumulative distribution plots show the 

relative frequency of alleles colocalising at increasing distance cutoffs; n=986 cells counted for primed 

and n=123 cells for naive, from one experiment. The results show that in primed PSCs, HOXD10/11 

and DLX1/2 loci are closer together (purple line) compared to HOXD10/11 and a control locus that is 

equidistant in the opposite direction along the chromosome (red line). In contrast, in naive PSCs, there 

was no difference in the proximity between HOXD10/11 – DLX1/2 and HOXD10/11 – control locus. 

Genome browser image shows the locations of the three probes used, together with H3K27me3 ChiIP-

seq tracks and PCHi-C interactions across this region. 
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Supplementary Fig. 8: Comparing promoter – enhancer interactions between naive and primed 

PSCs.  

a Sankey plot reveals the interactivity patterns for the 887 HindIII regions (containing 1,165 gene 

promoters) that interact with a SE in either naive or primed PSCs. The right column shows the 

breakdown of individual regions based on their cell type-specific interactivity and SE classification. The 

largest category represents gene promoters that interact with a shared SE only in naive PSCs. 

b Stacked bar chart showing the binned number of promoters interactions per SE in naive and primed 

PSCs.  

c Stacked bar chart showing the number of SEs interacting with 1, 2–5, or >6 gene promoters in naive 

and primed PSCs. 

d Sankey plot reveals the interactivity patterns for the 5842 HindIII regions (containing 7,529 gene 

promoters) that interact with an enhancer in either naive or primed PSCs. The right column shows the 

breakdown of individual regions based on their cell type-specific interactivity and enhancer 

classification. The largest category represents gene promoters that interact with a shared enhancer in 

both cell types. 

e Genome browser representation shows an example of a naive-specific enhancer at the TBX3 locus. 

TBX3 is highly expressed in naive PSCs, and the TBX3 promoter (shaded in red box) interacts with distal 

active enhancers (shaded in green boxes) only in naive PSCs. In primed PSCs, the TBX3 locus is 

decorated with H3K27me3, and interacts with distal genes that are also marked by H3K27me3, 

including LHX5 and TBX5. 
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Supplementary Fig. 9:  Characterisation of OSN sites in naive and primed PSCs 

a ChIP-seq and ATAC-seq data for NANOG, OCT4 and SOX2 were used to categorise OSN sites that are 

specific to either naive PSCs (n=13,462) or primed PSCs (n=2,164) or shared between both pluripotent 

states (n=1,994). Shown are metaplots (top) and heatmaps (bottom) of log2-transformed read counts 

within a 4 kb window centred on the OSN peak. Please note that this figure panel is spread over two 

rows. 

b Metaplots show that NANOG, OCT4 and SOX2 ChIP-seq signals are higher at regions that do not 

overlap with a transcriptional start site compared to regions that do contain a transcriptional start 

site. Data are log2-transformed read counts within a 4 kb window centered on an OSN peak.  
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Supplementary Fig. 10: Chromosome layout and examination of edge weights on the layout of the 

PCHi-C network 

a Using the circle pack layout implemented in Gephi, it is possible to arrange the network nodes by 

chromosomes. The subsequent application of the ForceAtlas2 layout results in the network retaining 

the pre-established chromosome territories.  

b We additionally explored the influence of two edge weights on the network layout. Log2 interaction 

distances were used as edge weights with influence of 0.5 (left) or 1 (right). In the rectangle, the 

protocadherin gene cluster along with an additional cluster are highlighted. Highlighted with arrows 

are trans-interactions visible as distinct colors within a different chromosome territory. 

c CHiCAGO scores were used as edge weights with an influence of 0.5 (left) or 1 (right). An increased 

edge weight (1 vs 0.5) results in a greater compaction of individual clusters/communities. The edge 

weights have a minimal influence for the overall layout of the network. 
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Supplementary Fig. 11: Copy number variation analysis of naive and primed PSCs using Hi-C 

sequencing reads.   

Each dot represents a 100kb region. Dots above the center line indicate gain of copy number and 

below the line indicates loss of copy number. Chromosomes are numbered (above) with alternative 

white/grey shading.  
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