
Supplementary Methods 

This document describes in detail the materials and methods in Trinh et al, “Genomic alterations 

during the in situ to invasive ductal breast carcinoma transition shaped by the immune 

system”. Further details on WES pipelines can be found at 

(https://docs.google.com/document/d/1VO2kX_fgfUd0x3mBS9NjLUWGZu794WbTepBel3cBg08/edit#

heading=h.yby87l2ztbcj).  

Code for downstream analysis and figure generation can be obtained at https://github.com/polyak-

lab/matchedDCISIDC  

 This document describes 6 specific sections: 

1. Whole exome sequencing 

2. RNA sequencing 

3. Cyclic Immunofluorescence 

4. Whole exome sequencing characterization pipeline 

5. External data sets used 

6. Data Analysis 

 

1. Whole exome sequencing 

Patient samples were macro-dissected into stromal and epithelial fractions from FFPE (formalin fixed 

paraffin embedded) tissue-slides, with examples of segmented regions highlighted in Fig. S1B. DNA 

and RNA were extracted from epithelial fractions from matched DCIS and IDC cases and corresponding 

normal breast using AllPrep DNA/RNA FFPE Kit (Qiagen, Cat. No. 80234).  Whole-exome sequencing 

was performed by the Broad Institute Genomics Services, as described below: 10-100ng of DNA in 50 

µL solution was used for library construction was performed as previously described (1). Adapter 

ligation was performed using palindromic forked adapters with unique dual-indexed molecular barcode 

sequences to facilitate downstream pooling (Integrated DNA Technologies). With the exception of the 

palindromic forked adapters, the reagents used for end repair, A-base addition, adapter ligation, and 



library enrichment PCR were purchased from KAPA Biosciences in 96-reaction kits. In addition, during 

the post-enrichment SPRI cleanup, elution volume was reduced to 30 µL to maximize library 

concentration, and a vortexing step was added to maximize the amount of template eluted. Mean insert 

size and yield was estimated using KAPA genomic QC assay prior to library capture, which has been 

shown to be predictors of FFPE sequencing. Hybridization and ICE capture were performed using 

Illumina's Nextera Rapid Capture Exome Kit and following the manufacturer’s suggested protocol, with 

the following exceptions: first, all libraries within a library construction plate were pooled prior to 

hybridization. Second, the Midi plate from Illumina’s Nextera Rapid Capture Exome Kit was replaced 

with a skirted PCR plate to facilitate automation. All hybridization and capture steps were automated 

on the Agilent Bravo liquid handling system. 

Library pools were then quantified using qPCR (automated assay on the Agilent Bravo), using a kit 

purchased from KAPA Biosystems with probes specific to the ends of the adapters. Based on qPCR 

quantification, libraries were normalized to 2 nM, then denatured using 0.1 N NaOH on the Hamilton 

Starlet. After denaturation, libraries were diluted to 20 pM using hybridization buffer purchased from 

Illumina. Cluster amplification of denatured templates was performed according to the manufacturer’s 

protocol (Illumina) using HiSeq 4000 cluster chemistry and HiSeq 4000 flowcells. Flowcells were 

sequenced on v1 Sequencing-by-Synthesis chemistry for HiSeq 4000 flowcells. The flowcells are then 

analyzed using RTA v.1.18.64 or later. Each pool of whole exome libraries was run on paired 76bp 

runs, reading the dual-indexed sequences to identify molecular indices and sequenced across the 

number of lanes needed to meet coverage for all libraries in the pool. Sequencing data processing was 

performed using established best practices pipelines at the Broad Institute: Reads were mapped to the 

hg19 reference using BWA mem (2,3), duplicate read-pairs were marked using Picard 

(http://broadinstitute.github.io/picard/), reads were sorted using SortSam, followed by Base Quality 

Score Recalibration using GATK BSQR (4).  Coverage metrics were obtained using GATK 

DepthOfCoverage (4) and shown in Supplemental Figure S2A-B, showing that all samples had at 



least 60x average coverage and all samples except for 1DCIS and 2DCIS have 80% of target bases 

covered at 20x coverage or higher.  

 

2. RNA-sequencing 

RNA was extracted from epithelial fractions from matched DCIS and IDC cases and corresponding 

normal breast using AllPrep DNA/RNA FFPE Kit (Qiagen, Cat. No. 80234). Transcriptome capture and 

sequencing was performed by the Broad Institute Genomics Services using methods optimized for 

FFPE. Total RNA is quantified using the Quant-iT RiboGreen RNA Assay Kit and normalized to 100 

ng/µl for a total input of 1 µg. If the sample quants lower than 100 ng/µl than a 10 ul direct stamp will 

be added to the process. Following plating, 2 µL of ERCC controls (using a 1:1,000 dilution) are spiked 

into each sample. RNA quality is measured using the Caliper LabChip GX system, which is used to 

calculate a RIN-equivalent RNA Quality Score. The percent of RNA fragments greater than 200 

nucleotides are also quantified into a DV200 score. Together, this provides an accurate assessment of 

RNA quality. Using Illumina’s TruSeq RNA Access Library Prep kit, a stranded cDNA library is prepared 

from isolated RNA, which is then hybridized to a set of DNA oligonucleotide probes to enrich the library 

for mRNA transcript fragments. This approach is optimized for FFPE tissue, which may not be suitable 

for poly(A) selection and ribosomal depletion due to degradation. Flowcell cluster amplification and 

sequencing are performed according to the manufacturer’s protocols using HiSeq 2000s. Each run was 

a 76bp paired-end with an eight-base index barcode read. Data was analyzed using the Broad Picard 

Pipeline which includes de-multiplexing and data aggregation. Alignment is completed using the STAR 

alignment algorithm (5) against human reference hg19. Transcriptome Capture covers the RefSeq and 

GENCODE v12 databases to >98%. TPM counts were determined by RSEM (6). Samples were 

excluded based on issues in read depth (less than 10M reads in the library size) and gene sparsity 

(less than 15 000 genes have non-0 read counts). This left 6 samples: 8DCIS, 8IDC, 9DCIS, 9IDC, 

2IDC and 3IDC for downstream analysis.   



3. H&E and Cyclic immunofluorescence  

Whole tissue mounts were sectioned to a thickness of 4 µm and stained with hematoxylin and eosin. 

Expert pathologists (SYP and JJ) have reviewed all cases to classify them as DCIS or IDC. The cyclic 

IF method was performed as previously described (7). 4-5 µm thick FFPE tissue sections were mounted 

on charged slides and baked overnight at 55 °C, followed by an hour at 65 °C, then deparaffinized and 

hydrated through xylenes and graded alcohols. Antigen retrieval was performed in 10 mM citrate buffer, 

pH 6, for 25 minutes in a programmed pressure cooker, follow by incubation in hot Tris/EDTA buffer, 

pH9, for 15 minutes (Agilent S2367). Slides were washed in PBS and blocked for 30 minutes in 10% 

normal goat serum (NGS) and 1% bovine serum albumin (BSA) in PBS. Directly labelled primary 

antibodies were diluted in 5% NGS and 1% BSA in PBS and slides were incubated overnight at 4°C in 

a humidity chamber. Slides were washed in PBS, mounted in Slowfade Gold plus DAPI (ThermoFisher, 

S36938) and imaged on the Zeiss AxioScan.Z1 with a Colibri 7 light source. Following imaging, 

fluorescence signal was quenched with incubation in 20 mM NaOH and 3% hydrogen peroxide H2O2 

in PBS, under incandescent light, for 30 minutes. Slides were then washed in PBS and incubated in 

next round of antibodies for a total of 10 rounds of cyclic IF. See Supplementary Table S2 for 

antibodies and catalog numbers. 

4. WES characterization 

The Getz Lab CGA WES Characterisation pipeline at the Broad Institute 

(https://docs.google.com/document/d/1VO2kX_fgfUd0x3mBS9NjLUWGZu794WbTepBel3cBg08/edit) 

was used to call, filter and annotate somatic mutations and copy number variation. This pipeline has 

been optimized to overcome sample contamination, DNA damage from fixation and filtering false 

positive calls. ContEst (8) is used to estimate cross sample contamination and DeTiN (9) to overcome 

potential contamination of tumor cells in normal tissue. Furthermore, oxidative damage to DNA by 

sample storage (e.g., C>T deamination artefacts due to FFPE preservation) or damage from library 

preparation are accounted for using PicardMultipleMetrics and Orientation Bias Filter (10). A panel of 



8,334 normals (PoN) based on the TCGA cohort (MAF Panel of Normals) (11) is also used to filter false 

positive germline variants at low coverage regions, and BLAT Realignment Filter (12) is used to realign 

reads containing variants to ensure unambiguous mapping of that read. The pipeline uses GATK3 CNV 

pipeline (4) to characterize copy number profiles, whereas variant discovery was performed using a 

combination of MuTect1 (13), MuTect2 (4) and Strelka (14). Following consensus calling, variants were 

checked to ensure they pass the OxoG/FFPE Orientation Bias filters, PoN filter, blat realignment filter 

and have at least 5 reads supporting the variant and VAF of 0.08. This final variant list was then 

annotated with Oncotator (15) and Variant Effect Predictor (16). Variants in normal exome samples 

were called using GATK HaplotypeCaller and consolidated using GenotypeGVCFs (4) . Variants were 

annotated for pathogenicity using ClinVar (17). Ploidy of normal exome samples was estimated using 

GermlineCNVCaller (4). Normal tissue was from other quadrant for mastectomy specimen and adjacent 

breast tissue for small lumpectomy specimen. 

 

5. External Data Sets 

We have utilized the following data sets in our analysis: The Abba cohort consisting of 29 DCIS for 

which whole exome sequencing and RNA-sequencing is available (GSE69994) (18). This data set has 

been profiled in a similar fashion to the recurrence cohort. This cohort has 12 ER- and 17 ER+ cases 

for which exome sequencing has passed quality control. Clinicopathological data is supplied as 

supplementary data in the relevant publication, and lists patient subtype, pathologist scoring of TILs, 

ethnicity. No follow up information is available for this cohort. Normal tissue is defined as grossly 

unremarkable breast parenchyma at least 1 cm away from the DCIS and evaluated histologically. The 

Lesurf cohort contains 50 DCIS which have been profiled by array CGH and microarray profiling 

(GSE59248) (19). Patient subtype for this cohort was available through microarray-based PAM50 

subtyping, with 15 luminal, 7 basal, 7 HER2+ and 17 normal-like cases. Data was provided pre-

processed from the corresponding author.  Information on neoantigen load could not be inferred from 

this cohort. The TCGA cohort (20) has clinical, RSEM-normalized RNA seq and copy number 



information available at firebrowse (http://firebrowse.org/). Additionally, neoantigen load, HLA-status 

and immune signatures have been previously characterized by a number of studies including the pan-

cancer immunity study by Thorsson et al (https://gdc.cancer.gov/about-data/publications/panimmune) 

(21) and immune composition is available on the TIMER cistrome (http://timer.cistrome.org/) (22).  We 

have utilized this preprocessed data in our down-stream analyses.  

 

6. Data Analysis 

Copy number analysis: Segmented contiguous chromosomal regions were called using GATK3 CNV 

in the recurrence and Abba cohorts (13). Array CGH data from Lesurf et al (19) were provided pre-

processed by the corresponding authors and deletions and gains were defined as having a log fold 

change of ±0.3. Similarity between matched copy number profiles were assessed by two different 

metrics: The first calculates the proportion of bases with concordant calls across the exome, normalized 

by the total exome length. Due to potential contamination from normal tissue, some subclonal gains 

and losses may be lost using this method. Thus, we also computed the spearman correlation between 

log2(copy number ratios) across all captured exome regions.  

 

Immune Gene Signatures: Immune signature analysis was performed using single-sample GSEA by 

the GSVA package (23), which ranks genes by expression value to perform gene set enrichment 

analysis. The ranked-based approach of this method allows comparisons of samples profiled on 

different platforms. Gene length normalized counts were used (TPM counts) from the recurrence 

cohort, Abba cohort and TCGA. Immune signatures were manually curated from the literature. This 

included gene signatures which have been reported by Thorsson et al to classify the TCGA into 6 

different immune types (21), alongside activation and inhibitory signatures described by Pardoll et al 

(24), signatures obtained from single-cell profiling in melanoma by Tirosh et al (25), 

immunosuppressive signatures describing checkpoint proteins (Rosenthal and Pardoll) (24,26), and a 

CD8 T cell specific cytotoxic signature used by Jiang et al (27). These gene-lists are available at 



github.com/polyak-lab/matchedDCISIDC/geneLists. Comparison of normalized enrichment scores 

between specific groups of patients were performed using two methods: Firstly, significance between 

enrichment scores was using student’s t-test and corrected for multiple hypothesis testing. Secondly, 

a generalized linear model was used to infer the beta-coefficients or contributors of ER status and TILs 

to a ssGSEA score: These beta values were used to construct heatmaps that illustrate the contribution 

of a variable (ER status or TILs) to the reported ssGSEA scores.   

𝑠𝑠𝐺𝑆𝐸𝐴! = 𝛽"𝐸𝑅𝑠𝑡𝑎𝑡𝑢𝑠 + 𝛽#𝑇𝐼𝐿𝑠 + 	𝜀 

Inferring immune composition: Proportions of different immune cell populations was inferred from RNA-

seq TPM data in the recurrence, Abba and TCGA cohorts. This was performed on the TIMER2 cistrome 

platform (http://timer.cistrome.org/), which allows concurrent assessment using methods including 

TIMER (22), CIBERSORT (28), xCELL (29) and EPIC (30) through the immunedeconv (31) package. 

CIBERSORT (not run in absolute mode) and EPIC infers the relative proportion of a given cell-type, 

and statistical differences using these methods were assessed using a beta-regression model to 

account for data bounded between [0,1]. CIBERSORT-ABS (absolute mode), TIMER and xCELL 

provide enrichment scores, which were compared using Wilcoxon rank sum test. Heatmaps were 

constructed using beta-values from a generalized linear model, using only significant associations  

𝐸𝑛𝑟𝑖𝑐ℎ𝑚𝑒𝑛𝑡𝑆𝑐𝑜𝑟𝑒 = 𝛽𝐸𝑅𝑠𝑡𝑎𝑡𝑢𝑠 + 	𝜀 

 

Differential gene expression analysis: Differential gene expression analysis between normal and DCIS 

in the Abba cohort, and DCIS and IDC in the recurrence cohort was performed using DESeq2 (32). 

Paired-analysis of DCIS-IDC samples in 8 and 9 was conducted using edgeR, using dispersion 

estimates calculated from all available RNA samples (33). Fold changes were used to perform Gene 

Set Enrichment Analysis (GSEA) (34) using the c2 compendium from MSigDB (34,35) through the 

HTSAnalyzeR2 (36) package. Gene sets with a FDR less than 0.05 were considered significant and 

visualized in a heatmap. 



Genetically altered pathway maps: For each cohort (recurrence, Abba, Lesurf), the number of times 

each gene was considered aberrated by CNA or pathogenic mutation was counted.  These values were 

used as the input for GSEA using HTSAnalyzeR2 (36) using the c2 compendium (34,35). Pathways 

with an adjusted P <0.1 were considered as significant, and overlapping pathways in the Recurrence, 

Abba (considering differential gene expression analysis, and genetic aberrated pathways as different 

entities), Lesurf cohorts and were used to create an enrichment map. The nodes of the resultant 

enrichment map reflect the number of enriched genes in the listed pathway, and the edge widths 

indicate the number of genes which are similar between two pathways. 

Neoantigen prediction: All non-synonymous mutations were extracted and frame shift mutations were 

in silico translated using SIFT (37) into peptides 8-11 amino acids long. HLA-type inferred from WES 

using both Polysolver (38) and OptiType (39), showed a 95% concordance in predicted HLAs. Potential 

neoantigens were queried for predicted binding affinities to their predicted Polysolver HLAs using the 

NetMHCPan4.0 server (https://services.healthtech.dtu.dk/service.php?NetMHC-4.0) with peptide 

lengths of 8-11mers. Neoantigens were predicted using NetMHCPan4 (40), and strong and weak 

binders were defined as having an estimated %rank of 0.5 and 2 binding affinity of <50nM and <200nM 

respectively. Samtools mpileup (2) was used to determine the number of alternate reads from RNA-

seq data at the corresponding mutation sites. Neoantigens were considered to be expressed when at 

least 2 RNA-seq reads supporting the mutation are present. HLA-types and neoantigens have 

previously been predicted in the TCGA cohort by Thorsson et al, and these results were obtained from 

GDC (https://gdc.cancer.gov/about-data/publications/panimmune) (21).  

Histology Analysis: Computational image analysis was performed firstly by detecting and segmenting 

cells using Qupath (41), using an estimated cell radius of 4 µm, area between 10-200 µm2, intensity 

threshold of 0.1. Extracted shape, intensity and haralick features were used to train a random forest 

classifier to differentiate between epithelial, stromal, immune cells, red blood cells and other debris in 

each image separately. Counts for epithelial, stromal and immune cells were exported for downstream 

analysis and classifications were reviewed by an expert observer.  



Cyclic Immunofluorescence: Following collection of images, 16 bit tiffs were exported using the Zeiss 

Zen software, and images were registered based on DAPI staining using the detectSURFFeatures and 

automated feature matching functions in Matlab (R2017B). Nuclear and cell segmentation was 

performed using in-house Java software, using a watershed algorithm applied to DAPI and additional 

epithelial, immune and stromal marker channels. Mean intensity features were extracted from the 

nucleus or cytoplasmic region (depending on known localization) for each marker. Background intensity 

correction was performed by assigning each cell a co-ordinate based on its location within the 

scanning/imaging window of approximately 1,800x1,800 pixels. The spatstat package (42) was used 

to smooth the resulting point process pattern using a Gaussian kernel. The smoothed intensity at each 

square was considered as “background” and subtracted from the raw intensity value. Intensities within 

a tissue were scaled to a [0, 1] distribution and phenograph (43) was used to classify cells into clusters. 

Clusters were firstly identified as “microenvironment” or “epithelial” based on spatial location within the 

image, and expression of CK and CDH1 markers (epithelial) and expression of CD45, SMA, VIM 

markers (stroma). Clusters which had high intensity values for all markers after reviewing for spatial 

location were identified as red blood cells or auto-fluorescent regions of necrosis or proteins within milk 

ducts and were excluded from analysis.  Following this, a secondary clustering was performed 

independently on the epithelial and stromal groups. Clusters were again reviewed manually inspection 

of features and spatial location, and clusters with similar properties were combined. Specifically, 

immune cells were identified based on high expression of the following markers: Foxp3 & CD4 (T regs), 

CD68 (Macrophage), PD1 & Ki67 (PD1), CD4 & CD45 (CD45 T Cells), CD8 & CD45 (CD8 T cells), 

CD20 & CD45 (B Cells). Tumor cells were primarily separated based on the following markers: Ki67 

(proliferating), ER/PR (often co-expressed), basal-like (low CK, high VIM but found clustered amongst 

other epithelial cells), myoepithelial cells (CK5, CK14, sometimes SMA), and relative expression 

individual cytokeratins or CDH1 (CK+, CDK8low, CDH1low, CK low groups). Summaries of these 

expression profiles are shown in Supplemental Figure S4D. Differences between subclasses of cells 

in DCIS and IDC in a patient case was calculated using the proportionality test. 



 

Spatial Analysis: Three different metrics for cellular interaction was considered: The first considered 

the Euclidean distance between two specific cells of interest and was termed the “interacting fraction”. 

We determined the proportion of cells of class x which are within a given nearest neighbor distance r 

to a secondary cell class y. We define immune-tumor interacting fraction as the y-value of the nearest-

neighbor CDF at r=10 µm (Supplementary Fig. S4E). When multiple immune cell types are present, 

a null distribution for each type was determined by permuting the immune cell labels 1000 times, and 

z-scores were reported to allow comparison across samples and calculation of p-values. The second 

metric considered the k-nearest neighbor metric, where we compute the average distance between a 

cell type x to its k=3 nearest neighbors of class y. We have assessed k=3, which makes metrics more 

robust to misclassified cell types. However, this metric is dependent on the frequency of a particular 

cell population, and larger distances are expected when measuring distances to a rare cell type. Thus, 

a r = 50 µm threshold was used to differentiate between close and far cells. Additionally, differences 

between cumulative distribution functions were assessed using the Kolmogorov-Smirnov test.  

Lastly, the Morisita-Horn index for spatial overlap between two cell types of interest (44) was used as 

a metric which is normalizes for population frequency. We divide the tissue region of interest into S 

squares of size 100µm x 100µm and evaluated the frequency of each cellular population in each grid. 

The Morisita-Horn index for two cell types x and y are calculated as: 
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where X and Y are the total counts of the populations of interest, and xi and yi refers to the frequency 

of these cells in grid Si. To take into account differences in tumor architecture between DCIS and IDC, 

tiles containing only tumor cells (and are thus not at the stroma-tumor interface) were omitted in this 

analysis. 95% confidence intervals were obtained by shifting the grid in 5µm increments in both the X 

and Y directions. This metric provides a global overview of the co-occurrence of two cell types and can 

be interpreted as a correlation coefficient.  



 

Immune related genomic hotspots: We firstly considered associations between expression of known 

immune checkpoint proteins or MHC-I genes and their copy number profiles to determine whether 

CNVs could contribute to over-expression. Within the Abba cohort (RNA-seq and Exome data), and the 

Lesurf cohort (aCGH and microarray), we calculate the correlation between gene expression and 

inferred CNVs and considered significant associations with FDR < 0.1. To determine new loci which 

could be associated with immune regulation, we divided the genome into 606 regions roughly 5MB 

long, and determined in each region the number of immune-related genes, as defined in InnateDB (45) 

and ImmPort (46) and the total number of genes. Immune-rich regions were determined by a 

hypergeometric test passing an FDR of 0.1, yielding 33 regions for consideration. CNVs in patients 

were categorized into “loss”, “neutral” and “gain” for each region of interest in the Abba and TCGA 

cohorts. To account for differences in patient stage, a generalized linear model was also used to 

evaluate associations between a ssGSEA score i and CNVs k=1 to 33: 

𝑠𝑠𝐺𝑆𝐸𝐴! =D𝛽&𝐶𝑁𝑉& + 𝛽&'"𝑆𝑡𝑎𝑔𝑒 + 	𝜀 

This was performed separately for DCIS, ER+ IDC and ER- IDC. Significant beta coefficients following 

p value adjustment were used to construct the association heatmap. Stage takes the discrete factors: 

1, 2, 3, 4. 

 

Association between neoantigen frequency and immune signatures: We combined the DCIS cohorts 

(Abba and recurrence cohorts) and compared it to the TCGA cohort as IDC to determine similarities in 

neoantigen frequencies. Differences in populations were determined using a proportion test. To 

determine associations between neoantigens and immune signatures, we used a generalized linear 

model taking into account all common mutations of interest: For a given signature i, consider 

𝑠𝑠𝐺𝑆𝐸𝐴! =D𝛽&𝐺𝑒𝑛𝑒&
()*

+ 𝛽&'"𝑆𝑡𝑎𝑔𝑒 + 	𝜀 



Where Genekneo is an indicator function which equals 1 if the patient is predicted to harbor that 

neoantigen. Stage takes the discrete factors: 1, 2, 3, 4. 

BCR TCR repertoire analysis: CDR3 recombined regions in B cells and T cells were inferred from RNA 

using MixCR (47). CDR3 reads were filtered to those that have at least 2 supporting reads and have 

an amino acid sequence length of at least 6. These were searched against the IEDB database (48) of 

known CDR3 sequences. Due to the low number of reads aligning to TCR sequences, we focused on 

analyzing similarities in BCR repertoires, showing only clonotypes appearing at a frequency of >1%.  
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Supplementary Figure S1. Overview of patient cohort. A, Summary of patient cohort. B, Whole 
-slide H&E images of the recurrence cohort. Macrodissected regions for sequencing are indicated 
by red boxes. Scale bar: 1 mm in Whole Slide Images, 50 µm at 10x magnification. C, Digitized 
summary of the H&E slide showing immune, tumor and stromal cells. Digitally macrodissected 
regions are outlined in black. 
 

  



Supplementary Figure S2. Whole exome sequencing of matched DCIS and IDC transition. A, 
Average coverage inferred using GATK DepthOfCoverage. B, Percentage bases sequenced with 
given coverage. C, Copy number ratios of samples generated using GATK. D, Heatmap of 
consistency of CNV calls (loss, gain, neutral) in assessed samples. E, Correlation coefficients of 
inferred log2 copy number ratios between samples. 

 



Supplementary Figure S3. Mutational profiling of the DCIS-to-IDC transition. A, Venn diagram 
of overlap in mutations between samples. B, Summary of coding mutations in the recurrence cohort, 
with zoomed in insert on conserved coding mutations. Each x location indicates a unique genomic 
site. C, Summary of mutational load observed in each patient. D, Probability of seeing 2+ reads 
supporting a variant with increasing VAF given sample coverage estimated in Supplementary Figure 
S1, using binomial model. E, PIK3CA E545K mutation in normal and tumor of immune-cold patient 
T9. 

 

 
 
  



Supplementary Figure S4. Phenotypic immune properties of patient cohort.  A, Comparison 
of matched stromal and tumor fractions from H&E images. Differences computed using Wilcoxon 
rank sum test. B, Immune composition of recurrence cohorts inferred using various RNA-
deconvolution methods and from cycIF. *FDR<0.1 using beta-regression model (CIBERSORT, 
EPIC) or Wilcoxon rank sum test (CIBERSORT-ABSOLUTE, TIMER, XCELL). C, Single-channel 
immunofluorescence panels shown in Figure 4A. D, Expression profiles of each immune and tumor 
cluster from cycIF data. Heatmaps were constructed by randomly sampling 100 cells in each cluster. 
E, Cumulative distribution function of distances from immune cells to nearest tumor cells. 
Differences in distribution were calculated using the K.S statistic. F, Heterogeneity in myoepithelial 
expression of CK5 and SMA in 9DCIS.  

 
  



Supplementary Figure S5. Immune-related genomic changes and neoantigen load. A, Copy 
number profiles of loci bearing MHC-I presenting genes or immune checkpoint genes in the Abba 
and Lesurf cohorts. B, Genome wide view of 33 loci associated with lymphocytic infiltration and 
frequency of gains and loss in the DCIS cohorts. C, Summary of patient predicted HLAs and 
neoantigen load in the Abba and recurrence cohort. D, Mutational frequency compared to number 
of unique sites for commonly mutated genes in the TCGA cohort. E, Summary of the most common 
HLAs found in the TCGA breast cohort. F, Richness of TCR and BCR clonotypes in patient tumor 
sections and adjacent tissue. Clonotypes supported by at least 2 reads are reported. 
 

 



Supplementary Table S1. Clinicopathological characteristics of patient cohort. 
 
Supplementary Table S2. Antibody panel used for cyclicIF. 
 
Supplementary Table S3. Summary of mutations and neoantigen expression in the 
recurrence cohort (Related to Fig 1C, 6A). 
 
Supplementary Table S4. Summary of altered pathways in DCIS/IDC. (Related to Fig 1F). 
 
Supplementary Table S5. Enriched gene sets between DCIS and IDC (Related to Fig 3A). 
 
Supplementary Table S6. Identified chromosomal regions associated with immune changes 
(Related to Fig 5).  
 
Supplementary Table S7. Mutational, neoantigen and rsSNP frequency of commonly mutated 
genes in TCGA and Abba cohorts (related to Fig 6C,E). 
 
 
 
 


